JPH06671B2 - Highly graphitized porous carbon fiber sheet and method for producing the same - Google Patents

Highly graphitized porous carbon fiber sheet and method for producing the same

Info

Publication number
JPH06671B2
JPH06671B2 JP63242473A JP24247388A JPH06671B2 JP H06671 B2 JPH06671 B2 JP H06671B2 JP 63242473 A JP63242473 A JP 63242473A JP 24247388 A JP24247388 A JP 24247388A JP H06671 B2 JPH06671 B2 JP H06671B2
Authority
JP
Japan
Prior art keywords
sheet
carbon fiber
fiber
producing
fiber sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63242473A
Other languages
Japanese (ja)
Other versions
JPH0292881A (en
Inventor
修 岩城
良博 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINOJI SEISHI KK
Original Assignee
SHINOJI SEISHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINOJI SEISHI KK filed Critical SHINOJI SEISHI KK
Priority to JP63242473A priority Critical patent/JPH06671B2/en
Publication of JPH0292881A publication Critical patent/JPH0292881A/en
Publication of JPH06671B2 publication Critical patent/JPH06671B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、燃料電池用電極および使用条件の厳しい化学
工業用フィルター等に利用される多孔質炭素繊維シート
及びその製造方法に関し、特に、黒鉛化度を高めて耐薬
品性および電気伝導性を向上させた多孔質炭素繊維シー
ト及びその製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a porous carbon fiber sheet used for a fuel cell electrode, a filter for the chemical industry under severe usage conditions, etc., and a method for producing the same, and particularly graphite. The present invention relates to a porous carbon fiber sheet having an increased degree of chemical conversion and improved chemical resistance and electrical conductivity, and a method for producing the same.

〔従来の技術〕[Conventional technology]

湿式抄紙法等によって得られた、主として炭素繊維製造
用有機繊維からなるシートを、有機高分子溶液に含浸し
た後乾燥し、必要に応じて不融化(安定化)処理を行な
ってから、焼成して、多孔質炭素繊維シートを製造する
方法が特開昭60-122711、同61-12918等によって公知で
ある。この方法の利点は、既に焼成済みの炭素繊維をシ
ート化した後、樹脂含浸、再焼成する方法に較べて、シ
ート化が容易であり、多孔質が得やすく、1回の焼成で
済むために安価であるということである。
A sheet mainly composed of organic fibers for carbon fiber production obtained by a wet papermaking method is impregnated with an organic polymer solution, dried, and optionally infusibilized (stabilized), and then fired. Then, a method for producing a porous carbon fiber sheet is known from JP-A-60-122711 and 61-12918. The advantage of this method is that it is easier to form into a sheet and is more porous, compared to a method of impregnating and re-calcining a resin after carbonizing a carbon fiber that has already been calcined. It is cheap.

しかしこの方法は、得られる炭素繊維シートに十分な耐
薬品性がないという欠点があった。例えば、この方法に
よって得られる炭素繊維シートを、塩素−亜鉛型2次電
池の電極板に用いた場合、高温の塩素飽和溶液という極
端な環境で使用されるため、耐用時間が十分長くなかっ
た。
However, this method has a drawback that the obtained carbon fiber sheet does not have sufficient chemical resistance. For example, when the carbon fiber sheet obtained by this method is used for an electrode plate of a chlorine-zinc type secondary battery, the carbon fiber sheet is used in an extreme environment of a high temperature chlorine-saturated solution, and thus the service life was not sufficiently long.

炭素繊維の耐薬品性は、黒鉛化度が高くなる程高くなる
事が知られている。黒鉛化度の高い炭素繊維を製造する
方法としては、ポリアクリロニトリル繊維、ピッチ繊維
等を、熱処理及び焼成過程で発生する繊維の収縮応力に
対抗するだけの緊張を与えながら、安定化及び炭素化を
行なう方法が知られている(特公昭44-21175、同46-104
69等)。
It is known that the chemical resistance of carbon fibers increases as the degree of graphitization increases. As a method for producing a carbon fiber having a high degree of graphitization, polyacrylonitrile fiber, pitch fiber, etc. can be stabilized and carbonized while applying tension sufficient to counter the shrinkage stress of the fiber generated in the heat treatment and firing processes. It is known how to do it (JP-B-44-21175, 46-104)
69 etc.).

しかしこの方法を、シート化後に焼成を行なう製造方法
に適用することは困難であり、したがってシート化後の
焼成によって、高黒鉛化度の炭素繊維シートを得る事は
困難と考えられていた。
However, it is difficult to apply this method to a manufacturing method in which firing is performed after forming into a sheet, and thus it was considered difficult to obtain a carbon fiber sheet having a high degree of graphitization by firing after forming into a sheet.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明は、未焼成の有機繊維から出発して、これをシー
ト化した後に焼成する方法によって、黒鉛化度が高く、
従って耐薬品性及び電気伝導度が高い多孔質炭素繊維シ
ートおよびその製造方法を提供することを目的とする。
The present invention has a high degree of graphitization by a method of starting from an unfired organic fiber, forming a sheet thereof, and then firing.
Therefore, it is an object of the present invention to provide a porous carbon fiber sheet having high chemical resistance and high electric conductivity and a method for producing the same.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記の目的は、本発明によれば、未焼成の炭素繊維製造
用有機繊維を65重量%以上含む繊維集合体シートに、
熱硬化性樹脂の溶液を含浸させた後乾燥することによっ
て、上記有機繊維の表面をこの有機繊維に対して乾燥重
量で5重量%以上の量の上記熱硬化性樹脂で被覆する工
程、 上記熱硬化性樹脂を熱硬化させて前駆体シートを作成す
る工程、 前駆体シートを、酸素ガス含有雰囲気中で、150〜350℃
の温度で5時間以上安定化処理する工程、および 安定化処理後の前駆体シートを、不活性ガス雰囲気中
で、1800℃以上の温度で焼成する工程を含んで成ること
を特徴とする高黒鉛化多孔質炭素繊維シートの製造方法
によって達成される。
According to the present invention, the above object is to provide a fiber assembly sheet containing 65% by weight or more of unfired organic fibers for producing carbon fiber,
A step of coating the surface of the organic fiber with the thermosetting resin in an amount of 5% by weight or more on a dry weight basis by impregnating with a solution of the thermosetting resin and then drying. Step of making a precursor sheet by thermosetting a curable resin, the precursor sheet in an oxygen gas containing atmosphere, 150 ~ 350 ℃
And a step of calcining the precursor sheet after the stabilization treatment at a temperature of 1800 ° C. or higher in an inert gas atmosphere for 5 hours or more. It is achieved by the method for producing a modified porous carbon fiber sheet.

耐薬品性を更に高めるために安定化処理の時間は20〜20
0時間が好ましい。
Stabilization time is 20 to 20 to further enhance chemical resistance
0 hours is preferred.

上記の目的は、本発明によれば、フランクリンのp値0.
60以下の高黒鉛化多孔質炭素繊維シートによっても達成
される。
According to the present invention, the above object is based on the Franklin p-value of 0.
It is also achieved with highly graphitized porous carbon fiber sheets of 60 or less.

従来、安定化処理時間は経済性等の観点から3〜5時間
で行なわれていた。しかし、本発明者は、最終的な黒鉛
化度に関する最適な安定化処理時間は、より長時間の範
囲に有る事を発見した。シート状態での安定化処理は一
回の処理量が大きいので、このような長い処理時間をか
けてもなお経済性が維持できる。
Conventionally, the stabilization treatment time has been 3 to 5 hours from the viewpoint of economy. However, the present inventor has found that the optimum stabilization treatment time for the final degree of graphitization is in the longer range. Since the amount of stabilization treatment in the sheet state is large at one time, the economical efficiency can be maintained even after such a long treatment time.

上記の安定化処理時間の硬化は、熱硬化性樹脂による含
浸処理と組合わされてはじめて発揮される。熱硬化性樹
脂を含浸せずに長時間の安定化処理を行なっても、十分
に高い黒鉛化度は得られない。熱硬化性樹脂が、繊維の
不融化(安定化)に先立って硬化し、これが繊維に接着
しているために、安定化処理および炭素化焼成中に繊維
の収縮が規制され、緊張を与えたと同様な黒鉛化度向上
効果を奏すると考えられる。
The curing during the stabilization treatment time described above is exhibited only in combination with the impregnation treatment with the thermosetting resin. Even if the stabilizing treatment is carried out for a long time without impregnating the thermosetting resin, a sufficiently high degree of graphitization cannot be obtained. The thermosetting resin was cured prior to infusibilization (stabilization) of the fiber, and because it adheres to the fiber, the shrinkage of the fiber was regulated during the stabilization treatment and carbonization firing, which caused tension. It is considered that the similar graphitization degree improving effect is achieved.

これは、シートではなく単繊維で同じ処理を行なって
も、同様に高い黒鉛化度が得られる事から推定される。
しかし、安定化処理時間を長くする事の硬化について
は、詳細な機構は明らかでない。
This is presumed from the fact that the same degree of graphitization can be obtained even when the same treatment is performed on the single fiber instead of the sheet.
However, a detailed mechanism is not clear regarding the curing by increasing the stabilization treatment time.

以下、本発明の構成を説明する。The configuration of the present invention will be described below.

本発明にしたがった繊維集合体シートは65重量%以上
の炭素繊維製造用有機繊維を含む。この有機繊維として
は、再生セルロース、ピッチ繊維、ポリアクリロニトリ
ル繊維等、通常炭素繊維の製造に使用される繊維ならば
いずれも使用できる。高い黒鉛化度を得る事が容易であ
る点で、ポリアクリロニトリル繊維が最も望ましい。湿
式抄紙法によってシート化する場合、有機繊維は太さ0.
5〜15デニール、長さ1.5〜15mmのものを使用する。
The fiber assembly sheet according to the present invention contains 65% by weight or more of organic fibers for producing carbon fibers. As the organic fiber, any fiber commonly used in the production of carbon fiber, such as regenerated cellulose, pitch fiber, polyacrylonitrile fiber, can be used. Polyacrylonitrile fiber is most preferable because it is easy to obtain a high degree of graphitization. When making a sheet by the wet papermaking method, the organic fiber has a thickness of 0.
Use 5 to 15 denier and 1.5 to 15 mm long.

シート化適性の点から、太さ0.5〜8デニール、長さ1.5
〜10mmのものが好ましい。乾式でシート化する場合は、
太さを0.5〜15デニール、長さは乾式法の種類に応じて
5〜50mm、または連続繊維を用いる。
From the point of sheet suitability, thickness 0.5-8 denier, length 1.5
It is preferably about 10 mm. When making a sheet by dry type,
The thickness is 0.5 to 15 denier, the length is 5 to 50 mm depending on the type of dry method, or continuous fiber is used.

本発明にしたがった繊維集合体シートは、上記有機繊維
のほかに、繊維全量の35重量%を越えない範囲で、天
然パルプ、PVA系及び熱可塑性バインダー繊維等を含
むことができる。
The fiber assembly sheet according to the present invention may contain, in addition to the above-mentioned organic fibers, natural pulp, PVA-based and thermoplastic binder fibers and the like within a range not exceeding 35% by weight of the total amount of fibers.

(シート化の方法) 上記の繊維あるいは繊維混合物をシート化する方法は特
に限定しない。湿式抄紙法の場合は、抄紙性改善及びシ
ート強度向上の目的で天然パルプを配合する事が好まし
い。天然パルプの代りに、叩解性アクリル繊維等の合成
パルプを配合することもできる。抄紙機や抄紙用薬剤を
適当に選択すれば、全量合成繊維で抄紙することもでき
る。
(Method of Sheeting) The method of sheeting the above fiber or fiber mixture is not particularly limited. In the case of the wet papermaking method, it is preferable to add natural pulp for the purpose of improving papermaking properties and sheet strength. Instead of natural pulp, synthetic pulp such as beating acrylic fiber may be blended. If the paper machine and the paper-making agent are appropriately selected, the synthetic paper can be used for papermaking.

乾式でシート化する場合、通常の乾式不織布製造に用い
られるいわゆるスパンボンド法、カード法、空気流法の
いずれも使用する事ができる。シートの気孔率を高め易
い点からは空気流法が最も好ましい。空気流法の場合、
シート強度を保つために熱可塑性バインダー繊維または
合成樹脂エマルジョンを用いる事ができる。
When the sheet is formed by a dry method, any of a so-called spunbond method, a card method, and an air flow method, which are used for producing a normal dry nonwoven fabric, can be used. The air flow method is the most preferable from the viewpoint of easily increasing the porosity of the sheet. In the case of the air flow method,
Thermoplastic binder fibers or synthetic resin emulsions can be used to maintain sheet strength.

(熱硬化性樹脂) 繊維表面を被覆する熱硬化性樹脂の好ましい性質として
は、何らかの媒体に溶解する事、及び炭素含有量が30
%以上であって、炭化後に炭素質バインダーとして炭素
繊維間の結合に寄与する事である。フェノール樹脂、エ
ポキシ樹脂、不飽和ポリエステル樹脂等を用いる事がで
きる。扱い易さの点からフェノール樹脂が最も好まし
い。
(Thermosetting Resin) The preferred properties of the thermosetting resin that coats the fiber surface are that it dissolves in some medium and that the carbon content is 30.
% Or more, and contributes to the bond between carbon fibers as a carbonaceous binder after carbonization. Phenol resin, epoxy resin, unsaturated polyester resin, etc. can be used. Phenolic resin is most preferable from the viewpoint of easy handling.

熱硬化性樹脂の被覆量は、乾燥重量で繊維に対して5%
以上が必要であり、それ以下では黒鉛化度向上の効果が
顕著でない。樹脂の量が多過ぎると最終製品の気孔度が
低下する。通常は10〜100%程度で十分であり、10〜50
%が好ましい。
The coating amount of thermosetting resin is 5% based on the dry weight of the fiber.
The above is required, and below that, the effect of improving the graphitization degree is not remarkable. If the amount of resin is too high, the porosity of the final product will decrease. Usually, 10 to 100% is enough, 10 to 50
% Is preferred.

浸漬等の方法で含浸させた後、熱風、赤外線等によって
乾燥を行なう。
After impregnation by a method such as dipping, it is dried with hot air, infrared rays, or the like.

本発明においては、熱硬化性樹脂の被覆を行なった後、
安定化処理前に、下記の処理を行なって前駆体シートを
作成する。
In the present invention, after coating the thermosetting resin,
Before the stabilization treatment, the following treatment is performed to prepare a precursor sheet.

(熱硬化) 通常行なわれる条件で熱硬化性樹脂を熱硬化させる。(Thermosetting) The thermosetting resin is thermoset under the conditions usually performed.

(加熱プレス) 加熱プレス処理は最終製品である多孔質繊維シートに、
必要な厚さ、形状及び気孔率を付与するために適宜行な
われる。加熱プレス処理中に熱硬化性樹脂を硬化させ
て、シートの平坦性を保たせることが好ましい。加熱プ
レスの加熱条件は温度150〜220℃、時間1〜60分が適
当である。
(Heating press) The heating press process is applied to the final product, porous fiber sheet,
Appropriately performed to give the required thickness, shape and porosity. It is preferable to cure the thermosetting resin during the hot press treatment to maintain the flatness of the sheet. Appropriate heating conditions for the heating press are a temperature of 150 to 220 ° C. and a time of 1 to 60 minutes.

さらにこの際、薄手の含浸シートを必要枚数積層した状
態で加熱プレス処理を行なうと、容易に厚手の炭素繊維
シートが得られる。積層される各シートの方向性の関係
により、炭素繊維シートの方向性を最小にしたり、ある
いは逆に強調したりする事ができる。
Further, at this time, if a necessary number of thin impregnated sheets are laminated and subjected to a heat press treatment, a thick carbon fiber sheet can be easily obtained. The directionality of the carbon fiber sheets can be minimized or, conversely, emphasized, depending on the directionality relationship between the laminated sheets.

加熱プレスは、前記熱硬化処理を兼ねることができる。The hot press can also serve as the thermosetting treatment.

成形によって得られた前駆体シートを安定化処理する。The precursor sheet obtained by molding is stabilized.

(安定化処理) 焼成に先立って、酸素ガス含有雰囲気中(たとえば大気
中)で150〜350℃の温度で安定化処理を行なう。安定化
処理時間は、有機繊維の種類及び太さによって異なる
が、焼成後の最終製品の十分な黒鉛化度を得るには、少
なくとも5時間は必要である。
(Stabilization Treatment) Prior to firing, stabilization treatment is performed at a temperature of 150 to 350 ° C. in an atmosphere containing oxygen gas (for example, in the air). The stabilization treatment time varies depending on the type and thickness of the organic fiber, but at least 5 hours are required to obtain a sufficient degree of graphitization of the final product after firing.

処理時間が長くなるに従って、焼成後の黒鉛化度は徐々
に上昇するので、処理時間の上限は、必要とされる耐薬
品性等の性能と、製造費との兼ね合いで決定される。一
般的には10〜200時間で十分である。
Since the degree of graphitization after firing gradually increases as the treatment time becomes longer, the upper limit of the treatment time is determined in consideration of the required performance such as chemical resistance and the manufacturing cost. Generally, 10 to 200 hours is sufficient.

(焼成処理) 安定化処理済みの前駆体シートを窒素、アルゴン等の不
活性ガス雰囲気中で、1800℃以上の温度で炭素化焼成す
る。前駆体シートをグラファイト板等の耐熱性の材料で
はさんだ状態で焼成すると、シートの平坦性を容易に保
てる。
(Baking Treatment) The precursor sheet that has been subjected to the stabilizing treatment is carbonized and baked at a temperature of 1800 ° C. or higher in an atmosphere of an inert gas such as nitrogen or argon. The flatness of the sheet can be easily maintained by firing the precursor sheet sandwiched between heat-resistant materials such as a graphite plate.

焼成前に、たとえば窒素ガス等の不活性ガス雰囲気中、
1000℃前後の比較的低温で焼成・炭化し、揮発分の大部
分を揮発させてから、アルゴンガス等の不活性ガス雰囲
気中、1800℃以上で焼成すると、製造上有利である。い
ずれにしても、有機繊維を十分に黒鉛化させるために
は、最終的には1800℃以上の温度が必要である。
Before firing, for example, in an inert gas atmosphere such as nitrogen gas,
It is advantageous in terms of production to fire and carbonize at a relatively low temperature of around 1000 ° C to volatilize most of the volatile components, and then to fire at 1800 ° C or higher in an inert gas atmosphere such as argon gas. In any case, in order to sufficiently graphitize the organic fiber, a temperature of 1800 ° C or higher is finally required.

炭素化焼成中に、有機繊維が炭素繊維となると共に、炭
素繊維間結合部が形成され、一体の炭素繊維シートが形
成される。
During the carbonization and firing, the organic fibers become carbon fibers, the carbon fiber interbonding portions are formed, and an integral carbon fiber sheet is formed.

炭素繊維シートの黒鉛化度はFranklinのp値で表され
る。この値は、X線回折図から得られる平均層間隔d
(Å)を使って、次式で算出される。
The graphitization degree of a carbon fiber sheet is represented by Franklin's p-value. This value is the average layer spacing d obtained from the X-ray diffraction pattern.
It is calculated by the following formula using (Å).

d=3.440−0.086(1−p2) 十分な耐薬品性を得るためには、p値を0.60以下とする
必要がある。
d = 3.440-0.086 in order to obtain (1-p 2) sufficient chemical resistance, it is necessary that the p value 0.60 or less.

p値を0.40以下とすると、特に優れた耐薬品性が得られ
る。
When the p value is 0.40 or less, particularly excellent chemical resistance is obtained.

以下に、実施例によって本発明を更に詳細に説明する。Hereinafter, the present invention will be described in more detail with reference to Examples.

実施例中に部及び%とあるのはそれぞれ重量部及び重量
%である。
Parts and% in the examples are parts by weight and% by weight, respectively.

実施例1 太さ7デニール、長さ3mm及び太さ3デニール、長さ3
mmのPAN繊維をそれぞれ55部、25部、針葉樹晒し
クラフトパルプをJISフリーネス400mlに叩解したも
の20部に水を加えてスラリーとし、丸網抄紙機で常法
により坪量180g/m2のシートを作成した。
Example 1 Thickness 7 denier, length 3 mm and thickness 3 denier, length 3
mm PAN fiber of 55 parts and 25 parts respectively, softwood bleached kraft pulp was beaten to 400 ml of JIS freeness, and 20 parts of which was slurried by adding water to a sheet having a basis weight of 180 g / m 2 by a conventional method using a round net paper machine. It was created.

このシートを、群栄化学(株)製のフェノール樹脂PL-2
215のメタノール溶液に浸漬した後、105℃の乾燥室で乾
燥した。樹脂の付着量は、乾燥重量でシートの重量の7
3%であった。
This sheet is a phenol resin PL-2 manufactured by Gunei Chemical Co., Ltd.
After being immersed in a methanol solution of 215, it was dried in a drying chamber at 105 ° C. The amount of resin adhered is 7 of the dry weight of the sheet
It was 3%.

ついでこのシートを6枚重ねて、厚さが3.0mmになるよ
うにプレスで加圧し、同時に180℃の温度で15分間、
加熱硬化処理を行なって前駆体シートを作成した。
Then, 6 sheets of this sheet are stacked and pressed by a press so that the thickness becomes 3.0 mm, and at the same time, at a temperature of 180 ° C. for 15 minutes,
A heat curing treatment was performed to prepare a precursor sheet.

この前駆体シートを温度220℃で6時間空気中で安定化
処理を行なった後、温度1000℃で、窒素ガス雰囲気中で
1時間、グラファイト板にはさんで加熱した。次いでア
ルゴンガス雰囲気中、温度2800℃で30分間焼成を行っ
て炭素繊維シートを得た。
This precursor sheet was stabilized in air at a temperature of 220 ° C. for 6 hours and then heated at a temperature of 1000 ° C. in a nitrogen gas atmosphere for 1 hour while sandwiched between graphite plates. Then, it was fired at a temperature of 2800 ° C. for 30 minutes in an argon gas atmosphere to obtain a carbon fiber sheet.

実施例2 実施例1と同様に炭素繊維シートを製造した。ただし、
安定化処理の時間は12時間とした。
Example 2 A carbon fiber sheet was produced in the same manner as in Example 1. However,
The stabilization treatment time was 12 hours.

実施例3 実施例1と同様に炭素繊維シートを製造した。ただし、
安定化処理の時間は24時間とした。
Example 3 A carbon fiber sheet was manufactured in the same manner as in Example 1. However,
The stabilization time was 24 hours.

実施例4 実施例1と同様に炭素繊維シートを製造した。ただし、
安定化処理の時間は48時間とした。
Example 4 A carbon fiber sheet was produced in the same manner as in Example 1. However,
The stabilization treatment time was 48 hours.

実施例5 実施例1と同様に炭素繊維シートを製造した。ただし、
安定化処理の時間は96時間とした。
Example 5 A carbon fiber sheet was produced in the same manner as in Example 1. However,
The stabilization treatment time was 96 hours.

実施例6 実施例1と同様に炭素繊維シートを製造した。ただし、
安定化処理の時間は192時間とした。
Example 6 A carbon fiber sheet was produced in the same manner as in Example 1. However,
The stabilization treatment time was 192 hours.

実施例7 浸漬用のフェノール樹脂溶液の濃度を変えて、樹脂の付
着量を乾燥重量でシートの重量の20%になるように調
整した他は実施例2と同様に操作して炭素繊維シートを
製造した。
Example 7 A carbon fiber sheet was prepared in the same manner as in Example 2 except that the concentration of the phenol resin solution for dipping was changed so that the amount of the resin adhering to the sheet became 20% of the dry weight of the sheet. Manufactured.

実施例8 浸漬用のフェノール樹脂溶液の濃度を変えて、樹脂の付
着量を乾燥重量でシートの重量の51%になるように調
整した他は実施例2と同様に操作して炭素繊維シートを
製造した。
Example 8 A carbon fiber sheet was prepared in the same manner as in Example 2 except that the concentration of the phenol resin solution for dipping was changed so that the amount of the resin adhered was 51% of the dry weight of the sheet. Manufactured.

実施例9 浸漬用のフェノール樹脂溶液の濃度を変えて、樹脂の付
着量を乾燥重量でシートの重量の95%になるように調
整した他は実施例2と同様に操作して炭素繊維シートを
製造した。
Example 9 A carbon fiber sheet was prepared in the same manner as in Example 2 except that the concentration of the phenol resin solution for dipping was changed so that the amount of resin adhered was adjusted to 95% of the dry weight of the sheet. Manufactured.

比較例1 実施例1と同様に炭素繊維シートを製造した。ただし、
安定化処理の時間は0時間とした。
Comparative Example 1 A carbon fiber sheet was manufactured in the same manner as in Example 1. However,
The stabilization treatment time was 0 hours.

比較例2 実施例5と同様に炭素繊維シートを製造した。ただし、
樹脂溶液の代りにメタノールに浸漬する事によって樹脂
付着量を0%とした。
Comparative Example 2 A carbon fiber sheet was produced in the same manner as in Example 5. However,
The resin adhesion amount was set to 0% by immersing in methanol instead of the resin solution.

実施例1〜9および比較例1〜2で得られた炭素繊維シ
ートについて、黒鉛化率(前記のフランクリンのp値)
の測定と耐薬品性の試験を行なった。
Regarding the carbon fiber sheets obtained in Examples 1 to 9 and Comparative Examples 1 and 2, the graphitization rate (the p value of Franklin described above)
And the chemical resistance test.

耐薬品性は、500mlの脱イオン水中に、炭素繊維シート
(厚さ2mm×10cm角)を浸漬し、これに塩素を吹き込
み飽和させた後、水温40℃で10日間保持し、液の色
の変化で判定した。
Chemical resistance is as follows: Carbon fiber sheet (thickness 2 mm x 10 cm square) is dipped in 500 ml of deionized water, chlorine is blown into the carbon fiber sheet to saturate it, and the temperature is kept at 40 ° C for 10 days. It was judged by the change.

結果を第1表に示す。The results are shown in Table 1.

〔発明の効果〕 本発明は、黒鉛化度が高く、従って耐薬品性の高い高黒
鉛化炭素繊維シートを容易かつ安価に製造・提供できる
ので、燃料電池等の2次電池電極や、使用条件の厳しい
化学工業用フィルター等の製造・利用分野に多大な寄与
をなすものである。
EFFECTS OF THE INVENTION The present invention can easily and inexpensively produce and provide a highly graphitized carbon fiber sheet having a high degree of graphitization and, therefore, a secondary battery electrode such as a fuel cell, and a use condition. It makes a great contribution to the field of manufacture and use of harsh chemical industrial filters.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】未焼成の炭素繊維製造用有機繊維を65重
量%以上含む繊維集合体シートに、熱硬化性樹脂の溶液
を含浸させた後乾燥することによって、上記有機繊維の
表面をこの有機繊維に対して乾燥重量で5重量%以上の
量の上記熱硬化性樹脂で被覆する工程、 上記熱硬化性樹脂を熱硬化させて前駆体シートを作成す
る工程、 前駆体シートを、酸素ガス含有雰囲気中で、150〜350℃
の温度で5時間以上安定化処理する工程、および 安定化処理後の前駆体シートを、不活性ガス雰囲気中
で、1800℃以上の温度で焼成する工程を含んで成ること
を特徴とする高黒鉛化多孔質炭素繊維シートの製造方
法。
1. A fiber assembly sheet containing 65% by weight or more of unsintered organic fibers for producing carbon fibers is impregnated with a solution of a thermosetting resin and then dried, whereby the surface of the organic fibers is covered with the organic fibers. A step of coating the fiber with a dry weight of 5% by weight or more of the thermosetting resin, a step of thermosetting the thermosetting resin to prepare a precursor sheet, and the precursor sheet containing oxygen gas. 150-350 ℃ in the atmosphere
And a step of calcining the precursor sheet after stabilization treatment at a temperature of 1800 ° C. or higher in an inert gas atmosphere for 5 hours or more. For producing a modified porous carbon fiber sheet.
【請求項2】フランクリンのp値0.60以下の高黒鉛化多
孔質炭素繊維シート。
2. A highly graphitized porous carbon fiber sheet having a Franklin p value of 0.60 or less.
JP63242473A 1988-09-29 1988-09-29 Highly graphitized porous carbon fiber sheet and method for producing the same Expired - Lifetime JPH06671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63242473A JPH06671B2 (en) 1988-09-29 1988-09-29 Highly graphitized porous carbon fiber sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63242473A JPH06671B2 (en) 1988-09-29 1988-09-29 Highly graphitized porous carbon fiber sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0292881A JPH0292881A (en) 1990-04-03
JPH06671B2 true JPH06671B2 (en) 1994-01-05

Family

ID=17089609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63242473A Expired - Lifetime JPH06671B2 (en) 1988-09-29 1988-09-29 Highly graphitized porous carbon fiber sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JPH06671B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220735A (en) * 1994-01-26 1995-08-18 Nippon Carbon Co Ltd Carbon paper for fuel cell electrode and manufacture thereof
JP4187683B2 (en) * 2000-01-27 2008-11-26 三菱レイヨン株式会社 Porous carbon electrode substrate for fuel cells
US6713034B2 (en) 2000-01-27 2004-03-30 Mitsubishi Rayon Co., Ltd. Porous carbon electrode material, method for manufacturing the same, and carbon fiber paper
US20040241078A1 (en) * 2001-10-16 2004-12-02 Mikio Inoue Fuel cell-use carbon fiber woven fabric, electrode element, fuel cell mobile unit, and production method for fuel cell-use carbon fiber woven fabric
KR101851752B1 (en) * 2016-10-21 2018-04-24 에스케이씨 주식회사 Method for preparing graphite sheet
CN114705788B (en) * 2022-05-20 2022-08-19 北京建筑大学 Method for detecting smelly substances in water body

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868881A (en) * 1981-09-29 1983-04-23 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン Electrode material for electrochemical battery
JPS5868873A (en) * 1981-09-29 1983-04-23 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン Method of producing porous product made of carbon fiber coupled with resin
JPS59141170A (en) * 1983-01-31 1984-08-13 Kureha Chem Ind Co Ltd Electrode substrate for fuel cell and manufacturing method thereof
JPS60122711A (en) * 1983-12-08 1985-07-01 Oji Paper Co Ltd Manufacture of porous carbon board
JPS6112918A (en) * 1984-06-25 1986-01-21 Oji Paper Co Ltd Production of porous carbon plate
JPS6217956A (en) * 1985-07-17 1987-01-26 Meidensha Electric Mfg Co Ltd Zinc-bromine laminated secondary cell using carbon fiber-carbon composite electrodes
JPS63967A (en) * 1986-06-19 1988-01-05 Sumitomo Metal Ind Ltd Manufacture of electrode base plate for fuel cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868881A (en) * 1981-09-29 1983-04-23 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン Electrode material for electrochemical battery
JPS5868873A (en) * 1981-09-29 1983-04-23 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン Method of producing porous product made of carbon fiber coupled with resin
JPS59141170A (en) * 1983-01-31 1984-08-13 Kureha Chem Ind Co Ltd Electrode substrate for fuel cell and manufacturing method thereof
JPS60122711A (en) * 1983-12-08 1985-07-01 Oji Paper Co Ltd Manufacture of porous carbon board
JPS6112918A (en) * 1984-06-25 1986-01-21 Oji Paper Co Ltd Production of porous carbon plate
JPS6217956A (en) * 1985-07-17 1987-01-26 Meidensha Electric Mfg Co Ltd Zinc-bromine laminated secondary cell using carbon fiber-carbon composite electrodes
JPS63967A (en) * 1986-06-19 1988-01-05 Sumitomo Metal Ind Ltd Manufacture of electrode base plate for fuel cell

Also Published As

Publication number Publication date
JPH0292881A (en) 1990-04-03

Similar Documents

Publication Publication Date Title
US4064207A (en) Fibrillar carbon fuel cell electrode substrates and method of manufacture
JP3356534B2 (en) Electrolyte holding plate and method for manufacturing the same
JPH06671B2 (en) Highly graphitized porous carbon fiber sheet and method for producing the same
JPS61236665A (en) Manufacture of porous carbon sheet
JPH09231984A (en) Carbon fiber for porous electrode base board for phosphoric acid fuel cell
JPS59144625A (en) Production of carbon fiber sheet
JPH0660884A (en) Manufacture of porous carbon sheet for phosphoric acid fuel cell
JP2820492B2 (en) Carbon plate and method for producing the same
JP3739819B2 (en) Method for producing porous carbon material
JP2685365B2 (en) Manufacturing method of porous carbon plate
JPH05194056A (en) Production of porous carbon plate having high compression resistance
JPH0735614B2 (en) Method for producing highly graphitized carbon fiber
JPH07220732A (en) Manufacture of porous carbon plate for phosphoric acid fuel cell
JPH06263558A (en) Production of porous carbon plate and porous carbon electrode material
JPH034508B2 (en)
JPH0360478A (en) Production of porous carbon sheet
US4728535A (en) Method of manufacturing thin carbon products
JPH08283084A (en) Production of porous carbon plate
JPH05155672A (en) Porous carbon plate and its production
JP3525159B2 (en) Carbon fiber for porous electrode substrate of phosphoric acid type fuel cell
JPH0376821A (en) Production of porous carbonaceous sheet
JPH081040B2 (en) Method for manufacturing porous carbon plate
JP3183681B2 (en) Method for producing highly conductive porous carbon material
JPS63222078A (en) Manufacture of carbon fiber porous body
JPH08283083A (en) Production of porous carbon plate