JPH0859360A - Production of porous carbon material - Google Patents

Production of porous carbon material

Info

Publication number
JPH0859360A
JPH0859360A JP22110294A JP22110294A JPH0859360A JP H0859360 A JPH0859360 A JP H0859360A JP 22110294 A JP22110294 A JP 22110294A JP 22110294 A JP22110294 A JP 22110294A JP H0859360 A JPH0859360 A JP H0859360A
Authority
JP
Japan
Prior art keywords
porous carbon
carbon material
weight
sheet
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22110294A
Other languages
Japanese (ja)
Other versions
JP3739819B2 (en
Inventor
Mitsuo Enomoto
三男 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP22110294A priority Critical patent/JP3739819B2/en
Publication of JPH0859360A publication Critical patent/JPH0859360A/en
Application granted granted Critical
Publication of JP3739819B2 publication Critical patent/JP3739819B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors

Abstract

PURPOSE: To produce a porous carbon material having such pore characteristics as a small pore diameter and high porosity and high strength characteristics. CONSTITUTION: Org. fibers based on α-cellulose and coniferous pulp are added by 15-50 pts.wt. to 100 pts.wt. carbonaceous powder and/or org. granular material having >=40% rate of carbonization and fine fibrous cellulose is further added by 4-20 pts.wt. They are dispersed in water and formed into a sheet by a paper making process. A soln. of a thermosetting resin having >=40% rate of residual carbon is impregnated into the sheet and such sheets are laminated in a half-cured state and hot-pressed. The resultant formed body is carbonized by firing at >=800 deg.C in a nonoxidizing atmosphere. The average particle diameter of the carbonaceous powder is preferably 0.1-10μm and thermosetting resin powder having 0.3-15μm average particle diameter is preferably used as the org. granular material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気孔径が小さく気孔率
が高い気孔特性を有し、高強度組織を備える多孔質カー
ボン材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a porous carbon material having a high-strength structure and having pore characteristics of small pore diameter and high porosity.

【0002】[0002]

【従来の技術】軽量で導電性、耐熱性、耐食性などに優
れる多孔質カーボン材は、吸着材、フィルター、燃料電
池や二次電池用の電極材をはじめ、広範囲の用途分野で
各種工業用部材として有用されている。
2. Description of the Related Art Porous carbon materials, which are lightweight and have excellent conductivity, heat resistance, corrosion resistance, etc., are used in a wide range of fields including industrial materials such as adsorbents, filters, electrode materials for fuel cells and secondary batteries. Has been useful as.

【0003】多孔質カーボン材の製造技術としては、粒
度を揃えたコークス粉をタールピッチのような炭化性バ
インダーとともに捏合したのち粉砕、成形および焼成炭
化処理するプロセスが典型的な方法として古くから知ら
れているが、均質かつ安定な気孔特性を付与するための
条件設定が難しい関係で、量産性に乏しい問題点があ
る。そのうえ、得られる材質には十分な熱伝導性や電気
伝導性を付与することができず、また材質強度が低いた
め使用中にカーボン粉の脱離が生じ易い等の実用上の難
点がある。
As a typical technique for producing a porous carbon material, a process in which coke powder having a uniform particle size is kneaded with a carbonizing binder such as tar pitch, followed by pulverization, molding and carbonization by firing has been known as a typical method. However, since it is difficult to set conditions for imparting uniform and stable pore characteristics, there is a problem that mass productivity is poor. In addition, the obtained material cannot be given sufficient thermal conductivity or electrical conductivity, and the material strength is low, so that carbon powder is likely to be detached during use, which is a practical problem.

【0004】この点、炭素繊維をパルプおよびバインダ
ー成分とともに抄紙して得られる炭素繊維混合シートに
熱硬化性樹脂液を含浸させたのち焼成炭化する多孔質カ
ーボン材の製造技術(特開昭50−25808 号公報) は、炭
素繊維が補強骨格を形成するうえ熱硬化性樹脂がガラス
状カーボン組織に転化するため、材料強度を高めること
が可能となるほか熱や電気に対する伝導性も向上する。
ところが、この方法においては、嵩密度、気孔径、気孔
率などの制御に難点があり、加えて高価な炭素繊維を原
料とする関係で製造原価が高騰化する問題がある。
In this respect, a technology for producing a porous carbon material in which a carbon fiber mixed sheet obtained by making carbon fiber with pulp and a binder component is impregnated with a thermosetting resin liquid and then calcined and carbonized (Japanese Patent Laid-Open No. In Japanese Patent No. 25808), the carbon fiber forms a reinforcing skeleton and the thermosetting resin is converted into a glassy carbon structure, so that the strength of the material can be increased and the conductivity to heat and electricity is also improved.
However, in this method, there are problems in controlling the bulk density, the pore diameter, the porosity, and the like, and in addition, there is a problem that the manufacturing cost rises due to the use of expensive carbon fiber as a raw material.

【0005】このため、高価な炭素繊維に代えてその原
料となる有機繊維を使用し、これにパルプ、炭素質粉末
などを配合して抄紙したシートに有機高分子物質あるい
は炭素質粉末を懸濁させた有機高分子物質を含浸したの
ち焼成処理する方法(特開昭61−236664号公報、同61−
236665号公報) が提案されている。しかし、この方法で
は、組織内に局部的に閉塞された空隙部分が多く形成さ
れるため、均質で制御された気孔構造を得ることが困難
であるほか、炭素繊維の剛性が大きいために形成される
気孔径が大きくなる問題がある。このほか、特開昭62−
223012号公報には膨張黒鉛を骨材として含有する多孔質
炭素製品が開示されている。この製品は電気伝導性に対
する改善効果は認められるものの、前記技術と同様に均
質かつ制御された気孔構造が得難い欠点がある。
For this reason, instead of expensive carbon fiber, organic fiber as a raw material is used, and pulp, carbonaceous powder, etc. are blended into the papermaking sheet to suspend the organic polymer substance or carbonaceous powder. A method of impregnating with the organic polymer substance and then performing a baking treatment (Japanese Patent Laid-Open No. 61-236664, 61-
No. 236665) has been proposed. However, with this method, it is difficult to obtain a homogeneous and controlled pore structure because a lot of locally closed voids are formed in the tissue, and because the carbon fiber has high rigidity, it is formed. There is a problem that the pore size becomes large. In addition to this, JP-A-62-1
Japanese Patent No. 223012 discloses a porous carbon product containing expanded graphite as an aggregate. Although this product has an improvement effect on electric conductivity, it has a drawback that it is difficult to obtain a uniform and controlled pore structure as in the above-mentioned technique.

【0006】本発明者らは、先に良好な気孔性状と高強
度特性を兼備するポーラスカーボン材を得るための製造
技術として、α−セルロースを主成分とする熱揮散性物
質を抄紙してシート化する工程と、シートに残炭率40%
以上の熱硬化性樹脂溶液を含浸する工程と、含浸処理後
のシートを50〜150℃の温度で半硬化する工程と、
半硬化シートを積層して全面を均一加熱しながらシート
厚さが70〜20%になるように圧縮する工程と、圧縮
シートを非酸化性雰囲気下で800℃以上の温度により
焼成炭化する工程からなる方法を開発し、既に提案した
(特開平3−183672号公報) 。
As a manufacturing technique for obtaining a porous carbon material having both good porosity and high strength properties, the present inventors first made a heat-volatile material containing α-cellulose as a main component into a sheet. 40% of residual coal on the process and the sheet
A step of impregnating the above thermosetting resin solution, and a step of semi-curing the sheet after the impregnation treatment at a temperature of 50 to 150 ° C.,
From the process of laminating semi-cured sheets and compressing them so that the sheet thickness becomes 70 to 20% while uniformly heating the entire surface, and the process of firing and carbonizing the compressed sheets at a temperature of 800 ° C. or higher in a non-oxidizing atmosphere The above method has been developed and already proposed (Japanese Patent Laid-Open No. 3-183672).

【0007】更に、熱および電気伝導性に優れた多孔質
カーボン材を得る方法として、α−セルロースを主成分
とする有機質物60〜90重量部、水溶性抄紙バインダ
ー10〜40重量部に鱗片状膨張黒鉛5〜40重量部を
添加して水に分散し、これを抄紙してシート状に成形し
たのち残炭率40%以上の熱硬化性樹脂溶液に浸漬処理
し、処理後のシートを半硬化の状態で積層成形し、つい
で成形体を非酸化性雰囲気下で800℃以上の温度によ
り焼成炭化する技術を開発した(特開平5−43350 号公
報)。
Further, as a method for obtaining a porous carbon material excellent in heat and electric conductivity, 60 to 90 parts by weight of an organic substance containing α-cellulose as a main component, 10 to 40 parts by weight of a water-soluble paper-making binder, and a scaly shape are used. Expanded graphite (5-40 parts by weight) is added and dispersed in water, and the paper is made into a sheet-like shape, then immersed in a thermosetting resin solution having a residual carbon rate of 40% or more, and the treated sheet is semi-finished. A technique has been developed in which laminated molding is carried out in the cured state, and then the molded body is calcined and carbonized at a temperature of 800 ° C. or higher in a non-oxidizing atmosphere (JP-A-5-43350).

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記し
た特開平3−183672号公報あるいは特開平5−43350 号
公報の方法で得られる多孔質カーボン材は、平均気孔径
が50μm 前後であるために、例えば二次電池用電極な
どに使用される多孔質カーボン材としては平均気孔径が
大きく、この点を改善する課題が残されていた。
However, since the porous carbon material obtained by the method described in JP-A-3-183672 or JP-A-5-43350 has an average pore diameter of about 50 μm, For example, a porous carbon material used for an electrode for a secondary battery has a large average pore diameter, and there remains a problem to improve this point.

【0009】本発明の目的は、平均気孔径が0.1〜5
μm の微小気孔を備え、かつ気孔率が50%以上の気孔
性状と、高度の強度特性を有し、かつ、電気伝導性にも
優れた、二次電池用電極などに好適に使用することので
きる多孔質カーボン材の製造方法を提供することにあ
る。
The object of the present invention is to have an average pore diameter of 0.1-5.
It is suitable for use in secondary battery electrodes, etc., which have micropores of μm, high porosity of 50% or more, high strength characteristics, and excellent electrical conductivity. It is to provide a method for producing a porous carbon material that can be used.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による多孔質カーボン材の製造方法は、炭素
質粉末及び/又は炭化率40%以上の有機粒状物質10
0重量部に対して、α−セルロースを主成分とする有機
繊維および針葉樹パルプ15〜50重量部、微細繊維状
セルロース4〜20重量部をそれぞれ添加して水に分散
し、抄紙してシート状に成形したのち残炭率40%以上
の熱硬化性樹脂溶液を含浸し、半硬化の状態で積層して
熱圧プレスにより成形し、得られた成形体を非酸化性雰
囲気下で800℃以上の温度により焼成炭化することを
構成上の特徴とする。
In order to achieve the above object, a method for producing a porous carbon material according to the present invention comprises a carbonaceous powder and / or an organic particulate material 10 having a carbonization rate of 40% or more.
To 0 parts by weight, 15 to 50 parts by weight of an organic fiber containing α-cellulose as a main component and softwood pulp, and 4 to 20 parts by weight of fine fibrous cellulose are added and dispersed in water, paper-made into a sheet form. After being molded into the above, it is impregnated with a thermosetting resin solution having a residual carbon ratio of 40% or more, laminated in a semi-cured state and molded by a hot press, and the obtained molded body is heated to 800 ° C. or more in a non-oxidizing atmosphere The constitutional feature is that carbonization by firing is performed at a temperature of.

【0011】本発明の多孔質カーボン材の製造方法に使
用する第1の成分である炭素質粉末や有機粒状物質は、
微小気孔の形成に機能する成分で、炭素質粉末としては
粒度調整された黒鉛粉末、ガラス状カーボン粉末、コー
クス粉末などが用いられる。また、有機粒状物質として
は、焼成炭化することにより炭素質物に転化し得る炭化
率40%以上のフェノール樹脂、フラン樹脂などの熱硬
化性樹脂粉末を、粒度調整して使用される。
The first component used in the method for producing a porous carbon material of the present invention is carbonaceous powder or organic particulate matter,
As the carbonaceous powder, which is a component that functions to form fine pores, graphite powder having a controlled particle size, glassy carbon powder, coke powder and the like are used. Further, as the organic particulate material, thermosetting resin powder such as phenol resin or furan resin having a carbonization rate of 40% or more which can be converted into a carbonaceous material by firing carbonization is used after adjusting the particle size.

【0012】第2の成分である、α−セルロースを主成
分とする有機繊維および針葉樹パルプは、抄紙時にシー
ト成形体の骨格部分を形成するものである。有機繊維と
してはα−セルロース分を90%以上を含むレーヨンパ
ルプが用いられ、抄紙成形性および高気孔構造を確保す
る面から太さ0.5〜10デニール、長さ1〜10mmの
範囲にある短繊維状を有するものを選択使用することが
好ましい。また、併用する針葉樹パルプは、例えばアカ
マツ、エゾマツ、トドマツ、カラマツ、モミ、ツガ等の
針葉樹系パルプ類が使用される。
The second component, the organic fiber containing α-cellulose as the main component and the softwood pulp, forms the skeleton portion of the sheet molded body during papermaking. Rayon pulp containing 90% or more of α-cellulose is used as the organic fiber, and has a thickness of 0.5 to 10 denier and a length of 1 to 10 mm from the viewpoint of ensuring paper formability and a high pore structure. It is preferable to select and use those having a short fiber shape. As the softwood pulp used in combination, softwood pulps such as red pine, spruce pine, todo pine, larch, fir, and hemlock are used.

【0013】また、第3の成分である微細繊維状セルロ
ースは、天然セルロースを処理してミクロフィブリル化
した微細繊維状形態を有するもので、例えば上市されて
いるダイセル化学工業株式会社製のMFC−100、M
FC−200などを使用することができる。
The third component, fine fibrous cellulose, has a fine fibrous form obtained by processing natural cellulose into microfibrils. For example, MFC-manufactured by Daicel Chemical Industries, Ltd., which is commercially available. 100, M
FC-200 or the like can be used.

【0014】これらの成分原料は、第1の成分である炭
素質粉末及び/又は炭化率40%以上の有機粒状物質1
00重量部に対し、第2の成分であるα−セルロースを
主成分とする有機繊維および針葉樹パルプを15〜50
重量部、第3の成分である微細繊維状セルロースを4〜
20重量部の割合で配合される。
The raw materials for these components are the carbonaceous powder as the first component and / or the organic particulate substance 1 having a carbonization rate of 40% or more.
15 to 50 parts by weight of the organic fiber and the softwood pulp containing α-cellulose as the second component as the main component with respect to 00 parts by weight.
4 parts by weight of fine fibrous cellulose, which is the third component,
It is mixed in a ratio of 20 parts by weight.

【0015】第2成分の配合比率が15重量部未満であ
るとシート成形体の強度が低下し、一方50重量部を越
えるとシート成形体の骨格部分が多くなるので、形成さ
れる空隙が少なく、微小気孔ならびに高気孔率の気孔性
状の付与が困難となる。なお、有機繊維と針葉樹パルプ
の比率は、有機繊維:針葉樹パルプ=1:1〜3の重量
比になるように混合することが好ましい。1:1より針
葉樹パルプが少ないとシ−ト成形体の強度が保持され
ず、また1:3より針葉樹パルプが多いと目的とする高
気孔構造が得られないためである。
When the compounding ratio of the second component is less than 15 parts by weight, the strength of the sheet molded product decreases, while when it exceeds 50 parts by weight, the skeleton portion of the sheet molded product increases, so that the voids formed are small. However, it becomes difficult to impart micropores and porosity with high porosity. The organic fiber and the softwood pulp are preferably mixed in a weight ratio of organic fiber: softwood pulp = 1: 1 to 3. This is because if the amount of softwood pulp is less than 1: 1, the strength of the sheet molded product is not maintained, and if the amount of softwood pulp is more than 1: 3, the desired high pore structure cannot be obtained.

【0016】第3成分として添加する微細繊維状セルロ
ースは、前記第2成分によって形成されたシート成形体
の空隙部に、第1成分の炭素質粉末及び/又は有機粒状
物質を捕捉し、かつ結着することにより微小気孔の形成
に寄与するもので、4〜20重量部の割合で配合され
る。配合割合が4重量部に満たない場合は、炭素質粉末
や有機粒状物質の捕捉、結着が不十分となって脱落が起
こり易く、また、20重量部を越えるとシート成形体の
乾燥時の収縮により、シートの歪みや破損を生じ易くな
る。
The fine fibrous cellulose added as the third component captures the carbonaceous powder of the first component and / or the organic particulate matter in the voids of the sheet molded body formed by the second component, and binds it. It contributes to the formation of fine pores by being deposited, and is mixed in a proportion of 4 to 20 parts by weight. If the blending ratio is less than 4 parts by weight, the carbonaceous powder and organic particulate matter are not sufficiently captured and bound, resulting in falling off easily. The contraction easily causes the sheet to be distorted or damaged.

【0017】この場合、多孔質カーボン成形体の気孔性
状として、平均気孔径が0.1〜5μm の微小気孔を形
成するためには、使用する炭素質粉末の平均粒径は0.
2〜10μm の範囲に調整し、有機粒状物質を用いる場
合には焼成炭化後の収縮を見込んで、平均粒径0.3〜
15μm のフェノール樹脂やフラン樹脂などの熱硬化性
樹脂粉末を使用することが好ましい。これらの炭素質粉
末あるいは有機粒状物質は、それぞれ単独で、もしくは
併用して用いることができるが、気孔分布のシャープな
気孔性状とするためには、予め粒度調整したうえで使用
することが好ましい。なお、炭素質粉末と有機粒状物質
を併用する場合の混合比率には、特に限定はない。
In this case, in order to form fine pores having an average pore diameter of 0.1 to 5 μm as the porosity of the porous carbon molded body, the average particle diameter of the carbonaceous powder used is 0.
When the organic particulate matter is used, the average particle size is adjusted to 0.3 to
It is preferable to use thermosetting resin powder such as 15 μm phenol resin or furan resin. These carbonaceous powders or organic particulate materials can be used alone or in combination, but it is preferable to use them after adjusting the particle size in advance in order to obtain a porosity having a sharp pore distribution. There is no particular limitation on the mixing ratio when the carbonaceous powder and the organic particulate matter are used in combination.

【0018】上記の三成分系原料物質は混合して水に分
散させたのち、長網式、丸網式など適宜な抄紙化装置を
用いてシート状に抄紙成形したのち残炭率40%以上の
熱硬化性樹脂溶液を含浸処理する。
The above ternary raw materials are mixed and dispersed in water, and then paper-formed into a sheet using an appropriate paper making apparatus such as a Fourdrinier type or a round net type, and the residual carbon ratio is 40% or more. The thermosetting resin solution of is impregnated.

【0019】熱硬化性樹脂は、焼成炭化後にガラス状カ
ーボン組織に転化して、シート組織の骨格強度を高める
機能を果たすものであり、フェノール系樹脂、フラン系
樹脂、ポリイミド系樹脂、あるいはこれらの樹脂を2種
以上混合した樹脂などが用いられ、アルコール、アセト
ン、エーテルなどの容易に揮散除去可能な適宜な溶媒に
溶解した溶液を、塗布あるいは浸漬などの方法によりシ
ート成形体に含浸する。この場合、熱硬化性樹脂溶液中
の樹脂濃度は、10〜45重量%に設定することが好ま
しい。樹脂濃度が10重量%未満では、多孔質カーボン
材の強度特性が減退し、45重量%を越すと粘度が増大
して含浸性が損なわれるうえ、気孔の閉塞を生じるため
である。
The thermosetting resin functions to increase the skeletal strength of the sheet structure by converting it into a glassy carbon structure after carbonization by firing, and includes a phenol resin, a furan resin, a polyimide resin, or these resins. A resin obtained by mixing two or more kinds of resins is used, and a solution formed by dissolving a suitable solvent such as alcohol, acetone, or ether that can be easily volatilized and removed is impregnated into the sheet molded body by a method such as coating or dipping. In this case, the resin concentration in the thermosetting resin solution is preferably set to 10 to 45% by weight. This is because if the resin concentration is less than 10% by weight, the strength characteristics of the porous carbon material deteriorates, and if it exceeds 45% by weight, the viscosity increases and impregnation is impaired, and pores are clogged.

【0020】含浸処理後のシートは、80〜150℃の
温度で乾燥して水分および未反応物や反応生成物を有機
溶媒成分と共に揮散除去し、同時にシートに含浸した樹
脂成分を半硬化の状態にし、このシートを所定枚数積層
したのち、温度100〜200℃、圧力0.5〜5kg/c
m2の条件で熱圧プレスすることにより成形体を得る。
The sheet after the impregnation treatment is dried at a temperature of 80 to 150 ° C. to volatilize and remove moisture and unreacted substances and reaction products, and at the same time, the resin component impregnated in the sheet is in a semi-cured state. After stacking a specified number of these sheets, the temperature is 100 to 200 ° C and the pressure is 0.5 to 5 kg / c.
A compact is obtained by hot pressing under the condition of m 2 .

【0021】この積層成形された成形体は、ついで窒
素、アルゴン、二酸化炭素などの非酸化性雰囲気に保持
された焼成炉に移し、800℃以上の温度により焼成炭
化することにより一体化された多孔質カーボン材が製造
される。なお、有機粒状物質を使用した場合には、この
焼成炭化時に炭素質物に転化される。
The laminated molded body is then transferred to a firing furnace kept in a non-oxidizing atmosphere such as nitrogen, argon, carbon dioxide, etc., and is fired and carbonized at a temperature of 800 ° C. or higher to form an integrated porous body. Quality carbon material is produced. When an organic particulate material is used, it is converted into a carbonaceous material during this firing and carbonization.

【0022】[0022]

【作用】本発明を構成する原料成分のうち、α−セルロ
ースを主成分とする有機繊維および針葉樹パルプは、シ
ート成形体の骨格部分を形成すると共に空隙部を形成す
るために機能するものであり、該空隙部には炭素質粉末
及び/又は有機粒状物質が微細繊維状セルロースにより
捕捉、結着されて気孔部が形成される。この場合炭素質
粉末、あるいは有機粒状物質の粒度および配合量などを
調整することにより、形成される気孔径や気孔率を調節
することが可能となる。その結果、平均気孔径が0.1
〜5μm の微小気孔を備え、気孔率が50%以上の気孔
性状を有し、強度および電気伝導性にも優れた多孔質カ
ーボン材が製造される。
Among the raw material components constituting the present invention, the organic fiber and the softwood pulp containing α-cellulose as the main component function to form the skeleton portion of the sheet molded body and the void portion. In the voids, carbonaceous powder and / or organic particulate matter is captured and bound by fine fibrous cellulose to form pores. In this case, the pore size and porosity to be formed can be adjusted by adjusting the particle size and blending amount of the carbonaceous powder or the organic particulate matter. As a result, the average pore size was 0.1
A porous carbon material having micropores of ˜5 μm, having a porosity of 50% or more, and having excellent strength and electrical conductivity is manufactured.

【0023】とくに、平均粒径が0.2〜10μm の炭
素質粉末、あるいは有機粒状物質として平均粒径が0.
3〜15μm の熱硬化性樹脂粉末を、それぞれ単独で、
もしくは併用することにより、前記空隙部に形成する気
孔の微小化を容易に図ることができる。
In particular, carbonaceous powder having an average particle size of 0.2 to 10 μm, or an organic granular substance having an average particle size of 0.
3 to 15 μm thermosetting resin powder,
Alternatively, by using together, it is possible to easily miniaturize the pores formed in the voids.

【0024】[0024]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。
Hereinafter, examples of the present invention will be described in comparison with comparative examples.

【0025】実施例1〜11、比較例1〜4 第1の成分である炭素質粉末として平均粒子径の異なる
黒鉛粉末およびコ−クス粉末、また有機粒状物質として
平均粒径10μm の熱硬化性樹脂粉末〔ユニチカ(株)
製ユニベックスC−10〕を、第2の成分として太さ
0.7デニール、長さ3mmのレーヨンパルプ〔大和紡績
(株)製〕と晒し針葉樹パルプ(NBKP)の混合物
を、また第3の成分である微細繊維状セルロースとして
ダイセル化学工業(株)製MFCー100をそれぞれ使
用した。
Examples 1 to 11 and Comparative Examples 1 to 4 Graphite powder and coke powder having different average particle diameters as the carbonaceous powder as the first component, and thermosetting having an average particle diameter of 10 μm as the organic particulate material. Resin powder [Unitika Ltd.
The second component is a mixture of rayon pulp having a thickness of 0.7 denier and a length of 3 mm (manufactured by Daiwa Spinning Co., Ltd.) and bleached softwood pulp (NBKP), and a third component. As the fine fibrous cellulose, MFC-100 manufactured by Daicel Chemical Industries, Ltd. was used.

【0026】これらの原料を、第1の成分100重量部
に対して、第2の成分および第3の成分の配合量を変え
て添加し、水中で撹拌混合して均一に分散させたのち長
網式抄紙機を用いて抄紙成形し、縦横300mm、厚さ
0.25mmのシートを形成した。なお比較例1として、
第1成分の炭素質粉末および第3成分の微細繊維状セル
ロースを使用しない場合を示した。
These raw materials were added to 100 parts by weight of the first component while changing the compounding amounts of the second component and the third component, stirred and mixed in water to be uniformly dispersed, and then lengthened. Paper making was carried out using a mesh paper machine to form a sheet having a length and width of 300 mm and a thickness of 0.25 mm. As Comparative Example 1,
The case where the carbonaceous powder of the first component and the fine fibrous cellulose of the third component are not used is shown.

【0027】上記のシートを、残炭率45%のフェノー
ル樹脂〔住友デュレズ(株)製“スミライトレジンPR
940”〕をアセトンに溶解した濃度20重量%の溶液
に浸漬処理し、引き続き100℃に保持された乾燥器に
入れて含浸樹脂成分を半硬化させた。ついで、半硬化状
態のシートを14枚積層し、150℃の温度に調節され
た均熱盤上に置いて上部から5kg/cm2の圧力で熱圧プレ
スして平面プレート状の成形体を得た。この成形体を、
表面が平滑な黒鉛板に挟んだ状態で電気焼成炉に詰め、
周囲をコークスパッキングで被包して窒素雰囲気下で2
000℃の温度により焼成炭化処理した。
A phenol resin having a residual carbon rate of 45% [Sumilite Resin PR manufactured by Sumitomo Dures Co., Ltd.
940 ″] was immersed in a solution having a concentration of 20% by weight dissolved in acetone, and then placed in a drier kept at 100 ° C. to semi-cure the impregnated resin component. Then, 14 sheets of the semi-cured state were obtained. They were laminated, placed on a soaking plate controlled at a temperature of 150 ° C., and hot pressed at a pressure of 5 kg / cm 2 from the top to obtain a flat plate-shaped molded body.
Packed in an electric firing furnace with the surface sandwiched between graphite plates,
Surround the environment with coke packing, and under a nitrogen atmosphere, 2
The carbonization treatment was performed at a temperature of 000 ° C.

【0028】このようにして製造された多孔質カーボン
材について各種の特性を測定し、その結果を各成分原料
の配合割合と対比させて表1から表3に示した。なお、
各種特性のうち気孔径および気孔率は水銀圧入法によ
り、また嵩密度はJIS R7222、曲げ強度はJI
S K6911、固有抵抗は電圧降下法によってそれぞ
れ測定した。
Various characteristics of the porous carbon material produced in this manner were measured, and the results are shown in Tables 1 to 3 in comparison with the blending ratio of each component raw material. In addition,
Among various characteristics, the pore diameter and porosity are determined by mercury porosimetry, the bulk density is JIS R7222, and the bending strength is JI.
SK6911 and specific resistance were measured by the voltage drop method.

【0029】[0029]

【表1】 (注)*1:東海カーボン(株)製TGP-7 (以下同じ) *2:オリエンタル産業(株)製FA-4(以下同じ) *3:東海カーボン(株)製TGP-05、(以下同じ) *4:オリエンタル産業(株)製AT-10 (以下同じ)[Table 1] (*) * 1: Tokai Carbon Co., Ltd. TGP-7 (same below) * 2: Oriental Sangyo Co., Ltd. FA-4 (same below) * 3: Tokai Carbon Co., Ltd. TGP-05, (same below) Same) * 4: AT-10 manufactured by Oriental Sangyo Co., Ltd. (same below)

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 (注)*5:シート成形体の収縮が大きく、成形体が破損。[Table 3] (Note) * 5: The sheet compact shrinks greatly and the compact is damaged.

【0032】表1、表2および表3の結果から、実施例
の多孔質カーボン材は平均気孔径が小さいうえに気孔率
も50%以上であり、良好な気孔性状を示した。また、
曲げ強度も十分であり、固有抵抗が低く、強度特性、電
気伝導性にも優れていることが分かる。
From the results shown in Table 1, Table 2 and Table 3, the porous carbon materials of Examples had a small average pore diameter and a porosity of 50% or more, showing good porosity. Also,
It can be seen that the bending strength is sufficient, the specific resistance is low, and the strength characteristics and electrical conductivity are excellent.

【0033】また、微細繊維状セルロースの配合割合が
少ない比較例2は、黒鉛粉末の捕捉、結着が十分でない
ために、多孔質カーボン材から黒鉛粉末の脱落が生じ、
逆に配合割合の多い比較例3では、シート乾燥時の収縮
が大きいためにひび割れが起こり、成形体が破損した。
In Comparative Example 2 in which the proportion of the fine fibrous cellulose was small, the graphite powder was not sufficiently captured and bound, so that the graphite powder fell off from the porous carbon material.
On the other hand, in Comparative Example 3 in which the compounding ratio was high, cracking occurred due to the large shrinkage when the sheet was dried, and the molded body was damaged.

【0034】[0034]

【発明の効果】以上のとおり、本発明によれば平均気孔
径が5μm 以下の小さい気孔径と50%以上の高気孔率
を備える優れた気孔性状と強度特性および電気伝導性の
良好な多孔質カーボン材を製造することができる。した
がって、二次電池用電極材などに使用される多孔質カー
ボン材の製造方法として極めて有用である。
As described above, according to the present invention, the average pore diameter is 5 μm or less, and the excellent porosity, the strength characteristics and the electrical conductivity are excellent, and the porosity is 50% or more. A carbon material can be manufactured. Therefore, it is extremely useful as a method for producing a porous carbon material used as an electrode material for a secondary battery or the like.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭素質粉末及び/又は炭化率40%以上
の有機粒状物質100重量部に対して、α−セルロース
を主成分とする有機繊維および針葉樹パルプ15〜50
重量部、微細繊維状セルロース4〜20重量部をそれぞ
れ添加して水に分散し、抄紙してシート状に成形したの
ち残炭率40%以上の熱硬化性樹脂溶液を含浸し、半硬
化の状態で積層して熱圧プレスにより成形し、得られた
成形体を非酸化性雰囲気下で800℃以上の温度により
焼成炭化することを特徴とする多孔質カーボン材の製造
方法。
1. An organic fiber containing α-cellulose as a main component and a softwood pulp 15 to 50 parts by weight with respect to 100 parts by weight of a carbonaceous powder and / or an organic particulate material having a carbonization rate of 40% or more.
Parts by weight and 4 to 20 parts by weight of fine fibrous cellulose are added and dispersed in water, paper-made and formed into a sheet, and then impregnated with a thermosetting resin solution having a residual carbon ratio of 40% or more to semi-cure. A method for producing a porous carbon material, which comprises laminating in a state, forming by hot pressing, and calcining and carbonizing the obtained formed body at a temperature of 800 ° C. or higher in a non-oxidizing atmosphere.
【請求項2】 炭素質粉末の平均粒径が、0.2〜10
μm である請求項1記載の多孔質カーボン材の製造方
法。
2. The average particle size of the carbonaceous powder is 0.2 to 10
The method for producing a porous carbon material according to claim 1, wherein the porous carbon material has a diameter of μm.
【請求項3】 有機粒状物質が、平均粒径0.3〜15
μm の熱硬化性樹脂粉末である請求項1又は2記載の多
孔質カーボン材の製造方法。
3. The organic particulate matter has an average particle size of 0.3 to 15
The method for producing a porous carbon material according to claim 1 or 2, which is a thermosetting resin powder having a particle size of µm.
JP22110294A 1994-08-23 1994-08-23 Method for producing porous carbon material Expired - Fee Related JP3739819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22110294A JP3739819B2 (en) 1994-08-23 1994-08-23 Method for producing porous carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22110294A JP3739819B2 (en) 1994-08-23 1994-08-23 Method for producing porous carbon material

Publications (2)

Publication Number Publication Date
JPH0859360A true JPH0859360A (en) 1996-03-05
JP3739819B2 JP3739819B2 (en) 2006-01-25

Family

ID=16761529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22110294A Expired - Fee Related JP3739819B2 (en) 1994-08-23 1994-08-23 Method for producing porous carbon material

Country Status (1)

Country Link
JP (1) JP3739819B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007380A (en) * 2006-06-30 2008-01-17 Tokai Carbon Co Ltd Porous graphite and method for producing the same
JP2012131232A (en) * 2012-03-07 2012-07-12 Mitsubishi Electric Corp Method for manufacturing carbon aggregate molded article and carbon aggregate molded article
JP2015534532A (en) * 2012-09-06 2015-12-03 バラード パワー システムズ インコーポレイテッド Method for processing a porous article

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102149991B1 (en) * 2013-10-18 2020-08-31 에스케이씨 주식회사 Graphite sheet derived from coated polymeric resin particles and method for preparing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007380A (en) * 2006-06-30 2008-01-17 Tokai Carbon Co Ltd Porous graphite and method for producing the same
JP2012131232A (en) * 2012-03-07 2012-07-12 Mitsubishi Electric Corp Method for manufacturing carbon aggregate molded article and carbon aggregate molded article
JP2015534532A (en) * 2012-09-06 2015-12-03 バラード パワー システムズ インコーポレイテッド Method for processing a porous article

Also Published As

Publication number Publication date
JP3739819B2 (en) 2006-01-25

Similar Documents

Publication Publication Date Title
US4064207A (en) Fibrillar carbon fuel cell electrode substrates and method of manufacture
EP0162976B1 (en) Process for preparation of porous carbon plates
GB2095656A (en) Shaped articles of porous carbon
JPH02106876A (en) Manufacture of porous carbon electrode base for fuel cell
JP3739819B2 (en) Method for producing porous carbon material
JPH0559867B2 (en)
JPH09278558A (en) Carbonaceous porous body and its production
JPH0258369B2 (en)
CA1320802C (en) Corrosion resistant fuel cell substrates
JPS59187623A (en) Preparation of carbon fiber molded sheet
JP3131911B2 (en) Method for producing thick porous carbon material
JPH06671B2 (en) Highly graphitized porous carbon fiber sheet and method for producing the same
JP3183681B2 (en) Method for producing highly conductive porous carbon material
JPH11185771A (en) Manufacture of paper and porous carbon plate for fuel cell
JP2607397B2 (en) Method for producing porous glassy carbon material
JPH034508B2 (en)
JP2685365B2 (en) Manufacturing method of porous carbon plate
JPH05194056A (en) Production of porous carbon plate having high compression resistance
JPH06263558A (en) Production of porous carbon plate and porous carbon electrode material
JPH0223505B2 (en)
JPH11139871A (en) Porous carbon material and its production
JP4080095B2 (en) Manufacturing method of thick porous carbon material
JPH07115970B2 (en) Method for manufacturing porous carbon material
JPH02199010A (en) Production of thin sheetlike carbon material
JPS62160661A (en) Production of thin carbon plate for fuel cell separator

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20051031

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20051104

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees