JPS62124273A - Formation of electrically conductive graphite film - Google Patents

Formation of electrically conductive graphite film

Info

Publication number
JPS62124273A
JPS62124273A JP60261383A JP26138385A JPS62124273A JP S62124273 A JPS62124273 A JP S62124273A JP 60261383 A JP60261383 A JP 60261383A JP 26138385 A JP26138385 A JP 26138385A JP S62124273 A JPS62124273 A JP S62124273A
Authority
JP
Japan
Prior art keywords
graphite film
substrate
film
conductive graphite
carbon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60261383A
Other languages
Japanese (ja)
Inventor
Jun Shiotani
塩谷 準
Yoichi Yamaguchi
洋一 山口
Hironaga Matsubara
松原 宏長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60261383A priority Critical patent/JPS62124273A/en
Priority to US06/822,244 priority patent/US4645713A/en
Publication of JPS62124273A publication Critical patent/JPS62124273A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a graphite film having superior electric conductivity by subjecting a hydrocarbon as starting material to plasma discharge and heat treating the resulting carbon film. CONSTITUTION:A substrate contg. Cr or Ni is placed in a synthesis chamber and heated to >=1,000 deg.C. Vapor of a hydrocarbon such as benzene is introduced into the chamber. A high frequency electric field is applied to cause a plasma reaction and a carbon film having metallic luster is formed on the substrate by the plasma reaction. The carbon film is then heat treated at >=1,500 deg.C and doped with a dopant as required. The substrate is preferably made of stainless steel. By this method, a graphite film having superior electric conductivity can be formed by heat treatment at a low temp.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、優れた導電性を有する導電性グラファイト
膜の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming a conductive graphite film having excellent conductivity.

〔従来の技術〕[Conventional technology]

従来、易黒鉛化性炭素を得る方法は、いわゆる熱分解法
が一般的である。この方法は、原料である炭化水素の雰
囲気中で、反応系を高温に加熱することにより、炭化水
素を熱分解し、炭素質を生成するものである(例えば、
大釜ら“炭素化工学の基礎“1980年、オーム社発行
)(方法l)こける電導度は、2.5〜5 X l O
’ S/cmである。
Conventionally, a so-called pyrolysis method has been commonly used to obtain graphitizable carbon. This method thermally decomposes hydrocarbons and generates carbonaceous substances by heating the reaction system to high temperatures in an atmosphere of hydrocarbons as raw materials (for example,
Ohkama et al., “Fundamentals of Carbonization Engineering”, 1980, published by Ohm Publishing Co., Ltd. (Method 1) The electrical conductivity that breaks down is 2.5 to 5 X l O
'S/cm.

第   1   表 A      2000〜2200     高密度、
異方性大災に、上記方法で得られる炭素質を例えば、3
000°Cの高温で熱処理して、グラファイト化するこ
とも知られている。
Table 1 A 2000-2200 High density,
For example, 3 carbonaceous substances obtained by the above method are added to the anisotropic catastrophe.
It is also known to heat-treat at a high temperature of 000°C to graphitize.

上記方法よりも低温(1000°C)で、高周波放電に
よりベンゼンのプラズマ重合を行ない、石英板あるいは
シリコンウェハー上に炭素薄膜を得ることも行なわれて
いる(エッチ、マツシマら、ジャーナル オブ アプラ
イドフィジックス22巻しかし乍ら、上記方法1におい
ては、易黒鉛化−分解温度が必要である。このような温
度では基材の種類も限定され、またエネルギーの損失も
大きい。従ってより低温での易黒鉛化性炭素合成法が望
まれる。
Plasma polymerization of benzene is performed using high-frequency discharge at a lower temperature (1000°C) than the above method, and thin carbon films have also been obtained on quartz plates or silicon wafers (Etchi, Matsushima et al., Journal of Applied Physics 22). However, in method 1 above, a temperature that facilitates graphitization and decomposition is required. At such temperatures, the types of substrates are limited, and the loss of energy is large. A carbon synthesis method is desired.

方法2では、電導塵が103 S/an未満であり、ま
た、炭素質生長速度が0.052μm/minと、方法
1の熱分解法における炭素質生長速度(1,7〜17μ
m/m1n)に比較して、著しく低い。
In Method 2, the amount of conductive dust is less than 103 S/an, and the carbonaceous growth rate is 0.052 μm/min, which is higher than the carbonaceous growth rate in the pyrolysis method of Method 1 (1.7 to 17 μm/min).
m/m1n).

又両者に共通する問題として、いずれかの方法にて得ら
れた炭素質は、2000°Cを越える温度、はなはだし
きは3000°Cを越える温度での熱処理により、グラ
ファイト化、高導電化するという点があり、これらの材
料応用範囲を著しく小さくしている。
A common problem with both methods is that the carbon obtained by either method becomes graphite and becomes highly conductive by heat treatment at temperatures exceeding 2,000°C, and even more so at temperatures exceeding 3,000°C. This significantly reduces the range of applications for these materials.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、上記従来技術の問題点に鑑み、方法の1の
様に、高温に於ける熱分解反応の為に炭素膜を形成する
基材の種類が余り制限されずに、方法2から得た炭素質
よりも、より高導電性の炭素質が得られ、かつ両方法よ
り得られる炭素質よりも、より低い温度の熱処理で、導
電性に優れ7ξ・グラファイト膜が形成される方法を提
供する。
In view of the above-mentioned problems of the prior art, the present invention provides that, unlike Method 1, the type of base material on which a carbon film is formed is not so restricted due to the thermal decomposition reaction at high temperatures, but can be obtained from Method 2. Provides a method in which a carbonaceous material with higher conductivity is obtained than the carbonaceous material obtained by the above methods, and a 7ξ graphite film with excellent electrical conductivity is formed by heat treatment at a lower temperature than the carbonaceous material obtained by both methods. do.

その要旨とするところは、炭化水素ガスを原料として、
1000°C以上に加熱されたCrまたはNiを含む基
材上にプラズマ放電により炭素膜を形成させた後、15
00°Cを越える温度で熱処理を行なうことを特徴とす
る導電性グラファイト膜の形成方法にある。
The gist of this is that, using hydrocarbon gas as a raw material,
After forming a carbon film by plasma discharge on a substrate containing Cr or Ni heated to 1000°C or more, 15
The present invention provides a method for forming a conductive graphite film characterized by performing heat treatment at a temperature exceeding 00°C.

この発明において、原料となる炭化水素としてガスとな
り得る物質、例えば、メタン、エタン、プロパン等の脂
肪族化合物Cn H2n+ 2、アルケン、アルキン等
の不飽和誘導体すなわち1つ以上の二重結合あるいは三
重結合を有するもの、ベンゼン、ナフタレン、アントラ
セン、ピレン等の芳香族化合物が用いられる。
In this invention, the raw material hydrocarbons include substances that can become gases, such as aliphatic compounds such as methane, ethane, and propane, Cn H2n+ 2, unsaturated derivatives such as alkenes and alkynes, that is, one or more double bonds or triple bonds. Aromatic compounds such as benzene, naphthalene, anthracene, and pyrene are used.

プラズマ放電により基板上に炭素膜を形成する方法は、
反応容器中を原料である炭化水素蒸気で所定の圧力に充
満させ、高周波電界を印加することによって基材上に炭
素膜を形成する。
The method of forming a carbon film on a substrate by plasma discharge is as follows:
A carbon film is formed on the substrate by filling the reaction vessel with hydrocarbon vapor as a raw material to a predetermined pressure and applying a high-frequency electric field.

この発明において、基材としては、Cr1Ni等を含む
金属が好ましく、特にステンレス鋼が最も好まし・い0 基材の加熱温度は1000°C以上に加熱すると望して
行なってもよく、基材と共に行なっ℃もよい。
In this invention, the base material is preferably a metal containing CrNi, etc., and most preferably stainless steel. ℃ is also good.

基材が融点1500°C以下の物質からなる基材を用い
た場合、基材と共に熱処理を行なうと基材が融解、揮散
等によって除去され、熱処理と同時にグラファイト膜の
みを分離することができる。
When a base material made of a substance with a melting point of 1500° C. or less is used, if heat treatment is performed together with the base material, the base material will be removed by melting, volatilization, etc., and only the graphite film can be separated at the same time as the heat treatment.

以上の方法により、高導電性のグラファイト膜を形成す
ることができるが、上記熱処理の後に、得られたグラフ
ァイト膜に適当なドーパントをドープすることによって
、更に導電性を増すことができる。
Although a highly conductive graphite film can be formed by the above method, the conductivity can be further increased by doping the obtained graphite film with an appropriate dopant after the heat treatment.

適当なドーパントとしては、電子受容性試薬の例として
、ハロゲン(例えば、C12+ B−r 2. I z
、 IC+。
Suitable dopants include, as examples of electron-accepting reagents, halogens (e.g. C12+ B-r 2. I z
, IC+.

ICIa、 IBr )、Lewis酸、プロトン酸(
例えば、PF、。
ICIa, IBr), Lewis acid, protonic acid (
For example, PF.

AsF s、 SbF 5+ AgCl0+、 AgB
F 4+ BF 3. BCI 3. BBr 3+F
SOrOO5OzF、 (NO2) (SbFo) 、
 (NOつ5bCI 5+ eJ02つ(BF4)。
AsF s, SbF 5+ AgCl0+, AgB
F 4+ BF 3. BCI 3. BBr 3+F
SOrOO5OzF, (NO2) (SbFo),
(NO 5bCI 5+ eJ0 2 (BF4).

So 3. TiF 4. NbF 5. TaF 5
 、 NbC15+ TaC1s、 MnC12,Mo
C14゜MoCl5.MoOCl4.N1c12.Zn
C12=CrO2C12,FeCl3.CdCl2゜A
uCl3.CrC1g、AlCl3.AlBr3.Ga
Br3.PtCl4+ 5bC1−5゜U(:1 s、
 5OCI !、 XeFg、H2SO4,HClO4
,HNO3,FSO8H。
So 3. TiF4. NbF5. TaF5
, NbC15+ TaCls, MnC12, Mo
C14°MoCl5. MoOCl4. N1c12. Zn
C12=CrO2C12, FeCl3. CdCl2゜A
uCl3. CrClg, AlCl3. AlBr3. Ga
Br3. PtCl4+ 5bC1-5゜U(:1 s,
5OCI! , XeFg, H2SO4, HClO4
, HNO3, FSO8H.

CF s SOsH)及び電子供与性試薬Li、 Na
、 K、 Rb、 Cs等が使用される。
CFsSOsH) and electron donating reagents Li, Na
, K, Rb, Cs, etc. are used.

以下発明の内容を実施例、比較例に基づき詳細に説明す
る。
The content of the invention will be explained in detail below based on Examples and Comparative Examples.

なお、実験の条件は以下に示すものである。Note that the conditions of the experiment are as shown below.

〔炭素膜合成条件〕[Carbon membrane synthesis conditions]

シート状の基材(厚み0.2mm)を合成室内に静置し
て、基材を加熱した後、ベンゼン蒸気を合成室内に導入
し、圧力1.0mmHgに保持した。然る後高周波電界
(13,56MHz  出力40W)を印加しプラズマ
反応を行ない、基材上に金属光沢を有する膜厚20〜2
2μm の炭素膜を形成せしめた。
A sheet-like base material (thickness: 0.2 mm) was placed in a synthesis chamber, and after heating the base material, benzene vapor was introduced into the synthesis chamber, and the pressure was maintained at 1.0 mmHg. After that, a high frequency electric field (13,56 MHz output 40 W) is applied to perform a plasma reaction, and a film thickness of 20 to 2 mm with metallic luster is formed on the substrate.
A 2 μm carbon film was formed.

然る後、基材の温度を室温まで下げて、炭素膜を基材か
ら剥離した。
Thereafter, the temperature of the substrate was lowered to room temperature, and the carbon film was peeled off from the substrate.

〔グラファイト化条件〕[Graphitization conditions]

得られた炭素膜を高温炉にてアルゴン雰囲気中で熱処理
し、グラファイト膜を得た。
The obtained carbon film was heat-treated in an argon atmosphere in a high-temperature furnace to obtain a graphite film.

〔ドーピング条件〕[Doping conditions]

得られたグラファイト膜を、AsF 6ガス中或は、発
煙硝酸上に静置し、ドーピングを行った。
The obtained graphite film was placed in AsF 6 gas or on fuming nitric acid to perform doping.

まず原料にベンゼンを用い、基板種として5US304
を用い、基板温度を1000°Cに加熱し、プラズマ放
電を印加せずに合成を行なった。ファイバずれも低いも
のであった。(比較例1.2)次に他の合成条件は同一
にしてプラズマ放電を行って合成した。その結果、膜状
の炭素質が得られ、合成後、熱処理後、AsF5ドープ
後の電導塵はきわめて高いものであった(実施例1.2
)。
First, benzene was used as the raw material, and 5US304 was used as the substrate type.
Synthesis was carried out by heating the substrate temperature to 1000° C. without applying plasma discharge. Fiber slippage was also low. (Comparative Example 1.2) Next, synthesis was performed by performing plasma discharge under the same synthesis conditions. As a result, a film-like carbonaceous substance was obtained, and the conductive dust content after synthesis, heat treatment, and AsF5 doping was extremely high (Example 1.2
).

比較例3には、基板種としてシリコン基板を用いて、実
施例1と同一の合成条件にて合成を行った場合を示す。
Comparative Example 3 shows a case in which synthesis was performed under the same synthesis conditions as in Example 1 using a silicon substrate as the substrate type.

高い電導塵をもつ炭素質は得られない。Carbonaceous material with high conductive dust cannot be obtained.

次に合成時の基板加熱温度を変えて合成を行った結果を
示す。
Next, we will show the results of synthesis performed by changing the substrate heating temperature during synthesis.

基板加熱温度依存性があり、1000°C以上に基板を
加熱しないと高い電導塵が得られなかった。
There is a dependence on substrate heating temperature, and high conductive dust could not be obtained unless the substrate was heated to 1000°C or higher.

(比較例4.5.実施例3) 次に得られた炭素薄膜に熱処理を施す場合の熱処理温度
効果を調べた。1500°Cを越える温度での熱処理に
より、大巾な電導塵の上昇が生じた。
(Comparative Example 4.5. Example 3) Next, the effect of heat treatment temperature was investigated when the obtained carbon thin film was subjected to heat treatment. Heat treatment at temperatures above 1500°C caused a large rise in conductive dust.

(実施例4.比較例6) 一方基板にMOを使用して合成した炭素薄膜に於いては
2000°Cの熱処理によっても高い電導塵は得られな
かった。(比較例7) 文献比較例1.と比較しても明らかな如く、本発明の方
法によるとより低い熱処理温度に℃高い電導塵をもつグ
ラファイト材料が得られる事が判る。
(Example 4. Comparative Example 6) On the other hand, in a carbon thin film synthesized using MO as a substrate, high conductive dust was not obtained even after heat treatment at 2000°C. (Comparative Example 7) Literature Comparative Example 1. As is clear from the comparison with the method of the present invention, it is possible to obtain a graphite material having conductive dust at a lower heat treatment temperature and a higher temperature.

実施例5にはAsF s  以外のドーパントを用いた
場合の結果を示す、AsF5  の場合と比べて得られ
た効果は小さいが、充分に高い電導塵が得られた。
Example 5 shows the results of using a dopant other than AsF s . Although the effect obtained was smaller than that of AsF 5 , sufficiently high conductive dust was obtained.

〔発明の効果1 この発明は、上述の様になされる導電性グラファイト膜
の製造方法であるから、以下の効果を有する。
[Effects of the Invention 1 This invention is a method for manufacturing a conductive graphite film as described above, and therefore has the following effects.

(1)従来の熱分解法あるいはプラズマCVD法を用い
て得られた炭素膜あるいはグラファイト膜に比較し℃、
導電性に優れたものであり、更にドーパントをドープす
ることにより、一層導電性を向上することができる。
(1) Compared to carbon or graphite films obtained using conventional pyrolysis or plasma CVD methods,
It has excellent electrical conductivity, and by further doping with a dopant, the electrical conductivity can be further improved.

(11)炭素膜合成法がプラズマ重合法であるので、熱
分解法に較べて、厚み、形状、サイズ等に富むグラファ
イト膜を得ることができる。
(11) Since the carbon film synthesis method is a plasma polymerization method, it is possible to obtain a graphite film with greater thickness, shape, size, etc., compared to a thermal decomposition method.

010高導電性グラフアイト膜を形成する温度(炭素膜
を形成する温度及びグラファイト化処理温度)が従来と
比較して低いので、応用範囲が広い。
Since the temperature for forming the 010 highly conductive graphite film (the temperature for forming the carbon film and the temperature for graphitization treatment) is lower than that of the conventional method, the range of applications is wide.

Claims (4)

【特許請求の範囲】[Claims] (1)炭化水素を原料として、1000°C以上に加熱
したクロムまたはニッケルを含む基材上にプラズマ放電
により炭素膜を形成させた後、1500℃を越える温度
で熱処理を行う事を特徴とする導電性導電性グラファイ
ト膜の形成方法。
(1) Using hydrocarbon as a raw material, a carbon film is formed by plasma discharge on a substrate containing chromium or nickel heated to 1000°C or higher, and then heat treated at a temperature exceeding 1500°C. Method for forming conductive graphite film.
(2)機材がステンレス鋼である事を特徴とする特許請
求範囲第1項記載の導電性グラファイト膜の形成方法。
(2) The method for forming a conductive graphite film according to claim 1, wherein the material is stainless steel.
(3)炭化水素を原料として、1000℃以上に加熱し
たクロムまたはニッケルを含む基材上にプラズマ放電に
より炭素膜を形成させた後、1500℃を越える温度で
熱処理を行ない、次いでドーパントをドープする事を特
徴とする導電性グラファイト膜の形成方法。
(3) Using hydrocarbon as a raw material, a carbon film is formed by plasma discharge on a substrate containing chromium or nickel heated to 1000°C or higher, then heat treated at a temperature exceeding 1500°C, and then doped with a dopant. A method for forming a conductive graphite film characterized by the following.
(4)基材がステンレス鋼である事を特徴とする特許請
求範囲第3項記載の導電性グラファイト膜の形成方法。
(4) The method for forming a conductive graphite film according to claim 3, wherein the base material is stainless steel.
JP60261383A 1985-01-25 1985-11-22 Formation of electrically conductive graphite film Pending JPS62124273A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60261383A JPS62124273A (en) 1985-11-22 1985-11-22 Formation of electrically conductive graphite film
US06/822,244 US4645713A (en) 1985-01-25 1986-01-27 Method for forming conductive graphite film and film formed thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60261383A JPS62124273A (en) 1985-11-22 1985-11-22 Formation of electrically conductive graphite film

Publications (1)

Publication Number Publication Date
JPS62124273A true JPS62124273A (en) 1987-06-05

Family

ID=17361085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60261383A Pending JPS62124273A (en) 1985-01-25 1985-11-22 Formation of electrically conductive graphite film

Country Status (1)

Country Link
JP (1) JPS62124273A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088050A (en) * 2006-09-04 2008-04-17 Univ Of Tsukuba Method for producing film-shaped carbon material, and film-shaped carbon material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170570A (en) * 1985-01-25 1986-08-01 Agency Of Ind Science & Technol Formation of conductive graphite film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170570A (en) * 1985-01-25 1986-08-01 Agency Of Ind Science & Technol Formation of conductive graphite film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088050A (en) * 2006-09-04 2008-04-17 Univ Of Tsukuba Method for producing film-shaped carbon material, and film-shaped carbon material

Similar Documents

Publication Publication Date Title
US4645713A (en) Method for forming conductive graphite film and film formed thereby
Endo et al. Structural improvement of carbon fibers prepared from benzene
EP0205970B1 (en) Process for producing graphite films
US4876077A (en) Process for producing graphite
JPS6221867B2 (en)
JPS61275116A (en) Production of graphite film and fiber
JP4387159B2 (en) Graphite material, carbon fiber reinforced carbon composite material, and expanded graphite sheet
US3379555A (en) Vapor deposition of pyrolytic graphite on tungsten
JPS62124273A (en) Formation of electrically conductive graphite film
JPS61170570A (en) Formation of conductive graphite film
JPS61232269A (en) Manufacture of boron-containing silicon carbide powder
Lee et al. Plasma treatment effects on surface morphology and field emission characteristics of carbon nanotubes
US4673720A (en) Electroconductive polymer and process for preparation thereof
JPS59207820A (en) Highly electrically conductive carbon based heat-treated material
US2344906A (en) Carbonizing metals
Ismail et al. Synthesis of large-area few-layer graphene by open-flame deposition
JPH03279207A (en) Production of graphite
Matsumura et al. Structure and electrical conductivity of graphite fibers prepared by pyrolysis of cyanoacetylene
JPS6248754B2 (en)
US3556834A (en) Low temperature method for producing amorphous boron-carbon deposits
JPS6392345A (en) Medical incision and pressure insert instrument and production thereof
JPS61275115A (en) Production of graphite
JPH04280809A (en) Production of highly conductive hollow carbon
JPH04175295A (en) Production of semiconductive diamond
JPH039945B2 (en)