JPS6248754B2 - - Google Patents

Info

Publication number
JPS6248754B2
JPS6248754B2 JP60261382A JP26138285A JPS6248754B2 JP S6248754 B2 JPS6248754 B2 JP S6248754B2 JP 60261382 A JP60261382 A JP 60261382A JP 26138285 A JP26138285 A JP 26138285A JP S6248754 B2 JPS6248754 B2 JP S6248754B2
Authority
JP
Japan
Prior art keywords
carbon film
base material
carbon
forming
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60261382A
Other languages
Japanese (ja)
Other versions
JPS62124272A (en
Inventor
Jun Shiotani
Yoichi Yamaguchi
Hironaga Matsubara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60261382A priority Critical patent/JPS62124272A/en
Publication of JPS62124272A publication Critical patent/JPS62124272A/en
Publication of JPS6248754B2 publication Critical patent/JPS6248754B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、優れた導電性を有する易黒鉛化性
炭素膜の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming a graphitizable carbon film having excellent electrical conductivity.

〔従来の技術〕[Conventional technology]

従来、このような易黒鉛化性炭素を得る方法は
いわゆる熱分解法が一般的である。この方法は原
料であるメタン、エタン、プロパン、ベンゼン等
の脂肪族または芳香族炭化水素の雰囲気中で反応
系を高温に加熱することにより炭化水素を熱分解
し、炭素質を生成するものである。(例えば大谷
ら“炭素化工学の基礎“1980 オーム社)生成し
た炭素質の特性は加熱温度に大きく依存し、2000
℃を越える加熱温度でないと良好な炭素質は得ら
れない。(方法1) 上記方法よりも低温(1000℃)で、高周波放電
によりベンゼンのプラズマ重合を行ない、石英板
あるいはシリコンウエハー上に炭素薄膜を得るこ
とも行なわれている(エツチ、マツシマら、ジヤ
ーナルオブアプライドフイジツクス、22巻(5
号)、888(1983))(H.MATSUSHiMA et al J.
APPL.PHYS.Vo1.22(No.5)、888(1983))(方
法2) 〔発明が解決しようとする問題〕 しかしながら上記方法1においては、高価な高
温のエネルギーを多消費するという問題があり、
方法2では得られた炭素質の電導度が低く、生成
速度も低いという問題がある。
Conventionally, a so-called pyrolysis method has been commonly used to obtain such graphitizable carbon. This method thermally decomposes hydrocarbons by heating the reaction system to high temperatures in an atmosphere of aliphatic or aromatic hydrocarbons such as methane, ethane, propane, and benzene, which are raw materials, to generate carbonaceous substances. . (For example, Otani et al. “Fundamentals of Carbonization Engineering” 1980 Ohm Publishing) The properties of the produced carbon depend greatly on the heating temperature,
Good carbon quality cannot be obtained unless the heating temperature exceeds °C. (Method 1) Plasma polymerization of benzene is performed using high-frequency discharge at a lower temperature (1000°C) than the above method, and carbon thin films are also obtained on quartz plates or silicon wafers (Etsuchi, Matsushima et al., Journal of Applied Physics, Volume 22 (5
No.), 888 (1983)) (H.MATSUSHiMA et al J.
APPL.PHYS.Vo1.22 (No. 5), 888 (1983)) (Method 2) [Problem to be solved by the invention] However, in the above method 1, there is a problem that a large amount of expensive high-temperature energy is consumed. can be,
Method 2 has the problem that the electrical conductivity of the obtained carbonaceous material is low and the production rate is also low.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、上記従来技術の問題点に鑑み、方
法1の様に高価な熱エネルギーを多消費せず、又
方法2から得た炭素質よりも導電性に優れた品位
の高い炭素膜が形成される方法を提供するもので
ある。
In view of the above-mentioned problems of the prior art, this invention does not consume a large amount of expensive thermal energy like Method 1, and forms a high-quality carbon film with better conductivity than the carbon material obtained from Method 2. This method provides a method for

その要旨とするところはヘテロ原子を含有する
炭化水素ガスを原料として、950℃を越える温度
に加熱された基材上にプラズマ放電により炭素膜
を形成させることを特徴とする導電性炭素膜形成
方法にある。
The gist of this method is to form a conductive carbon film using a hydrocarbon gas containing heteroatoms as a raw material and forming a carbon film by plasma discharge on a substrate heated to a temperature exceeding 950°C. It is in.

この発明において原料となるヘテロ原子を含有
する炭化水素としては、例えばメチルアミン、プ
ロピルアミン、アクリロニトリル、アミノアクリ
ロニトリル、プロピルメルカプタン、四塩化炭
素、四沃化炭素、有機ボロン、有機ガリウム、チ
オフエン、ピロール、ピリジン、ピロール、2硫
化炭素等の直鎖状、環状化合物が用いられ、特に
硫黄、窒素を含有する化合物が適しており、アク
リロニトリル、チオフエンはきわめて適してい
る。
Examples of hydrocarbons containing heteroatoms that are raw materials in this invention include methylamine, propylamine, acrylonitrile, aminoacrylonitrile, propylmercaptan, carbon tetrachloride, carbon tetraiodide, organic boron, organic gallium, thiophene, pyrrole, Linear and cyclic compounds such as pyridine, pyrrole and carbon disulfide are used, and compounds containing sulfur and nitrogen are particularly suitable, with acrylonitrile and thiophene being extremely suitable.

プラズマ放電により基板上に炭素膜を形成する
方法は、反応容器中を原料である炭化水素蒸気で
所定の圧力に充満させ、高周波電界を印加するこ
とによつて基材上に炭素膜を形成する。
The method of forming a carbon film on a substrate by plasma discharge involves filling a reaction vessel with raw material hydrocarbon vapor to a predetermined pressure, and forming a carbon film on the substrate by applying a high-frequency electric field. .

この発明において、基材としては、鉄、コバル
ト、ニツケル等の金属、或はステンレス等の合金
からなる板、シート、フイルム、その他の成形品
を使用することができ、フアイバ状のもの及びそ
の織布も使用することができる。また、石英、ガ
ラス、シリコン、セラミツクからなる金属以外の
ものを用いても良い。更にカーボンフアイバ、カ
ーボンシート(例えば、カーボンフアイバ織
布)、グラフアイトフアイバ、グラフアイト板
(例えばHTOPG)を用いることができる。上記
基材のうち特に遷移金属を含む基材が好ましい。
In this invention, plates, sheets, films, and other molded products made of metals such as iron, cobalt, and nickel, or alloys such as stainless steel can be used as the base material, and fiber-like materials and woven materials thereof can be used. Cloth can also be used. Moreover, materials other than metals such as quartz, glass, silicon, and ceramic may be used. Furthermore, carbon fibers, carbon sheets (for example, carbon fiber woven fabric), graphite fibers, graphite plates (for example, HTOPG) can be used. Among the above base materials, base materials containing transition metals are particularly preferred.

基材は、950℃を越える温度に加熱すると、特
に、炭素膜の形成に効果的である。
Heating the substrate to a temperature above 950°C is particularly effective in forming a carbon film.

〔実施例〕〔Example〕

実施例 1 SUS304からなるシート状の基材(厚み0.2mmを
合成室内に静置して、基材を1000℃に加熱した
後、アクリロニトリル蒸気を合成室内に導入し、
圧力1.0mmHgに保持した。然る後、高周波電界
(13.56MHz出力40W)を印加し、プラズマ反応を
行ない、基材上に金属光沢を有する膜厚20〜22μ
mの炭素膜を形成せしめた。
Example 1 A sheet-like base material (thickness 0.2 mm) made of SUS304 was placed in a synthesis chamber, heated to 1000°C, and then acrylonitrile vapor was introduced into the synthesis chamber.
The pressure was maintained at 1.0 mmHg. After that, a high frequency electric field (13.56MHz output 40W) is applied to perform a plasma reaction, resulting in a film with a thickness of 20 to 22μ with metallic luster on the substrate.
A carbon film of m was formed.

得られた炭素膜のグラフアイト層間隔はd=
3.366Åとなりかなりグラフアイト化が進行して
いる事が判つた。
The graphite layer spacing of the obtained carbon film is d=
The value was 3.366 Å, and it was found that graphitization had progressed considerably.

実施例 2 SUS304からなるシート状の基材(厚み0.2mm)
を合成室内に静置して、基材を1100℃、1050℃及
び1000℃に加熱した後、チオフエン蒸気を合成室
内に導入し、圧力1.0mmHgに保持した。然る後、
高周波電界(13.56MHz出力40W)を印加し、プ
ラズマ反応を行ない、基材上に金属光沢を有する
膜厚20〜22μmの炭素膜を形成せしめた。
Example 2 Sheet-like base material made of SUS304 (thickness 0.2 mm)
was left still in the synthesis chamber and the base material was heated to 1100°C, 1050°C, and 1000°C, then thiophene vapor was introduced into the synthesis chamber and the pressure was maintained at 1.0 mmHg. After that,
A high frequency electric field (13.56 MHz output 40 W) was applied to perform a plasma reaction to form a carbon film with a thickness of 20 to 22 μm with metallic luster on the substrate.

得られた炭素薄膜の電導度は基材温度の高い順
序で、各々1.4×103、800、700S/cmであつた。
The electrical conductivities of the obtained carbon thin films were 1.4×10 3 , 800, and 700 S/cm, respectively, in descending order of substrate temperature.

比較例 1 SUS304からなるシート状の基材(厚み0.2mm)
を合成室内に静置して基材を1000℃に加熱し、ベ
ンゼン蒸気を合成室内に導入し、圧力1mmHgに
保持し、熱分解反応を行なわしめ、基材上に炭素
質を形成せしめた。炭素質の形状は繊維状であつ
た。
Comparative example 1 Sheet-like base material made of SUS304 (thickness 0.2 mm)
was allowed to stand still in a synthesis chamber, the substrate was heated to 1000° C., benzene vapor was introduced into the synthesis chamber, the pressure was maintained at 1 mmHg, a thermal decomposition reaction was carried out, and carbonaceous material was formed on the substrate. The shape of the carbonaceous material was fibrous.

得られた炭素質のX線回折の結果よりグラフア
イト層間隔はd=3.462Åとなり、グラフアイト
化が進行していない炭素質である事が判つた。
The result of X-ray diffraction of the obtained carbonaceous material showed that the graphite layer spacing was d=3.462 Å, indicating that the carbonaceous material had not undergone graphitization.

比較例 2 SUS304からなるシート状の基材(厚み0.2mm)
を合成室内に静置して、基材を1000℃に加熱した
後、ベンゼン蒸気を合成室内に導入し、圧力1.0
mmHgに保持した。然る後、高周波電界(13.56M
Hz出力40W)を印加し、プラズマ反応を行ない、
基材上に金属光沢を有する膜厚20〜22μmの炭素
膜を形成せしめた。
Comparative example 2 Sheet-like base material made of SUS304 (thickness 0.2 mm)
was placed in the synthesis chamber and the base material was heated to 1000℃, then benzene vapor was introduced into the synthesis chamber and the pressure was increased to 1.0.
Maintained at mmHg. After that, high frequency electric field (13.56M
Hz output 40W) to perform a plasma reaction,
A carbon film having a thickness of 20 to 22 μm and having metallic luster was formed on the base material.

得られた炭素膜のグラフアイト層間隔はd=
3.442Åとなり、わずかにグラフアイト化がすす
んでいる事が判つた。
The graphite layer spacing of the obtained carbon film is d=
It became 3.442 Å, indicating that graphitization had progressed slightly.

比較例 3 SUS304からなるシート状の基材(厚み0.2mm)
を合成室内に静置して、基材を1100℃に加熱した
後、ベンゼン蒸気を合成室内に導入し、圧力1.0
mmHgに保持した。然る後、高周波電界(13.56M
Hz出力40W)を印加し、プラズマ反応を行ない、
基材上に膜厚20〜22μmの炭素膜を形成せしめ
た。
Comparative example 3 Sheet-like base material made of SUS304 (thickness 0.2 mm)
was placed in the synthesis chamber and the base material was heated to 1100℃, then benzene vapor was introduced into the synthesis chamber and the pressure was increased to 1.0.
Maintained at mmHg. After that, high frequency electric field (13.56M
Hz output 40W) to perform a plasma reaction,
A carbon film having a thickness of 20 to 22 μm was formed on the base material.

得られた炭素膜の電導度は600S/cmであつ
た。
The electrical conductivity of the obtained carbon film was 600 S/cm.

比較例 4 SUS304からなるシート状の基材(厚み0.2mm)
を合成室内に静置して、基材を950℃に加熱した
後、チオフエン蒸気を合成室内に導入し、圧力
1.0mmHgに保持した。然る後、高周波電界
(13.56MHz出力40W)を印加し、プラズマ反応を
行ない、基材上に膜厚20〜22μmの炭素膜を形成
せしめた。
Comparative example 4 Sheet-like base material made of SUS304 (thickness 0.2 mm)
was placed in the synthesis chamber and the base material was heated to 950℃, then thiophene vapor was introduced into the synthesis chamber and the pressure was increased.
It was maintained at 1.0 mmHg. Thereafter, a high frequency electric field (13.56 MHz output 40 W) was applied to perform a plasma reaction, and a carbon film with a thickness of 20 to 22 μm was formed on the base material.

得られた炭素薄膜の電導度は300S/cmであつ
た。
The electrical conductivity of the obtained carbon thin film was 300 S/cm.

比較例 5 シリコンからなる基材(厚み0.2mm)を合成室
内に静帯して、基材を1100℃に加熱した後、ベン
ゼン蒸気を合成室内に導入し、圧力1.0mmHgに保
持した。然る後、高周波電界(13.56MHz出力
40W)を印加し、プラズマ反応を行ない、基材上
に膜厚20〜22μmの炭素膜を形成せしめた。
Comparative Example 5 A base material made of silicon (thickness: 0.2 mm) was placed in a synthesis chamber, and after heating the base material to 1100° C., benzene vapor was introduced into the synthesis chamber and the pressure was maintained at 1.0 mmHg. After that, high frequency electric field (13.56MHz output
40 W) was applied to perform a plasma reaction to form a carbon film with a thickness of 20 to 22 μm on the substrate.

得られた炭素膜の電導度は300S/cmであつ
た。
The electrical conductivity of the obtained carbon film was 300 S/cm.

〔発明の効果〕〔Effect of the invention〕

この発明によつて提案されたヘテロ原子を含有
する炭化水素を原料として、プラズマCVDにて
炭素膜を合成する方法によつて、これまでより低
温で高品位な炭素質を得ることが出来る。
By the method proposed by this invention of synthesizing a carbon film by plasma CVD using a hydrocarbon containing a heteroatom as a raw material, it is possible to obtain high-quality carbon at a lower temperature than ever before.

Claims (1)

【特許請求の範囲】 1 ヘテロ原子を含有する炭化水素を原料として
950℃を越える温度に加熱された基材上にプラズ
マ放電により炭素膜を形成させることを特徴とす
る導電性炭素膜の形成方法。 2 ヘテロ原子を含有する炭化水素が、硫黄ある
いは窒素を含有する炭化水素であることを特徴と
する特許請求の範囲第1項記載の導電性炭素膜の
形成方法。 3 硫黄あるいは窒素を含有する炭化水素が、チ
オフエンあるいはアクリロニトリルであることを
特徴とする特許請求の範囲第2項記載の導電性炭
素膜の形成方法。 4 基材が、遷移金属を含むことを特徴とする特
許請求の範囲第1項、第2項または第3項記載の
導電性炭素膜の形成方法。
[Claims] 1. Using a hydrocarbon containing a heteroatom as a raw material
A method for forming a conductive carbon film, which comprises forming a carbon film by plasma discharge on a substrate heated to a temperature exceeding 950°C. 2. The method for forming a conductive carbon film according to claim 1, wherein the heteroatom-containing hydrocarbon is a sulfur- or nitrogen-containing hydrocarbon. 3. The method for forming a conductive carbon film according to claim 2, wherein the hydrocarbon containing sulfur or nitrogen is thiophene or acrylonitrile. 4. The method for forming a conductive carbon film according to claim 1, 2 or 3, wherein the base material contains a transition metal.
JP60261382A 1985-11-22 1985-11-22 Formation of electrically conductive carbon film Granted JPS62124272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60261382A JPS62124272A (en) 1985-11-22 1985-11-22 Formation of electrically conductive carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60261382A JPS62124272A (en) 1985-11-22 1985-11-22 Formation of electrically conductive carbon film

Publications (2)

Publication Number Publication Date
JPS62124272A JPS62124272A (en) 1987-06-05
JPS6248754B2 true JPS6248754B2 (en) 1987-10-15

Family

ID=17361070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60261382A Granted JPS62124272A (en) 1985-11-22 1985-11-22 Formation of electrically conductive carbon film

Country Status (1)

Country Link
JP (1) JPS62124272A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6455542U (en) * 1987-09-30 1989-04-06

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293164A (en) * 1987-05-27 1988-11-30 Agency Of Ind Science & Technol Manufacture of carbon material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6455542U (en) * 1987-09-30 1989-04-06

Also Published As

Publication number Publication date
JPS62124272A (en) 1987-06-05

Similar Documents

Publication Publication Date Title
US4701317A (en) Highly electroconductive films and process for preparing same
US5143709A (en) Process for production of graphite flakes and films via low temperature pyrolysis
JPH049757B2 (en)
US3900540A (en) Method for making a film of refractory material having bi-directional reinforcing properties
JPH0157044B2 (en)
US3714334A (en) Process for epitaxial growth of diamonds
JPS6221867B2 (en)
Wang et al. Electrodeposition of diamond-like carbon films in organic solvents using a thin wire anode
JPH0149642B2 (en)
JPS6248754B2 (en)
JPH03199379A (en) Method of evaporating crystallite solid particle by using chemical deposition method
Matsubara et al. Preparation and properties of graphite grown in vapor phase
EP0477297A1 (en) Process for production of graphite flakes and films via low temperature pyrolysis
CN110079996B (en) Method for repairing surface defects of silicon carbide fibers and silicon carbide fibers repaired by same
JP2794173B2 (en) Method of forming composite carbon coating
JPH04295098A (en) Apparatus for producing sic whisker
JPS61275114A (en) Production of graphite
EP0449312A2 (en) Process for preparing a graphite film or block from polyamido acid films
JPH0362791B2 (en)
JPH039945B2 (en)
Matsumura et al. Structure and electric conductivity of vapor deposition polymerization products of cyanoacetylene
Liu et al. Chemical vapor deposition derived ultralong SiC nanofibers: structural characterization and growth mechanism
JP2629772B2 (en) Method for producing carbon film
JPH03257098A (en) Formation of diamond thin film
Meenakshi et al. Medium-range order in pyrolyzed carbon films: Structural evidence related to metal–insulator transition

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term