JPH0346065B2 - - Google Patents

Info

Publication number
JPH0346065B2
JPH0346065B2 JP60225850A JP22585085A JPH0346065B2 JP H0346065 B2 JPH0346065 B2 JP H0346065B2 JP 60225850 A JP60225850 A JP 60225850A JP 22585085 A JP22585085 A JP 22585085A JP H0346065 B2 JPH0346065 B2 JP H0346065B2
Authority
JP
Japan
Prior art keywords
sample
capillary
tube
capillary tube
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60225850A
Other languages
Japanese (ja)
Other versions
JPS6283643A (en
Inventor
Setsuo Muramoto
Shuichi Kuze
Tamotsu Inomata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP60225850A priority Critical patent/JPS6283643A/en
Priority to US06/906,146 priority patent/US4676897A/en
Priority to GB8622753A priority patent/GB2181072B/en
Priority to NL8602393A priority patent/NL8602393A/en
Priority to DE19863632226 priority patent/DE3632226A1/en
Publication of JPS6283643A publication Critical patent/JPS6283643A/en
Publication of JPH0346065B2 publication Critical patent/JPH0346065B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 近年、毛細管に緩衝液とイオン化ミセルとより
なる溶媒を流し、注入された試料と前記ミセルと
の溶解現象、並びに毛細管電気泳動法とを組合せ
て前記試料の分離分析を行うミセル可溶化クロマ
トグラフイーが提案されている。本発明は、この
ような分析装置に好適なサンプル注入装置に関す
る。
[Detailed Description of the Invention] <Industrial Application Field> In recent years, a combination of a phenomenon in which a solvent consisting of a buffer solution and ionized micelles is caused to flow through a capillary tube and the injected sample and the micelles dissolve, and capillary electrophoresis has been developed. Micelle solubilization chromatography, which performs separation and analysis of the sample, has been proposed. The present invention relates to a sample injection device suitable for such an analysis device.

<従来の技術> 第4図は可溶化クロマトグラフイーの原理構成
を示す。図中、1はカラムを構成する毛細管で、
例えば溶融シリカキヤピラリーチユーブが用いら
れる。2,3は緩衝液とミセルとの混合液が入れ
られた容器で、これら容器にキヤピラリーチユー
ブ1の両端が挿入されている。前記ミセルには例
えば硫酸ドデシルナトリウム(SDS)を前記緩衝
液に溶解させて形成されたコロイドイオンが用い
られる。
<Prior Art> FIG. 4 shows the basic structure of solubilization chromatography. In the figure, 1 is a capillary tube that makes up the column.
For example, a fused silica capillary tube is used. 2 and 3 are containers containing a mixed solution of a buffer solution and micelles, and both ends of the capillary reach tube 1 are inserted into these containers. For the micelles, for example, colloidal ions formed by dissolving sodium dodecyl sulfate (SDS) in the buffer solution are used.

Eは高圧電源で、プラス側は容器2に浸漬され
た電極4に、マイナス側は容器3に浸漬された電
極5に接続され、キヤピラリーチユーブ1の両端
に高電圧を印加する。
E is a high voltage power source, the positive side of which is connected to the electrode 4 immersed in the container 2, and the negative side connected to the electrode 5 immersed in the container 3, and applies a high voltage to both ends of the capillary reach tube 1.

キヤピラリーチユーブ1のマイナス極5に近い
部分には例えば紫外線分光光度計のような検出器
6が設けられる。
A detector 6, such as an ultraviolet spectrophotometer, is provided in a portion of the capillary tube 1 near the negative pole 5.

このような構成で、キヤピラリーチユーブ1内
には、第5図に示すように、ミセルと緩衝液の2
相が流れる。即ち、高電圧を印加すると前記緩衝
液は電気浸透流によつて矢印A方向に流れる。一
方、溶解したSDS(ミセル)は陰イオンであり、
電気泳動によつて緩衝液の流れと逆のプラス側に
移動しようとするが、前記緩衝液の移動速度の方
が大きいので、結局前記緩衝液より遅れて容器3
に達する。
With this configuration, the capillary reach tube 1 contains two types of micelles and a buffer solution, as shown in FIG.
The phase flows. That is, when a high voltage is applied, the buffer solution flows in the direction of arrow A due to electroosmotic flow. On the other hand, dissolved SDS (micelle) is an anion,
Due to electrophoresis, the buffer solution tries to move in the positive direction opposite to the flow of the buffer solution, but since the moving speed of the buffer solution is higher, it ends up moving behind the buffer solution in the container 3.
reach.

このような2相の流れが存在するキヤピラリー
チユーブ1にプラス極4側より試料SMを注入す
ると、前記ミセルに全く溶解しない試料成分は前
記緩衝液と共に電気浸透流に乗つて最も速くマイ
ナス極5側に移動する。一方、前記ミセルに完全
に溶解する試料成分は前記ミセルと同じ速度で移
動して、最も遅く容器3側に達する。また、前記
ミセルにある程度溶解する中間の試料成分は中程
度の速度で移動する。この結果、キヤピラリーチ
ユーブ1を移動する試料成分は可溶化率の違いに
応じた保持時間を持つことになり、これを検出器
6で検出すれば、試料の可溶化率に応じたクロマ
トグラムが得られる。
When a sample SM is injected from the positive electrode 4 side into the capillary reach tube 1 in which such a two-phase flow exists, the sample components that are not dissolved at all in the micelles ride the electroosmotic flow together with the buffer solution and reach the negative electrode 5 most rapidly. Move to the side. On the other hand, sample components that completely dissolve in the micelles move at the same speed as the micelles and reach the container 3 side the slowest. Also, intermediate sample components that dissolve to some extent in the micelles move at moderate speeds. As a result, the sample components moving through the capillary reach tube 1 will have a retention time corresponding to the difference in solubilization rate, and if this is detected by the detector 6, a chromatogram corresponding to the solubilization rate of the sample will be generated. can get.

ところで、このような装置において、試料をキ
ヤピラリーチユーブ1に注入する方法として、落
差(ヘツド圧)を利用する方法、或は試料容器と
キヤピラリーチユーブ1との間の配管に高電圧源
を接続し高電圧によつて試料を注入する方法が行
われている。
By the way, in such an apparatus, as a method of injecting the sample into the capillary reach tube 1, there is a method using head pressure (head pressure), or a method of connecting a high voltage source to the piping between the sample container and the capillary reach tube 1. A method of injecting a sample using high voltage has been used.

しかしながら、前者の方法にあつては、所望の
ヘツド圧を得る為に試料容器を持上げる必要があ
り作業が繁雑となり、また、前記試料容器を持上
げる過程で、しばしばキヤピラリーチユーブ1を
動かし装置の再現性を劣化させていた。また後者
にあつては、電気泳動の為の高圧電源をもう一つ
余分に設けなければならない欠点があつた。加え
て、これらの方法はいずれも、試料注入量の正確
な制御が出来ず、カラムの分離能力に合せて試料
注入量を調整することが出来なかつた。
However, in the former method, it is necessary to lift the sample container in order to obtain the desired head pressure, which makes the work complicated, and in the process of lifting the sample container, the capillary reach tube 1 is often moved. reproducibility was deteriorated. In addition, the latter method had the disadvantage of requiring an additional high-voltage power source for electrophoresis. In addition, in all of these methods, it is not possible to accurately control the amount of sample injection, and it is not possible to adjust the amount of sample injection in accordance with the separation capacity of the column.

<発明が解決しようとする問題点> 本発明が解決しようとする技術的課題は、前記
毛細管電気泳動法を利用した分析装置において、
試料の注入が簡単に行え、注入作業によつてカラ
ムの再現性が損われることがなく、また、試料注
入量の変更が容易に行なえるサンプル注入装置を
実現することにある。
<Problems to be Solved by the Invention> The technical problems to be solved by the present invention are:
It is an object of the present invention to provide a sample injection device that can easily inject a sample, prevent column reproducibility from being impaired by the injection operation, and easily change the amount of sample to be injected.

<問題点を解決するための手段> 本発明の構成は、毛細管の上流側より溶媒を一
定の速さで供給し、前記毛細管に接続された配管
に一定量の試料を注入し、前記試料を前記溶媒で
サンドイツチした状態で前記配管中を流し、前記
毛細管との接続部において前記毛細管に導入され
なかつた溶液を排出させ、前記毛細管の両端に加
えられた印加電圧により形成された流れによつて
前記毛細管内に前記試料を導入し、この試料の成
分の可溶化率の違いに応じた保持時間に基づき成
分のクロマトグラムを得る分析装置のサンプル注
入装置において、前記印加電圧の大きさを変え、
又はこの印加電圧の印加時間を変えることによつ
て前記毛細管へ導入される試料量を変更する試料
量変更手段を設けたことを特徴とするサンプル注
入装置にある。
<Means for Solving the Problems> The configuration of the present invention is to supply a solvent at a constant speed from the upstream side of a capillary tube, inject a fixed amount of sample into a pipe connected to the capillary tube, and then The solvent is passed through the piping in a sandwiched state, and the solution that has not been introduced into the capillary is discharged at the connection with the capillary, by a flow formed by an applied voltage applied to both ends of the capillary. Introducing the sample into the capillary tube and obtaining a chromatogram of the components based on the retention time corresponding to the difference in the solubilization rate of the components of the sample in the sample injection device of the analyzer, changing the magnitude of the applied voltage,
Alternatively, the sample injection device may include a sample amount changing means for changing the amount of sample introduced into the capillary tube by changing the application time of the applied voltage.

<作用> 前記の技術手段は次のように作用する。即ち、
前記配管内に試料が注入されると、この試料は前
記溶媒にサンドイツチされてバンド状になり、前
記溶媒供給手段から供給される液によつて移動す
る。
<Operation> The technical means described above operates as follows. That is,
When a sample is injected into the pipe, the sample is sandwiched by the solvent to form a band, and is moved by the liquid supplied from the solvent supply means.

前記試料が前記毛細管の先端に達したとき、前
記毛細管両端に高電圧が印加されていれば、電気
浸透流及び電気泳動によつて前記毛細管内に試料
が導入される。
When the sample reaches the tip of the capillary tube, if a high voltage is applied to both ends of the capillary tube, the sample is introduced into the capillary tube by electroosmotic flow and electrophoresis.

導入される試料の量は、前記配管内に注入され
る試料量が一定で、前記溶媒供給手段から供給さ
れる溶媒の流速が一定の場合、前記印加電圧の大
きさ、並びに前記印加電圧の印加時間によつて決
まる。
When the amount of sample injected into the pipe is constant and the flow rate of the solvent supplied from the solvent supply means is constant, the amount of sample introduced depends on the magnitude of the applied voltage and the application of the applied voltage. Depends on time.

本発明では、前記配管内に注入される試料量を
一定にし、前記溶媒供給手段から供給される溶媒
の流速を一定にした状態で、前記印加電圧の大き
さを変え、或は前記印加電圧の印加時間を変える
ことによつて、前記毛細管に導入される試料量を
調整している。
In the present invention, the magnitude of the applied voltage is changed while the amount of sample injected into the pipe is kept constant and the flow rate of the solvent supplied from the solvent supply means is kept constant, or the magnitude of the applied voltage is changed. By changing the application time, the amount of sample introduced into the capillary tube is adjusted.

<実施例> 以下図面に従い本発明の実施例を説明する。第
1図は本発明の実施例装置を示す構成図、第2図
は第1図の本発明実施例装置における部分拡大断
面図である。図中、第4図における要素と実質的
に同じ要素には同一符号を付しこれらについての
説明は省略する。7は、容器2から緩衝液とミセ
ルとの混合液を配管8を通じ下流側に流す低圧ポ
ンプで、溶媒供給手段を構成する。
<Examples> Examples of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram showing an apparatus according to an embodiment of the present invention, and FIG. 2 is a partially enlarged cross-sectional view of the apparatus according to an embodiment of the present invention shown in FIG. In the figure, elements that are substantially the same as those in FIG. 4 are given the same reference numerals, and explanations thereof will be omitted. Reference numeral 7 denotes a low-pressure pump that flows a mixed solution of a buffer solution and micelles from the container 2 to the downstream side through a pipe 8, and constitutes a solvent supply means.

一点鎖線で囲まれた部分E′は高圧電源部で、高
圧電源E1′からの高電圧を制御器E2′を介しキ
ヤピラリーチユーブ1の両端に印加する構成とな
つている。Sは配管8の途中に設けられたサンプ
ルバルブで、6方切換バルブS1、計量ループS
2より構成され、バルブS1の切換により試料注
入口S3から供給された試料の一定量を配管8内
に注入する。
A portion E' surrounded by a one-dot chain line is a high-voltage power supply section, which is configured to apply a high voltage from a high-voltage power supply E1' to both ends of the capillary reach tube 1 via a controller E2'. S is a sample valve installed in the middle of the pipe 8, including a 6-way switching valve S1 and a measuring loop S.
2, and injects a certain amount of the sample supplied from the sample injection port S3 into the pipe 8 by switching the valve S1.

9は配管8の端部に接続されたチユーブ状電極
で高圧電源部E′のプラス側に接続されている。1
0は配管8とキヤピラリーチユーブ1とを接続す
ると共にキヤピラリーチユーブ1に導入されなか
つた溶液を排出するTタイプ接続部である。
A tube-shaped electrode 9 is connected to the end of the pipe 8 and is connected to the positive side of the high-voltage power source E'. 1
0 is a T-type connection that connects the pipe 8 and the capillary reach tube 1 and discharges the solution that has not been introduced into the capillary reach tube 1.

第2図はこの部分の拡大断面を示す。図中、1
0aはTタイプ接続部の本体、10bは一の開口
部に螺合しチユーブ状電極9を本体10aに固定
する締付螺子、10cは他の開口部に螺合しキヤ
ピラリーチユーブ1を本体10aに固定する締付
螺子、10dは更に他の開口部に螺合し排液チユ
ーブ11を本体10aに固定する締付螺子であ
る。尚、キヤピラリーチユーブ1はその先端部を
チユーブ状電極9内に挿入した状態で固定されて
いる。
FIG. 2 shows an enlarged cross section of this part. In the figure, 1
0a is the main body of the T-type connection, 10b is a tightening screw that is screwed into one opening and fixes the tube-shaped electrode 9 to the main body 10a, and 10c is a tightening screw that is screwed into the other opening and connects the capillary reach tube 1 to the main body 10a. A tightening screw 10d is further screwed into another opening to fix the drain tube 11 to the main body 10a. The capillary reach tube 1 is fixed with its tip inserted into the tube-shaped electrode 9.

このように構成された装置の動作について、第
3図の説明図に従い説明を行う。本図において、
第1図における要素と同じ要素には同一符号が付
されている。第3図aは試料が配管8に注入され
る前の状態を示す。この状態では、緩衝液とミセ
ルとよりなる溶媒だけが配管8内を一定の速度で
流れており、キヤピラリーチユーブ1内に導入さ
れなかつた溶媒は排液チユーブ11より排出され
る。
The operation of the apparatus configured as described above will be explained with reference to the explanatory diagram of FIG. 3. In this figure,
Elements that are the same as those in FIG. 1 are given the same reference numerals. FIG. 3a shows the state before the sample is injected into the pipe 8. In this state, only the solvent consisting of the buffer solution and micelles is flowing through the pipe 8 at a constant speed, and the solvent that has not been introduced into the capillary tube 1 is discharged from the drain tube 11.

サンプルバルブSから一定量の試料が配管8内
に注入されると、試料は第3図bに示すように溶
媒によつてサンドイツチにされ(バンドB)、ポ
ンプ7より供給される溶媒に乗つて一定速度で移
動する。
When a certain amount of sample is injected into the pipe 8 from the sample valve S, the sample is sandwiched by the solvent (band B) as shown in FIG. Move at a constant speed.

バンドBがキヤピラリーチユーブ1の先端に達
したとき、キヤピラリーチユーブ1の両端に高電
圧が印加されていれば、電気浸透流及び電気泳動
によつてキヤピラリーチユーブ1内に試料が導入
される。
When the band B reaches the tip of the capillary reach tube 1, if a high voltage is applied to both ends of the capillary reach tube 1, the sample is introduced into the capillary reach tube 1 by electroosmotic flow and electrophoresis. .

導入される試料の量は、サンプルバルブSから
配管8内に注入される試料量が一定で、ポンプ7
より供給される溶媒の流速が一定の場合、前記印
加電圧の大きさ、並びに前記印加電圧の印加時間
によつて決まる。本発明では、サンプルバルブS
からの試料注入量を一定にし、ポンプ7から供給
される溶媒の流速を一定にした状態で、制御器E
2′によつて前記印加電圧の大きさ或は印加時間
を制御し、キヤピラリーチユーブ1に導入される
試料量を変えるようにしている。
The amount of sample introduced into the pipe 8 from the sample valve S is constant, and the amount of sample introduced into the pipe 8 is constant.
When the flow rate of the solvent supplied is constant, it is determined by the magnitude of the applied voltage and the application time of the applied voltage. In the present invention, the sample valve S
With the amount of sample injected from the pump 7 kept constant and the flow rate of the solvent supplied from the pump 7 kept constant, the controller E
2' controls the magnitude or duration of the applied voltage to change the amount of sample introduced into the capillary reach tube 1.

このようにして注入された試料は、先に説明し
たように可溶化クロマトグラフイーの原理に従
い、キヤピラリーチユーブ1内において分離さ
れ、検出器6により試料の可溶化率に応じたクロ
マトグラムを得ている。
The sample injected in this way is separated in the capillary tube 1 according to the principle of solubilization chromatography as explained above, and a chromatogram corresponding to the solubilization rate of the sample is obtained by the detector 6. ing.

<発明の効果> 本発明によれば、前記キヤピラリーチユーブへ
の試料の注入が自動で行なえる為、作業が簡単と
なり、また、サンプル注入の過程で前記キヤピラ
リーチユーブを動かすようなことがないため、装
置の再現性を損うことがない。更に、カラムの分
離能力に合せて最適のサンプル注入量が選べる
為、カラム効率を低下させることなく分析を行う
ことが出来る。
<Effects of the Invention> According to the present invention, the sample can be automatically injected into the capillary reach tube, which simplifies the work and eliminates the need to move the capillary reach tube during the sample injection process. Therefore, the reproducibility of the device is not impaired. Furthermore, since the optimal sample injection amount can be selected according to the separation capacity of the column, analysis can be performed without reducing column efficiency.

尚、これまでの本発明の説明では、ミセル可溶
化クロマトグラフイーに本発明を実施した場合に
ついて説明を行つたが、これに限らず、他の毛細
管電気泳動法に基く分析装置にも本発明を何等支
障なく実施することが出来る。
In the explanation of the present invention so far, the case where the present invention is implemented in micelle solubilization chromatography has been explained, but the present invention is not limited to this, and the present invention can also be applied to analyzers based on other capillary electrophoresis methods. can be carried out without any problems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例装置を示す構成図、第
2図は第1図の本発明実施例装置における部分拡
大断面図、第3図は第1図の本発明実施例装置の
動作説明図、第4図は可溶化クロマトグラフイー
の原理構成図、第5図は第4図に示す可溶化クロ
マトグラフイーの動作説明図である。 1…毛細管、2,3…溶媒容器、6…検出器、
7…ポンプ、8…配管、9…チユーブ状電極、1
0…Tタイプ接続部、11…排液チユーブ、E′…
高圧電源部、E1′…高圧電源、E2′…制御器、
S…サンプルバルブ。
FIG. 1 is a configuration diagram showing the apparatus according to the embodiment of the present invention, FIG. 2 is a partially enlarged sectional view of the apparatus according to the embodiment of the invention shown in FIG. 1, and FIG. 3 is an explanation of the operation of the apparatus according to the embodiment of the invention shown in FIG. 4 is a diagram showing the basic structure of solubilization chromatography, and FIG. 5 is an explanatory diagram of the operation of solubilization chromatography shown in FIG. 4. 1... Capillary tube, 2, 3... Solvent container, 6... Detector,
7... Pump, 8... Piping, 9... Tube-shaped electrode, 1
0...T type connection, 11...Drain tube, E'...
High voltage power supply section, E1'...High voltage power supply, E2'...Controller,
S...Sample valve.

Claims (1)

【特許請求の範囲】[Claims] 1 毛細管の上流側より溶媒を一定の速さで供給
し、前記毛細管に接続された配管に一定量の試料
を注入し、前記試料を前記溶媒でサンドイツチし
た状態で前記配管中を流し、前記毛細管との接続
部において前記毛細管に導入されなかつた溶液を
排出させ、前記毛細管の両端に加えられた印加電
圧により形成された流れによつて前記毛細管内に
前記試料を導入し、この試料の成分の可溶化率の
違いに応じた保持時間に基づき成分のクロマトグ
ラムを得る分析装置のサンプル注入装置におい
て、前記印加電圧の大きさを変え、又はこの印加
電圧の印加時間を変えることによつて前記毛細管
へ導入される試料量を変更する試料量変更手段を
設けたことを特徴とするサンプル注入装置。
1. Supplying a solvent at a constant rate from the upstream side of the capillary tube, injecting a certain amount of sample into the pipe connected to the capillary tube, pouring the sample through the pipe with the sample sandwiched with the solvent, The solution not introduced into the capillary tube is discharged at the connection with the capillary tube, and the sample is introduced into the capillary tube by a flow formed by an applied voltage applied to both ends of the capillary tube, and the components of the sample are In a sample injection device of an analyzer that obtains a chromatogram of components based on retention times corresponding to differences in solubilization rate, the capillary tube is 1. A sample injection device characterized by being provided with sample amount changing means for changing the amount of sample introduced into the sample.
JP60225850A 1985-09-26 1985-10-09 Sample injection apparatus Granted JPS6283643A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60225850A JPS6283643A (en) 1985-10-09 1985-10-09 Sample injection apparatus
US06/906,146 US4676897A (en) 1985-09-26 1986-09-11 Solubilization chromatography
GB8622753A GB2181072B (en) 1985-09-26 1986-09-22 Solubilization chromatography
NL8602393A NL8602393A (en) 1985-09-26 1986-09-22 SOLUBILIZATION CHROMATOGRAPH.
DE19863632226 DE3632226A1 (en) 1985-09-26 1986-09-23 Solubilisation chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60225850A JPS6283643A (en) 1985-10-09 1985-10-09 Sample injection apparatus

Publications (2)

Publication Number Publication Date
JPS6283643A JPS6283643A (en) 1987-04-17
JPH0346065B2 true JPH0346065B2 (en) 1991-07-15

Family

ID=16835816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60225850A Granted JPS6283643A (en) 1985-09-26 1985-10-09 Sample injection apparatus

Country Status (1)

Country Link
JP (1) JPS6283643A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2799709B2 (en) * 1987-03-24 1998-09-21 ノースイースタン・ユニバーシティ Electrokinetic separation method and apparatus utilizing the surface of moving charged colloidal particles
JP6072619B2 (en) * 2013-06-17 2017-02-01 株式会社島津製作所 Electrophoresis device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6271838A (en) * 1985-09-26 1987-04-02 Yokogawa Electric Corp Sample injecting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6271838A (en) * 1985-09-26 1987-04-02 Yokogawa Electric Corp Sample injecting device

Also Published As

Publication number Publication date
JPS6283643A (en) 1987-04-17

Similar Documents

Publication Publication Date Title
US4676897A (en) Solubilization chromatography
US5141621A (en) Capillary electrophoresis injection device and method
Wallingford et al. Characterization of a microinjector for capillary zone electrophoresis
Zhang et al. Separation of peptides by pressurized capillary electrochromatography
US5282942A (en) Methods and apparatus for separating and mobilizing solutes in a solute mixture
JPH0346065B2 (en)
JPH0323861B2 (en)
JPS63305233A (en) Splitting type flow cell
Weng et al. A sheath flow gating interface for the on-line coupling of solid-phase extraction with capillary electrophoresis
JPH0323863B2 (en)
Yang et al. On-line preconcentration of protein in capillary electrophoresis with an end-column cellulose acetate-based porous membrane
Yao et al. Quantitative sample injection for capillary electrophoresis
JPH0521500B2 (en)
Tsuda et al. Split injector for capillary zone electrophoresis
JPH0323862B2 (en)
Bowerbank et al. Comprehensive isotachophoresis–capillary zone electrophoresis using directly inserted columns having different diameters with a periodic counterflow and dual ultraviolet detectors
JPH0515094Y2 (en)
JP2001518618A (en) Capillary electrophoresis device
Öfverstedt et al. Precolumn concentration of protein samples by displacement electrophoresis (isotachophoresis) followed by high-performance molecular sieve chromatography on a packed agarose column
Monson et al. Artifactual signal splitting in the capillary electrophoresis analysis of organic acids in wine
JP4403638B2 (en) Liquid chromatograph
JPH059653Y2 (en)
JPH06766Y2 (en) Electrokinetic chromatograph
Huang et al. Separation of phthalates in nonaqueous micelle using capillary electrokinetic chromatography
JPH1183823A (en) Simple injecting method for liquid chromatography