JPS6271838A - Sample injecting device - Google Patents

Sample injecting device

Info

Publication number
JPS6271838A
JPS6271838A JP60213337A JP21333785A JPS6271838A JP S6271838 A JPS6271838 A JP S6271838A JP 60213337 A JP60213337 A JP 60213337A JP 21333785 A JP21333785 A JP 21333785A JP S6271838 A JPS6271838 A JP S6271838A
Authority
JP
Japan
Prior art keywords
sample
capillary
solvent
capillary tube
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60213337A
Other languages
Japanese (ja)
Other versions
JPH0323861B2 (en
Inventor
Setsuo Muramoto
村本 節夫
Shuichi Kuze
久世 秀一
Tamotsu Inomata
猪俣 保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP60213337A priority Critical patent/JPS6271838A/en
Priority to US06/906,146 priority patent/US4676897A/en
Priority to GB8622753A priority patent/GB2181072B/en
Priority to NL8602393A priority patent/NL8602393A/en
Priority to DE19863632226 priority patent/DE3632226A1/en
Publication of JPS6271838A publication Critical patent/JPS6271838A/en
Publication of JPH0323861B2 publication Critical patent/JPH0323861B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PURPOSE:To separate and analyze a sample without spoiling the reproductivity of a column owing to injecting operation by transporting the sample and a solvent in a sandwich state to a T-shaped connection part and introducing the sample into a capillary while varying the flow velocity of the solvent. CONSTITUTION:The mixed liquid of buffer liquid and micell is flowed from a container 2 to piping 8, the solvent is introduced at the T-shaped connection part into the capillary 1 whose tip is inserted into a tubular electrode 9, and the remainder is discharged from a tube 11. A constant amount of the sample is injected from the injection port S3 of a sample valve S and moves while sandwiched B in the sample, and the band B is introduced into the capillary 1 by an electroendosmose flow. When a voltage E is constant, the amount of the sample is proportional to the time when the sample contacts the capillary 1, so the flow velocity of a pump 7 is varied to adjust the contacting time. Thus, the injection of the sample into the capillary is automated and the capillary is never moved, so an analysis is taken without spoiling the reproductivity of a device.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 近年、毛1lIl管に緩衝液とイオン化ミセルとよりな
る溶媒を流し、注入された試料と前記ミセルとの溶解現
象、並びに毛細面・電気泳動法とを組合せて前記試料の
分離分析を行うミセル可溶化クロ7トグラフイーが提案
されている。本発明は、このような分析装置に好適なサ
ンプル注入装置に関する。
[Detailed Description of the Invention] <Industrial Application Field> In recent years, a solvent consisting of a buffer solution and ionized micelles is poured into a capillary tube, and the phenomenon of dissolution of the injected sample and the micelles, as well as capillary surface/electrophoresis, have been investigated. Micelle solubilization chromatography has been proposed in which the sample is separated and analyzed in combination with the above method. The present invention relates to a sample injection device suitable for such an analysis device.

〈従来の技(付〉 第4図は可溶化り1コマトグラノイーの原llTl憫成
を示す。図中、]はhラムを+14成りるし細管で、例
えば溶融シリルキャピラリーチューブか用いられる。2
.3はIli液とミセルとのα合液が入れられた容器で
、これら容器にキャピラリーデユープ1の両端が挿入さ
れている。前記ミセルにIJ例えばliA酸ドデシルナ
トリウム(SDS)を前記緩衝液に溶解させて形成され
たコロイドイオンが用いられる。
<Conventional techniques (attached)> Figure 4 shows the original construction of solubilized one-frame tomatogranoy. In the figure, ] indicates h ram +14, and a thin tube, such as a fused silyl capillary tube, is used.2
.. Reference numeral 3 denotes a container containing an α mixture of Ili liquid and micelles, and both ends of the capillary duplex 1 are inserted into these containers. Colloidal ions formed by dissolving IJ, for example, sodium dodecyl liaate (SDS) in the buffer solution, are used in the micelles.

Eは11圧七源で、プラス側は容器2に浸漬され仁電憧
4に、マイナス側は容器3に9潰された電槽5に接続さ
れ、キャピラリーチューブ1の両端に高電圧を印加する
E is an 11-voltage source, the positive side is immersed in container 2 and connected to Jinden 4, and the negative side is connected to battery case 5 crushed in container 3, and high voltage is applied to both ends of capillary tube 1. .

一ヤヤビラリーチューブ1のマイナス極5に近い部力に
は例えば紫外線分光光度計のような検出器6が設二ノら
れる。
A detector 6, such as an ultraviolet spectrophotometer, is installed at a portion of the bi-directional tube 1 near the negative pole 5.

このような構成で、キャピラリーチューブ1内には、第
5図に示すように、ミセルと緩衝液の2相1.<流れる
。即ら、高電圧を印加すると前記IN衝VJ、、−電気
浸透流によって矢印へ方向に流れる。−h、溶解したS
DS (ミセル)は陰1′Aンであり、電気泳動によっ
て緩衝液の流れと逆のプラス側に移動しようとするが、
前記緩衝液の移動速度の方が大きいので、結局1)ζi
記緩衝液より遅れて容′!A3に達する。
With this configuration, as shown in FIG. 5, two phases, 1. <Flows. That is, when a high voltage is applied, the IN impulse VJ, - flows in the direction of the arrow due to the electroosmotic flow. −h, dissolved S
DS (micelle) is negative 1'A and tries to move to the positive side opposite to the flow of buffer solution by electrophoresis, but
Since the moving speed of the buffer solution is higher, 1) ζi
The volume of the buffer is delayed! Reach A3.

このような2相の流れが存在づるキャピラリーチューブ
1にプラス極4側にり試料を注入すると、前記ミセルに
全く溶解しない試料成分は前記緩衝液と共に電気浸透流
に乗って最も速くマイナス極5側に移il、lJする。
When a sample is injected into the capillary tube 1 in which such a two-phase flow exists, with the positive electrode 4 side, the sample components that are not dissolved at all in the micelles ride the electroosmotic flow together with the buffer solution, and are transferred most quickly to the negative electrode 5 side. Move to il, lj.

一方、前記ミセルに完全にf fqする試お1成分は前
記ミセルと同じ速度で移動して、最ら遅(容器3叫に達
する。また、前記ミセルにある程度溶解する中間の試料
成分は中程度の速度で移動する。この結果、主11ピラ
リーチユーブ1を移転する試料成分はg再溶化率の違い
に一応じた保持時間を持つことになり、これを検出器6
で検出すれば、試料の可溶化率に応じたクロマ巨グラム
がiflられる。
On the other hand, the sample component that completely dissolves in the micelles moves at the same speed as the micelles and reaches the slowest (container 3). Also, the intermediate sample component that dissolves to some extent in the micelles moves at the same speed as the micelles. As a result, the sample components transferred through the main 11 pillar reach tube 1 will have a retention time that corresponds to the difference in g resolubilization rate, and this will be reflected in the detector 6.
If detected, a chroma macrogram corresponding to the solubilization rate of the sample is generated.

ところて−1このような装置において、試料を1−ヤピ
ラリーチューブ1に注入する方法として、落差(ヘッド
圧)を利用する方法、或は試料容器とキャピラリーチュ
ーブ1との間の配管に高電圧源を接続し・高電圧によっ
て試料を注入する方法が行われている。
However, in such an apparatus, there is a method of injecting the sample into the capillary tube 1 by using head pressure (head pressure) or by applying high voltage to the piping between the sample container and the capillary tube 1. A method is used in which a source is connected and the sample is injected using high voltage.

しかしながら、前者の方法にあっては、所望のヘッドB
を得る為に試料容器を持上げる必要があり作ffi#繁
雑となり、また、前記試料容器を持上げる過程で、しば
しばキャピラリーチューブ1を動かし装置の再現性を劣
化させていた。また後者にあっては、電気原初の為の高
圧電源をもう一つ余分に設けなければならない欠点があ
った。加えて、これらの方法はいずれも、試料注入量の
正確な制御が出来ず、カラムの分離能力に合せて試料注
入量を調整することが出来なかった。
However, in the former method, the desired head B
It is necessary to lift the sample container in order to obtain the sample container, which makes the operation complicated, and in the process of lifting the sample container, the capillary tube 1 is often moved, which deteriorates the reproducibility of the apparatus. The latter also had the disadvantage of requiring an additional high-voltage power source for the electricity source. In addition, in all of these methods, it is not possible to accurately control the amount of sample injection, and it is not possible to adjust the amount of sample injection in accordance with the separation capacity of the column.

〈発明が解決しようとづる問題点ン・ 本発明が解決しようとする技術的課題は、前記毛細管電
気泳動法を利用した分析装置において、試料の注入が簡
単に11え、注入作業によってカラムの再現性が損われ
ることがなく、また、試料注入量の変更が容易に行なえ
るサンプル注入装置をプi現することにある。
<Problems to be Solved by the Invention> The technical problems to be solved by the present invention are that in an analyzer using the capillary electrophoresis method, it is easy to inject a sample, and the column can be reproduced by the injection process. An object of the present invention is to provide a sample injection device that does not impair performance and allows easy change of sample injection amount.

・、問題点を解決するだめの手段〉 本発明の構成は、毛細管電気泳動法を利用した分析装置
において、前記毛IO1管の上流側より緩衝液等の溶媒
を供給する手段と、前記−し細管に接続された8箆に一
定量の試料を注入するサンプルバルブと、前記配管と前
記毛細管とを接続すると共にnq記柔毛軟管導入されな
かった溶液を排出するTタイプ1!¥続部とを具備し、
前記サンプルバルブより注入6れた試料を1)自記i8
媒で+1ンドイツヂし。
・Another means for solving the problem> The structure of the present invention is that in an analyzer using capillary electrophoresis, means for supplying a solvent such as a buffer from the upstream side of the capillary IO1 tube; A sample valve that injects a fixed amount of sample into the 8 tubes connected to the capillary tube, and a T type 1 that connects the piping and the capillary tube and discharges the solution that was not introduced into the tube. Equipped with ¥Continuation section,
1) Record the sample injected from the sample valve 6
+1 in Germany.

た状態で、前記Tタイプ接続部へ移送し前記毛細管の両
端(こ印加された高電圧によって形成された流れによっ
て前記試料を前記毛細管内に導入すると共に、前記溶媒
供給手段がらの液の流速を変え、或は前記サンプルバル
ブから前記配管内に注入される試料ωを変えることによ
って前記毛細管へ導入されるK j31の吊を調整する
ようにしたことにある。
In this state, the sample is transferred to the T-type connection section, and the sample is introduced into the capillary tube by a flow formed by the high voltage applied to both ends of the capillary tube, and the flow rate of the liquid from the solvent supply means is controlled. or by changing the sample ω injected into the pipe from the sample valve, the amount of K j31 introduced into the capillary tube is adjusted.

〈作用〉 前記の技術手段は次のように作用する。即ち、前記試料
が注入される曲にあっては、前記毛細管に常時印加され
る高電圧による電気浸透流で前記溶媒が流れている。。
<Operation> The above technical means operates as follows. That is, in the track where the sample is injected, the solvent flows by electroosmotic flow due to the high voltage constantly applied to the capillary tube. .

一方、前記リンプルパル1から前記配管内に試料が注入
されると、この試料は前記溶媒にサンドイッチされてバ
ンド状になり、前記溶媒供給手段から供給される液によ
って移動する。
On the other hand, when a sample is injected into the piping from the Rimple Pal 1, the sample is sandwiched by the solvent to form a band shape, and is moved by the liquid supplied from the solvent supply means.

前記毛細管内に導入される試料の吊は、印加電圧が一定
の場合、前記を細管の先学部が前記試料に接する時間に
よって決まる。
When the applied voltage is constant, the suspension of the sample introduced into the capillary is determined by the amount of time the tip of the capillary is in contact with the sample.

本発明では、前記溶媒供給手段から供給される溶候の流
速を変化させることによって、或は前記サンプルバルブ
から注入される試料量を変えることによって、前記毛1
管に導入される試着はを調型しでいる。
In the present invention, the hair 1
The fitting introduced into the tube is shaped.

・て実施例〉 以下図面に従い本発明の詳細な説明する。第1図は本発
明の実施例装置を示す構成図、第2図【J第1図の本発
明実施例装置における部分拡大断面図である。図中、第
4図における要素と実質的ニ同じ要素には同一符号を付
しこれらについての説明は省略する。7は、容器2から
M衝液とミセルとの混合液を配管8を通じ下流側に流フ
低圧ポンプで、溶媒供給手段を構成する。
・Example> The present invention will be described in detail below with reference to the drawings. FIG. 1 is a configuration diagram showing an apparatus according to an embodiment of the present invention, and FIG. 2 is a partially enlarged sectional view of the apparatus according to an embodiment of the present invention shown in FIG. In the figure, elements that are substantially the same as those in FIG. 4 are given the same reference numerals, and explanations thereof will be omitted. 7 is a low-pressure pump that flows the mixed solution of M solution and micelles from the container 2 to the downstream side through a pipe 8, and constitutes a solvent supply means.

Sは配管8の途中に設けられたサンプルバルブで、C方
切換バルブS1、計量ループS2より構成され、バルブ
S1の切換により試料注入D S 3かIう供給された
試料の一定邑を配管8内に′注入する。
S is a sample valve installed in the middle of the pipe 8, and is composed of a C-way switching valve S1 and a measuring loop S2. By switching the valve S1, a fixed amount of the supplied sample is transferred to the pipe 8. inject into the body.

9は配管8の端部に接続されたチ1−ブ状Ti極で高圧
電源Eのプラス側に接続されている。10は配管8とキ
トピラリ−チューブ1とを接続すると跣に、キャげラリ
−チューブ1に導入されなかった溶液をOF出するTタ
イプ接続部である。
Reference numeral 9 is a tube-shaped Ti electrode connected to the end of the pipe 8 and connected to the positive side of the high voltage power source E. Reference numeral 10 denotes a T-type connection part which, when the piping 8 and the chitopillary tube 1 are connected, outputs the solution that has not been introduced into the chitopillary tube 1.

第2図はこれら部分の拡大断面を示す。図中、10 a
 41 Tタイプ接続部の本体、10bは−の開口部に
螺合しデユープ状電極9を本体10aに固定する締付螺
子、10cは他の間口部に螺合しキャピラリーチューブ
1を本体10aに固定する締付螺子、10dは更に他の
間口部に螺合し排液チューブ11を本体10aに固定す
る締付螺子である。尚、キャピラリーチューブ1はその
先端部をチューブ状電極9内に挿入した状態で固定され
ている。
FIG. 2 shows an enlarged cross section of these parts. In the figure, 10a
41 The main body of the T-type connection part, 10b is a tightening screw that is screwed into the - opening to fix the duplex electrode 9 to the main body 10a, and 10c is a tightening screw that is screwed into the other opening to fix the capillary tube 1 to the main body 10a. The tightening screw 10d is a tightening screw that is further screwed into another frontage portion to fix the drain tube 11 to the main body 10a. Note that the capillary tube 1 is fixed with its tip inserted into the tubular electrode 9.

このように構成されIζ装置の動作について、第3図の
説明図に従い説明を行う。本図において、第1図におけ
る要素と同じ要素には同−rθ号が付されている。第3
図(a)は試料が配管8に注入される前の状態を示す。
The operation of the Iζ device configured in this way will be explained with reference to the explanatory diagram of FIG. 3. In this figure, the same elements as those in FIG. 1 are given the same symbol -rθ. Third
Figure (a) shows the state before the sample is injected into the pipe 8.

この状態ぐは、緩衝液とミセルとよりなる溶媒だけが配
管8内を流れており、印加高電圧による電気浸透流でキ
ャピラリーチユごプ1内に形成された流れによって、前
記溶媒がキャピラリーチューブ1内に導入される。尚、
導入されなかった残りの溶媒は排液チューブ11より排
出される。
In this state, only a solvent consisting of a buffer solution and micelles is flowing in the pipe 8, and the solvent is transferred to the capillary tube 1 by the flow formed in the capillary tube 1 by an electroosmotic flow caused by the applied high voltage. be introduced within. still,
The remaining solvent that has not been introduced is discharged from the drain tube 11.

札1ンプルベルブSから試料か配管8内に注入されると
、試料は第3図(b)に示すように溶媒によってサンド
イッチにされ(バンドB)、ポンプ7より供給される溶
媒によって移動する。
When a sample is injected into the pipe 8 from the sample valve S, the sample is sandwiched by the solvent (band B) as shown in FIG. 3(b), and is moved by the solvent supplied from the pump 7.

バンドi3がキャピラリーデユープ1の先端に接すると
、前記溶媒の場合と同様、電気浸透流によってキャピラ
リーチューブ1内に導入される。
When the band i3 comes into contact with the tip of the capillary duplex 1, it is introduced into the capillary tube 1 by electroosmotic flow, as in the case of the solvent.

この場合、キャピラリーチューブ1へ導入される試料の
石は、印加電圧Eが一定のとき、キトビラυ〜チューブ
での先端に試料が接する8、1間に比例する。従って、
この時間がコントロール出来れば、サンプル注入聞の調
整が可能となる。本発明では、試料との接m1時間を変
える為に、ポンプ7の流速を変化させ、或はサンプルバ
ルブSから注入される試料量lを変えてバンドBの幅を
変化させて接触時間を変更するようにしている。
In this case, when the applied voltage E is constant, the size of the sample introduced into the capillary tube 1 is proportional to the distance υ~8,1 where the sample contacts the tip of the tube. Therefore,
If this time can be controlled, the sample injection time can be adjusted. In the present invention, in order to change the contact time m1 with the sample, the flow rate of the pump 7 is changed, or the sample amount l injected from the sample valve S is changed to change the width of the band B, thereby changing the contact time. I try to do that.

このようにして注入された試料は、先に説明したように
可溶化クロマトグラフィーの原理に従い、キャピラリー
チューブ1内において分離され、検出器6により試料の
可溶化率に応じたクロマミルグラムを冑ている。
The sample injected in this way is separated in the capillary tube 1 according to the principle of solubilization chromatography as explained earlier, and the detector 6 collects chroma millograms according to the solubilization rate of the sample. .

で発明の効果〉 水元tlljによれば、前記キャピラリーヂl−1への
試料の注入が自動−C11なえる為、作栗がl!!11
11となり、また、シンプル注入の過程でI!J記キX
・ビラリーチコープを動かすようなことが41いため、
装置の再現性を10うことがない。更に、カラムの分離
能力に合せて最適のリンプル?!−人間が選べる為、カ
ラム効率を低下させることなく分析を?7うことが出来
る。
Effects of the invention> According to Mizumoto Tllj, since the injection of the sample into the capillary L-1 is automatic -C11, the production time is L! ! 11
11, and in the process of simple injection I! J Kiki X
・Because there are 41 things that will move Villa Leech Coop,
The reproducibility of the device will never be compromised. Furthermore, which rimple is best suited to the separation capacity of the column? ! -Analysis without reducing column efficiency because humans can choose? I can do 7 things.

尚、これまでの本発明の説明では、ミセル可溶化クロマ
トグラフィーに本発明を実施した場合について説明を行
ったが、これに限らず、伯の毛細へ・電気体8法に暴く
分析装置にも本発明を何方支障な(実施することが出来
る。
In the explanation of the present invention so far, the present invention has been explained for the case where the present invention is implemented in micelle solubilization chromatography, but the present invention is not limited to this, and can also be applied to an analytical device that exposes the capillary and electric material 8 methods of Haku. The present invention can be practiced in any way.

4、Tf面の[!’i I’な説明 第1図は本発明の実施例装置を示す構成間、第2図は第
1図の本発明実施例装置にJ5りる部分拡大断面刃、第
3図は第1図の本発明実施例装rの動作、悦明図、第4
図り可溶化クロマトグラフィーの原理(シ成図、第5図
は第4図に示す可溶化クロマ:〜グラフィーのE〕作説
明図である。
4. [! 'i I' explanation Figure 1 shows the configuration of the apparatus according to the embodiment of the present invention, Figure 2 shows the partially enlarged section of the blade J5 in the apparatus according to the embodiment of the invention shown in Figure 1, and Figure 3 shows the configuration of the apparatus according to the embodiment of the present invention. Operation of the device according to the embodiment of the present invention, Yue Ming diagram, No. 4
This is an explanatory diagram of the principle of solubilization chromatography (Fig. 5 is a solubilization chromatography shown in Fig. 4: E of the graph).

1・・・毛tlA管、2.3・・・溶媒容器、6・・・
検出器、7・・・1;ンブ、8・・・配管、9・・・チ
ューブ状電極、10・・・Tタイプ接続部、11・・・
排液デユープ、「・・・高圧電源、S・・・サンプルバ
ルブM3図 篤4図 第5図
1... capillary tlA tube, 2.3... solvent container, 6...
Detector, 7...1; tube, 8...piping, 9...tubular electrode, 10...T type connection part, 11...
Drainage duplex, ``...High voltage power supply, S...Sample valve M3 Figure Atsushi 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 毛細管電気泳動法を利用した分析装置用のサンプル注入
装置であって、前記毛細管の上流側より緩衝液等の溶媒
を供給する手段と、前記毛細管に接続された配管に一定
量の試料を注入するサンプルバルブと、前記配管と前記
毛細管とを接続すると共に前記毛細管に導入されなかっ
た溶液を排出するTタイプ接続部とを具備し、前記サン
プルバルブより注入された試料を前記溶媒でサンドイッ
チした状態で、前記Tタイプ接続部へ移送し前記毛細管
の両端に印加された高電圧によって形成された流れによ
って前記試料を前記毛細管内に導入すると共に、前記溶
媒供給手段がらの前記溶媒の流速を変え、或は前記サン
プルバルブから前記配管内に注入される試料量を変える
ことによって前記毛細管へ導入される試料量を変更可能
としたことを特徴とするサンプル注入装置。
A sample injection device for an analyzer using capillary electrophoresis, which includes a means for supplying a solvent such as a buffer from the upstream side of the capillary tube, and a fixed amount of sample injected into a pipe connected to the capillary tube. The sample valve includes a sample valve and a T-type connection part that connects the piping and the capillary tube and discharges a solution that has not been introduced into the capillary tube, and the sample injected from the sample valve is sandwiched with the solvent. , introducing the sample into the capillary tube by means of a flow created by a high voltage transferred to the T-type connection and applied across the capillary tube, and varying the flow rate of the solvent from the solvent supply means; The sample injection device is characterized in that the amount of sample introduced into the capillary tube can be changed by changing the amount of sample injected from the sample valve into the piping.
JP60213337A 1985-09-26 1985-09-26 Sample injecting device Granted JPS6271838A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60213337A JPS6271838A (en) 1985-09-26 1985-09-26 Sample injecting device
US06/906,146 US4676897A (en) 1985-09-26 1986-09-11 Solubilization chromatography
GB8622753A GB2181072B (en) 1985-09-26 1986-09-22 Solubilization chromatography
NL8602393A NL8602393A (en) 1985-09-26 1986-09-22 SOLUBILIZATION CHROMATOGRAPH.
DE19863632226 DE3632226A1 (en) 1985-09-26 1986-09-23 Solubilisation chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60213337A JPS6271838A (en) 1985-09-26 1985-09-26 Sample injecting device

Publications (2)

Publication Number Publication Date
JPS6271838A true JPS6271838A (en) 1987-04-02
JPH0323861B2 JPH0323861B2 (en) 1991-03-29

Family

ID=16637481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60213337A Granted JPS6271838A (en) 1985-09-26 1985-09-26 Sample injecting device

Country Status (1)

Country Link
JP (1) JPS6271838A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283643A (en) * 1985-10-09 1987-04-17 Yokogawa Electric Corp Sample injection apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283643A (en) * 1985-10-09 1987-04-17 Yokogawa Electric Corp Sample injection apparatus
JPH0346065B2 (en) * 1985-10-09 1991-07-15 Yokogawa Electric Corp

Also Published As

Publication number Publication date
JPH0323861B2 (en) 1991-03-29

Similar Documents

Publication Publication Date Title
US4676897A (en) Solubilization chromatography
US4662208A (en) Apparatus for the drawing off of untreated and treated dialyzing liquid and/or blood from a dialysis device
US20010044155A1 (en) Sample injector for high pressure liquid chromatography
US5141621A (en) Capillary electrophoresis injection device and method
JP4527619B2 (en) Preconcentration interface for connecting liquid chromatography to capillary electrophoresis
Zhang et al. Separation of peptides by pressurized capillary electrochromatography
JPS6271838A (en) Sample injecting device
JPS63305233A (en) Splitting type flow cell
Kekwick et al. A new type of preparative electrophoresis cell
JPS6291851A (en) Sample injecting device
JPH0346065B2 (en)
JP4233751B2 (en) Capillary electrophoresis device
Hochstrasser et al. An improved column for preparative electrophoresis
JPH0521500B2 (en)
JPH0515094Y2 (en)
JPH0323862B2 (en)
Bowerbank et al. Comprehensive isotachophoresis–capillary zone electrophoresis using directly inserted columns having different diameters with a periodic counterflow and dual ultraviolet detectors
JPH03118463A (en) Electrophoresis apparatus
JPS56119842A (en) Sample leading-in device of electrophoretic device
JP2002014084A (en) Liquid chromatograph
JPH06766Y2 (en) Electrokinetic chromatograph
JPS5839405Y2 (en) Capillary type isotachophoresis analyzer
JPH02269952A (en) Sample injection device
JPH1183823A (en) Simple injecting method for liquid chromatography
JPH0599899A (en) Method for separately purifying bio-substance