JP4403638B2 - Liquid chromatograph - Google Patents

Liquid chromatograph Download PDF

Info

Publication number
JP4403638B2
JP4403638B2 JP2000197500A JP2000197500A JP4403638B2 JP 4403638 B2 JP4403638 B2 JP 4403638B2 JP 2000197500 A JP2000197500 A JP 2000197500A JP 2000197500 A JP2000197500 A JP 2000197500A JP 4403638 B2 JP4403638 B2 JP 4403638B2
Authority
JP
Japan
Prior art keywords
mobile phase
liquid
sample
sample injection
liquids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000197500A
Other languages
Japanese (ja)
Other versions
JP2002014084A (en
Inventor
光夫 北岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2000197500A priority Critical patent/JP4403638B2/en
Publication of JP2002014084A publication Critical patent/JP2002014084A/en
Application granted granted Critical
Publication of JP4403638B2 publication Critical patent/JP4403638B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、グラジエント溶離を行う液体クロマトグラフに関する。
【0002】
【従来の技術】
グラジエント溶離は、液体クロマトグラフにおける移動相液体を2種以上用い、その混合割合を時間と共に変化させながら分析する手法である。
図2は、2液の混合割合を横軸を時間軸として表した図(グラジエントプロファイル)の一例である。この例では、移動相液体としてA、Bの2液を用い、分析開始時はA液90%、B液10%の混合比であるが、開始後時間Toが経過した後はB液の割合が次第に増加し、分析終期にはB液100%となるものである。
このように2液の混合比を制御するには、各移動相液体の流路をそれぞれバルブを介して送液ポンプの吸入側で合流させ、これらのバルブを小刻みに開閉する開と閉との時間比率(開度)を制御することで所定の混合比を得る。
以上は低圧グラジエントと呼ばれる方法であるが、この他に送液ポンプの吐出側で各移動相液体を混合する高圧グラジエントもあるが本質的な違いはない。
【0003】
【発明が解決しようとする課題】
従来の液体クロマトグラフにおけるグラジエント溶離分析では、通常、グラジエントプログラムのスタートと同時に試料が注入される。一般に、液体クロマトグラフ装置は、2液の合流点(ミキシング点)から試料を注入する点(注入点)までの移動相液体流路に内容積があり、しかも各部の配置や内部構造が装置ごとに異なるために、内容積の値は個々に異なる。このため、試料がカラムに入ってから移動相液体の組成が変化し始めるまでに時間差があり、しかもその時間差は装置によって異なる。この結果、ある装置で設定した分析条件をそのまま他の装置に適用した場合、同じ分析結果が得られるとは限らない。
【0004】
本発明は、このような事情に鑑みてなされたものであり、上記のような装置間で分析結果に差を生じる問題を解消し、同じ分析条件を普遍的に他の装置に適用可能なグラジエント溶離分析用の液体クロマトグラフを提供することを目的とする。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明の液体クロマトグラフでは、複数の移動相液体が合流するミキシング点から試料注入点までの移動相液体流路の内容積の値(またはこれに関係する値)を記憶しておき、この値から移動相液体の組成が試料注入点で変化し始めるまでの時間を計算し、その結果に基づいて試料注入のタイミングを定めるようにした。
これにより、ある装置に設定した分析条件を他の装置にそのまま適用することが可能になる。
【0006】
【発明の実施の形態】
本発明の一実施形態を図1に示す。
図は、2液低圧グラジエント溶離分析システムの例であって、1a、1bはそれぞれ移動相液体A、Bの容器(リザーバ)、2は移動相液体に溶存するガスを除くための脱気装置で、ここでは2チャンネル形を用い、各チャンネルをそれぞれA、B液の脱気に用いている。3a、3bは開度をコントロールすることで両液の混合比を制御するバルブであり、両液の流路はこのバルブの出口側の点M(ミキシング点)で合流し、この点以降はA、B両液は所定比率で混合された移動相液体として流れる。4は、液体クロマトグラフ装置の心臓ともいうべき送液ポンプで、上記の移動相液体を所定の流量で、図中に矢印で示す方向に相液するものである。5は試料注入部であって、インジェクタバルブ等により自動的に試料を移動相液体の流れの中に注入する。注入された試料は、移動相液体の流れに乗ってカラム6を通過する間に分離され、検出器7で分析結果を表す信号として取り出される。検出器7を通過した液体は廃液溜め8に排出される。9は、カラム6を分析所定の温度に保つための恒温槽であり、これらを統括的に制御するのがコンピュータを内蔵するコントローラ10である。図中の点線は、このコントローラ10から各部を制御する信号を示す。
【0007】
このような構成の液体クロマトグラフで、例えば図2に示すグラジエントプロファイルに従って送液する場合、コントローラ10によりバルブ3a、3bの開度を制御して、プログラムをスタートしてから時間To経過後からB液濃度が増加し始め(移動相組成変化開始)、以後、一定の速度でB液濃度が増加するようにする。ミキシング点Mで移動相液体組成を観測したとすると、ほぼ同図実線で示すパターン、即ちグラジエントプロファイルと同じになる。同図中の移動相組成変化点cは移動相液体の流速と同じ早さで移動相液体流路内を移動して行く。従って、下流の注入点Sで同じように移動相液体組成を観測したとすると、少し遅れて点線で示すようなパターンを描くことになるはずであり、注入点Sでは、プログラムをスタートしてから時間Ts経過後から移動相組成変化が始まる。このタイミングTsで試料を注入すれば、丁度移動相組成変化点に試料が注入され、カラム6先端で移動相組成が変化し始めるのと同時に試料の分離が始まる。このようなタイミングで試料を注入するように制御することが本発明実施上の一つの条件となる。
【0008】
ここで、ミキシング点Mから注入点Sまでの移動相液体流路の内容積をV、移動相液体の流量(流速)をFとすると、
V=F×(Ts−To) …………………(1)
が成り立つ。さらにこの式を変形すると、
Ts=V/F+To …………………(2)
が得られる。
式(1)から内容積を算出する場合、移動相液体流量Fとプログラム上で移動相組成が変化し始めるタイミングToは分析条件の設定値から容易に得られるが、注入点Sにおける移動相組成変化開始タイミングTs(これは前述のように、試料注入のタイミングともなる)は実測する必要がある。Tsを実測するには様々な方法が考えられるが、最も簡単な方法は、図1において、検出器7を一時的に試料注入部5の位置に接続し注入点Sでの移動相組成を観測できるようにして、移動相組成変化点が現れる時間を測定することである。この場合、検出器7の内容積による若干の誤差が生じる恐れがあるが、これは適宜補正することも可能である。この測定は、装置を改造したり構成を変えない限り、最初に1度行うだけでよい。こうして実測したTsの値を用いて式(1)から内容積Vを求めて、これをこの装置に固有の値としてコントローラ10のメモリーに記憶しておく。
【0009】
分析条件を変えるときは、新たなF、Toの値を式(2)に適用して、コントローラ10に内蔵するコンピュータ(図示せず)により適正な試料注入のタイミングTsの値を算出し、コントローラ10はこの新たに算出したTsのタイミングで試料を注入するように試料注入部5を制御する。こうすることにより、分析条件が変わっても、試料は常に移動相組成変化点と共にカラムに入ることになり、カラム6内では移動相組成変化と試料の分離が同時に開始されるという条件が維持される。
【0010】
別の液体クロマトグラフについても、上記と同様に、それぞれの装置のミキシング点から注入点までの移動相液体流路の内容積Vの値を各装置固有の値としてそれぞれのコントローラ内に記憶しておき、この値を用いて試料注入のタイミングTsを定めるようにすれば、常に移動相組成変化点と同時に試料がカラムに入ることになり、同じ分析条件を別の装置(本発明を適用した装置)に適用した場合でも装置間で分析結果に差を生じることが無くなる。
【0011】
式(1)または(2)からわかるように、分析条件を変えた場合の変数は、移動相液体流量Fとプログラム上で移動相組成が変化し始めるタイミングToのみであるから、To以降のプロファイルがどのような形であろうと、例えば階段状に変化する複雑なパターンを持つ場合であっても、本発明を適用するに際して何等影響はない。
【0012】
上記説明では移動相組成変化点に試料を注入することを条件としたが、原理的には必ずしも丁度移動相組成変化点に試料を注入することは必要でなく、その前後に少しずれても実際上の問題はない。要は、移動相組成変化点に対して一定の時間関係を保って試料を注入すればよいのであるが、多数の装置間で条件を揃えるためには、丁度移動相組成変化点に試料を注入するように定めておくのが最も簡単であり、妥当であると言える。
【0013】
上記は内容積の値をそのまま各装置に記憶するものとしたが、各装置の内容積の値を標準的な装置の内容積の値で除した係数を記憶するようにしてもよく、また、その他の内容積に関係する数値を記憶しておいてもよい。
以上、2液低圧グラジエントの場合を例示して説明したが、本発明は高圧グラジエントの場合や3液以上のグラジエント送液にも適用可能である。
【0014】
【発明の効果】
以上詳述したように、本発明によれば、液体クロマトグラフ装置の機種等の差によらず、同じ分析条件下であれば同じ分離パターンが得られるようになり、分析条件に普遍性を持たせることが可能になる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す図である。
【図2】グラジエントプロファイルの一例を示す図である。
【符号の説明】
1a、1b…移動相液体容器
2…脱気装置
3a、3b…バルブ
4…送液ポンプ
5…試料注入部
6…カラム
7…検出器
8…廃液溜め
9…恒温槽
10…コントローラ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid chromatograph that performs gradient elution.
[0002]
[Prior art]
Gradient elution is a technique in which two or more mobile phase liquids in a liquid chromatograph are used and the mixing ratio is changed with time.
FIG. 2 is an example of a diagram (gradient profile) showing the mixing ratio of the two liquids with the horizontal axis as the time axis. In this example, two liquids A and B are used as mobile phase liquids, and the mixing ratio of liquid A is 90% and liquid B is 10% at the start of analysis, but the ratio of liquid B after time To has elapsed after the start. Gradually increases, and at the end of the analysis, the solution B reaches 100%.
In order to control the mixing ratio of the two liquids in this way, the flow paths of the respective mobile phase liquids are merged on the suction side of the liquid feed pump via the respective valves, and these valves are opened and closed in small increments. A predetermined mixing ratio is obtained by controlling the time ratio (opening degree).
The above is a method called a low-pressure gradient. In addition, there is a high-pressure gradient in which each mobile phase liquid is mixed on the discharge side of the liquid feed pump, but there is no essential difference.
[0003]
[Problems to be solved by the invention]
In gradient elution analysis in a conventional liquid chromatograph, a sample is usually injected simultaneously with the start of the gradient program. In general, the liquid chromatograph has an internal volume in the mobile phase liquid flow path from the confluence of two liquids (mixing point) to the point of injection of the sample (injection point), and the arrangement and internal structure of each part is the same for each device. Therefore, the value of the internal volume is individually different. For this reason, there is a time difference from when the sample enters the column to when the composition of the mobile phase liquid starts to change, and the time difference varies depending on the apparatus. As a result, when the analysis conditions set by a certain apparatus are applied to other apparatuses as they are, the same analysis result is not always obtained.
[0004]
The present invention has been made in view of such circumstances, and has solved the problem of causing a difference in analysis results between the above-described apparatuses, and is capable of applying the same analysis conditions to other apparatuses universally. An object is to provide a liquid chromatograph for elution analysis.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, in the liquid chromatograph of the present invention, the value of the internal volume of the mobile phase liquid channel from the mixing point where a plurality of mobile phase liquids merge to the sample injection point (or a value related thereto) From this value, the time until the composition of the mobile phase liquid starts to change at the sample injection point is calculated, and the sample injection timing is determined based on the result.
This makes it possible to apply the analysis conditions set for a certain apparatus to other apparatuses as they are.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
One embodiment of the present invention is shown in FIG.
The figure shows an example of a two-liquid low-pressure gradient elution analysis system, wherein 1a and 1b are containers (reservoirs) for mobile phase liquids A and B, respectively, and 2 is a degassing device for removing gas dissolved in the mobile phase liquid. Here, a two-channel type is used, and each channel is used for degassing A and B liquids, respectively. Reference numerals 3a and 3b are valves for controlling the mixing ratio of the two liquids by controlling the opening degree. The flow paths of the two liquids merge at a point M (mixing point) on the outlet side of the valve. , B flows as a mobile phase liquid mixed at a predetermined ratio. Reference numeral 4 denotes a liquid feed pump that can also be referred to as the heart of a liquid chromatograph device, which phase-phases the mobile phase liquid at a predetermined flow rate in the direction indicated by the arrow in the figure. A sample injection unit 5 automatically injects a sample into the flow of the mobile phase liquid by an injector valve or the like. The injected sample is separated while passing through the column 6 on the flow of the mobile phase liquid, and is taken out as a signal representing the analysis result by the detector 7. The liquid that has passed through the detector 7 is discharged to the waste liquid reservoir 8. Reference numeral 9 denotes a constant temperature bath for keeping the column 6 at a predetermined analysis temperature, and a controller 10 incorporating a computer controls these in an integrated manner. A dotted line in the figure indicates a signal for controlling each part from the controller 10.
[0007]
In the liquid chromatograph having such a configuration, for example, when liquid is fed according to the gradient profile shown in FIG. 2, the controller 10 controls the opening degree of the valves 3a and 3b, and after the time To has elapsed since the program started, B The liquid concentration begins to increase (start of mobile phase composition change), and thereafter, the concentration of liquid B is increased at a constant rate. If the mobile phase liquid composition is observed at the mixing point M, the pattern shown by the solid line in FIG. The mobile phase composition change point c in the figure moves in the mobile phase liquid flow path at the same speed as the flow velocity of the mobile phase liquid. Therefore, if the mobile phase liquid composition is observed in the same way at the downstream injection point S, a pattern as shown by the dotted line should be drawn with a slight delay. At the injection point S, the program is started. The mobile phase composition change starts after the elapse of time Ts. If the sample is injected at this timing Ts, the sample is injected just at the mobile phase composition change point, and the separation of the sample starts at the same time as the mobile phase composition starts to change at the tip of the column 6. It is one condition in the practice of the present invention to control to inject the sample at such timing.
[0008]
Here, when the internal volume of the mobile phase liquid flow path from the mixing point M to the injection point S is V, and the flow rate (flow velocity) of the mobile phase liquid is F,
V = F × (Ts−To) ……………… (1)
Holds. Further transforming this equation,
Ts = V / F + To ……………… (2)
Is obtained.
When calculating the internal volume from the equation (1), the mobile phase liquid flow rate F and the timing To at which the mobile phase composition starts to change on the program can be easily obtained from the set values of the analysis conditions. The change start timing Ts (which is also the sample injection timing as described above) needs to be actually measured. Various methods are conceivable for actually measuring Ts. In FIG. 1, the simplest method is to temporarily connect the detector 7 to the position of the sample injection part 5 and observe the mobile phase composition at the injection point S. It is possible to measure the time when the mobile phase composition change point appears. In this case, a slight error may occur due to the internal volume of the detector 7, but this can be corrected as appropriate. This measurement only needs to be done once at the beginning unless the device is modified or reconfigured. Using the value of Ts actually measured in this way, the internal volume V is obtained from the equation (1), and this is stored in the memory of the controller 10 as a value unique to this apparatus.
[0009]
When changing the analysis conditions, new F and To values are applied to the equation (2), and a proper sample injection timing Ts value is calculated by a computer (not shown) built in the controller 10. 10 controls the sample injection unit 5 so as to inject the sample at the newly calculated timing Ts. By doing so, the sample always enters the column together with the mobile phase composition change point even if the analysis conditions change, and the condition that the mobile phase composition change and the separation of the sample are started simultaneously in the column 6 is maintained. The
[0010]
For other liquid chromatographs, the value of the internal volume V of the mobile phase liquid channel from the mixing point to the injection point of each device is stored in each controller as a value unique to each device in the same manner as described above. If this value is used to determine the sample injection timing Ts, the sample always enters the column at the same time as the mobile phase composition change point, and the same analysis condition is applied to another apparatus (an apparatus to which the present invention is applied). ), There is no difference in analysis results between apparatuses.
[0011]
As can be seen from the equation (1) or (2), the variables when the analysis conditions are changed are only the mobile phase liquid flow rate F and the timing To at which the mobile phase composition starts changing on the program. Whatever form is, for example, even if it has a complicated pattern that changes stepwise, there is no influence in applying the present invention.
[0012]
In the above description, it is assumed that the sample is injected at the mobile phase composition change point. However, in principle, it is not always necessary to inject the sample at the mobile phase composition change point. There is no problem above. In short, it is only necessary to inject the sample while maintaining a fixed time relationship with respect to the mobile phase composition change point, but in order to make the conditions uniform among many devices, the sample is injected just at the mobile phase composition change point. It can be said that it is the simplest and reasonable to set it as such.
[0013]
In the above, the value of the internal volume is stored as it is in each device, but a coefficient obtained by dividing the value of the internal volume of each device by the value of the internal volume of a standard device may be stored. Other numerical values related to the internal volume may be stored.
As described above, the case of the two-liquid low-pressure gradient has been described as an example. However, the present invention can also be applied to the case of a high-pressure gradient or a gradient liquid supply of three or more liquids.
[0014]
【The invention's effect】
As described above in detail, according to the present invention, the same separation pattern can be obtained under the same analysis conditions regardless of the model of the liquid chromatograph apparatus, and the analysis conditions have universality. It becomes possible to make it.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of the present invention.
FIG. 2 is a diagram showing an example of a gradient profile.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1a, 1b ... Mobile phase liquid container 2 ... Deaerator 3a, 3b ... Valve 4 ... Liquid feed pump 5 ... Sample injection part 6 ... Column 7 ... Detector 8 ... Waste liquid reservoir 9 ... Constant temperature bath 10 ... Controller

Claims (1)

カラムと、2液以上の移動相液体の組成を所定のプログラムに従って変化させながら送液するグラジエント送液機構と、この移動相液体流中に試料を注入する試料注入機構と、これらを制御するコントローラを備えた液体クロマトグラフにおいて、前記コントローラに、前記2液以上の移動相液体の合流点から前記試料注入機構に至る移動相液体流路の内容積に係わる数値を記憶させ、この数値に基づいて前記コントローラは、前記移動相液体の組成の変化点と前記試料が同時に前記カラムに到達するように、または、前記移動相液体の組成の変化点から予め設定した時間が経過した時点に前記カラムに到達するように前記試料注入機構における試料注入のタイミングを制御することを特徴とする液体クロマトグラフ。 A column, a gradient liquid feeding mechanism for feeding a liquid while changing the composition of two or more mobile phase liquids according to a predetermined program, a sample injection mechanism for injecting a sample into the mobile phase liquid flow, and a controller for controlling them In the liquid chromatograph, the controller stores a numerical value related to the internal volume of the mobile phase liquid flow path from the confluence of the two or more mobile phase liquids to the sample injection mechanism, and based on this numerical value The controller is arranged so that the change point of the composition of the mobile phase liquid and the sample reach the column at the same time, or when a preset time has elapsed from the change point of the composition of the mobile phase liquid. A liquid chromatograph , wherein the timing of sample injection in the sample injection mechanism is controlled so as to arrive .
JP2000197500A 2000-06-30 2000-06-30 Liquid chromatograph Expired - Lifetime JP4403638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000197500A JP4403638B2 (en) 2000-06-30 2000-06-30 Liquid chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000197500A JP4403638B2 (en) 2000-06-30 2000-06-30 Liquid chromatograph

Publications (2)

Publication Number Publication Date
JP2002014084A JP2002014084A (en) 2002-01-18
JP4403638B2 true JP4403638B2 (en) 2010-01-27

Family

ID=18695824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000197500A Expired - Lifetime JP4403638B2 (en) 2000-06-30 2000-06-30 Liquid chromatograph

Country Status (1)

Country Link
JP (1) JP4403638B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139147A (en) * 2006-12-01 2008-06-19 Hitachi High-Technologies Corp Liquid chromatograph system
JP5737168B2 (en) * 2011-12-19 2015-06-17 株式会社島津製作所 Liquid chromatograph and its control program
JP5838866B2 (en) * 2012-03-08 2016-01-06 株式会社島津製作所 Liquid feeding mechanism and liquid chromatograph
WO2015104976A1 (en) * 2014-01-09 2015-07-16 株式会社日立ハイテクノロジーズ Liquid-mixing device and liquid chromatography device
JPWO2020105661A1 (en) * 2018-11-20 2021-09-30 株式会社日立ハイテク An analyzer with multiple chromatographs and its control method

Also Published As

Publication number Publication date
JP2002014084A (en) 2002-01-18

Similar Documents

Publication Publication Date Title
US20210123891A1 (en) Solvent delivery system for liquid chromatography that maintains fluid integrity and pre-forms gradients
JP4716998B2 (en) Flow rate control
US8794052B2 (en) Liquid chromatograph
US7670480B2 (en) Solvent supply with correction of piston movement
US7921696B2 (en) Liquid chromatograph device
US7278329B2 (en) Chromatography system with blockage determination
JP4645437B2 (en) Gradient liquid feeder
JP4453589B2 (en) Mobile phase supply device and liquid chromatograph using the mobile phase supply device
EP1707958A1 (en) Device and method for solvent supply with correction of piston movement
US10005006B2 (en) Method for adjusting a gradient delay volume
JPWO2018146826A1 (en) Supercritical fluid device
JP2008139147A (en) Liquid chromatograph system
JP2005140659A (en) Gradient liquid feed device
JP4403638B2 (en) Liquid chromatograph
JP3180391B2 (en) Liquid chromatograph
JP4077674B2 (en) Gradient liquid feeding device and liquid feeding method for nano / micro liquid chromatograph
KR101821686B1 (en) Apparatus to inject sample gas of fixed quantity into gas chromatograph
JPH05256834A (en) Liquid chromatograph
AU770513B2 (en) Device and method for treating a sample by overpressured layer chromatography a stationary phase, under controlled forced flow
JP4992353B2 (en) Sample injection method and liquid chromatograph in liquid chromatograph
JP2002071657A (en) Device and method for gradient liquid chromatogram measurement
JP2003014719A (en) Liquid chromatograph
JP7011921B2 (en) Liquid feeding method
JP2001208737A (en) Gas chromatograph device
CN112672799B (en) Two-dimensional fluid separation with push-pull modulation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4403638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

EXPY Cancellation because of completion of term