JPH06766Y2 - Electrokinetic chromatograph - Google Patents

Electrokinetic chromatograph

Info

Publication number
JPH06766Y2
JPH06766Y2 JP5558787U JP5558787U JPH06766Y2 JP H06766 Y2 JPH06766 Y2 JP H06766Y2 JP 5558787 U JP5558787 U JP 5558787U JP 5558787 U JP5558787 U JP 5558787U JP H06766 Y2 JPH06766 Y2 JP H06766Y2
Authority
JP
Japan
Prior art keywords
solvent
sample
capillary tube
connection port
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5558787U
Other languages
Japanese (ja)
Other versions
JPS63161355U (en
Inventor
秀一 久世
嘉則 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP5558787U priority Critical patent/JPH06766Y2/en
Publication of JPS63161355U publication Critical patent/JPS63161355U/ja
Application granted granted Critical
Publication of JPH06766Y2 publication Critical patent/JPH06766Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

【考案の詳細な説明】 〈産業上の利用分野〉 本考案は溶媒の消費量を少なくした界面動電クロマトグ
ラフに関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to an electrokinetic chromatograph with reduced solvent consumption.

〈従来の技術〉 第2図は界面動電クロマトグラフの原理を示す構成図で
ある。1はカラムを構成する毛細管で、例えば溶融シリ
カキャピラリーチューブが用いられる。2,3は緩衝液
とイオン性ミセルとの混合液(溶媒)が入れられた溶媒
容器で、これら容器にキャピラリーチューブ1の両端が
挿入されている。ミセルには、例えばドデシル硫酸ナト
リウム(SDS)を緩衝液に溶解させて形成したイオン
性ミセルが用いられる。Eは高圧電源で、正側は容器2
に浸漬された電極4に、負側は容器3に浸漬された電極
5に接続され、キャピラリーチューブ1の両端に電圧を
印加する。キャピラリーチューブ1の負側の電極5に近
い部分には、例えば紫外線分光光度計の如き検出器6が
設けられている。7は試料が入れられた試料ビンであ
る。
<Prior Art> FIG. 2 is a block diagram showing the principle of an electrokinetic chromatograph. Reference numeral 1 is a capillary constituting a column, and for example, a fused silica capillary tube is used. Reference numerals 2 and 3 denote solvent containers in which a mixed solution (solvent) of a buffer solution and ionic micelles is placed, and both ends of the capillary tube 1 are inserted into these containers. As the micelle, for example, an ionic micelle formed by dissolving sodium dodecyl sulfate (SDS) in a buffer solution is used. E is a high-voltage power supply, and the positive side is container 2
The negative electrode is connected to the electrode 4 which is immersed in the container 3, and the negative side is connected to the electrode 5 which is immersed in the container 3, and a voltage is applied to both ends of the capillary tube 1. A detector 6 such as an ultraviolet spectrophotometer is provided near the negative electrode 5 of the capillary tube 1. 7 is a sample bottle containing a sample.

このような構成で、試料の採取は、キャピラリーチュー
ブ1を容器2から試料ビン7に移し変え、試料ビン7の
液面を容器2の液面より高く保ち、ヘッド圧Hにより行
う。
With such a configuration, the sample is collected by moving the capillary tube 1 from the container 2 to the sample bottle 7, keeping the liquid level of the sample bottle 7 higher than the liquid level of the container 2, and using the head pressure H.

キャピラリーチューブ1内にはミセルと緩衝液の2相が
流れており、高電圧を印加すると、第3図に示すよう
に、緩衝液は電気浸透流によって矢印A方向に流れる。
一方溶解したSDS(ミセル)は陰イオンであり、電気
泳動によって緩衝液の流れと逆の正極側に移動しようと
するが、前記緩衝液の移動速度(電気浸透流)の方が大
きいので、結局前記緩衝液より遅れて容器3に達する。
Two phases, a micelle and a buffer solution, flow in the capillary tube 1. When a high voltage is applied, the buffer solution flows in the direction of arrow A by an electroosmotic flow as shown in FIG.
On the other hand, dissolved SDS (micelle) is an anion and tries to move to the positive electrode side opposite to the flow of the buffer solution by electrophoresis, but since the moving speed of the buffer solution (electroosmotic flow) is higher, It reaches the container 3 later than the buffer solution.

このようなキャピラリーチューブ1に試料SMが導かれ
ると、ミセルに全く溶解しない試料成分は前記緩衝液と
共に電気浸透流に乗って最も速く負側電極5に移動す
る。一方、ミセルに完全に溶解する試料成分はミセルと
同じ速度で移動して、最も遅く容器3側に達する。ま
た、前記ミセルにある程度溶解する中間の試料成分は中
程度の速度で移動する。この結果、キャピラリーチュー
ブ1を移動する試料成分は可溶化率の違いに応じた保持
時間を持つことになり、分離された試料成分をキャピラ
リーチューブ1の出口側に設けられた検出器6で検出す
れば、試料成分の可溶化率に応じたクロマトグラムが得
られる。
When the sample SM is introduced into such a capillary tube 1, the sample components that are not dissolved in the micelles move to the negative electrode 5 fastest along with the buffer solution along with the electroosmotic flow. On the other hand, the sample component completely dissolved in the micelle moves at the same speed as the micelle and reaches the container 3 side at the latest. In addition, the intermediate sample components that dissolve to some extent in the micelles move at a medium speed. As a result, the sample component moving in the capillary tube 1 has a retention time according to the difference in solubilization rate, and the separated sample component is detected by the detector 6 provided on the outlet side of the capillary tube 1. For example, a chromatogram corresponding to the solubilization rate of sample components can be obtained.

ところで、このような装置では、高電圧印加の際、電気
分解により電極部分に酸素ガスが発生する。このガスが
キャピラリーチューブ1内に混入すると、チューブ内の
電流がとぎれ、測定誤差を引起こす。この問題を解決す
る為、本願出願人は特願昭60−232876号によ
り、このようなガスがキャピラリーチューブ内に混入し
ないようにした装置を提案した。第4図はこのような従
来装置を示す構成図である。図中、第2図における要素
と実質的に同じ要素には同一符号が付されている。8は
泡抜き、Sは配管9の途中に設けられたサンプルバルブ
で6方切換バルブS、及び計量ループSとより構成
され、バルブSの切換により試料注入口Sから供給
される試料を計量し配管9内に注入する。10は三方継
手で、バルブS1に接続される第1の接続口と、この接
続口に対向して設けられ、排出管を兼ねた電極11に接
続される第2の接続口と、これら第1、第2の接続口を
結ぶ管路に直交して設けられ、キャピラリーチューブ1
に接続される第3の接続口とを有する。12はキャピラ
リーチューブ1の両端への高圧電源Eの印加を制御する
スイッチである。
By the way, in such a device, when a high voltage is applied, oxygen gas is generated in the electrode portion by electrolysis. If this gas mixes into the capillary tube 1, the current in the tube is interrupted, causing a measurement error. In order to solve this problem, the applicant of the present application has proposed, in Japanese Patent Application No. 60-232876, an apparatus for preventing such a gas from being mixed into the capillary tube. FIG. 4 is a block diagram showing such a conventional device. In the figure, the elements substantially the same as the elements in FIG. 2 are denoted by the same reference numerals. Reference numeral 8 is a bubble remover, S is a sample valve provided in the middle of the pipe 9, and is composed of a 6-way switching valve S 1 and a metering loop S 2, and is supplied from a sample injection port S 3 by switching the valve S 1. The sample is weighed and injected into the pipe 9. Reference numeral 10 denotes a three-way joint, which includes a first connection port connected to the valve S1 and a second connection port which is provided so as to face the connection port and is connected to the electrode 11 also serving as a discharge pipe. , The capillary tube 1 is provided orthogonally to the conduit connecting the second connection ports.
And a third connection port connected to. A switch 12 controls the application of the high voltage power supply E to both ends of the capillary tube 1.

先ず、ヘッド圧H′により溶媒が流されている状態(実
線の状態)からサンプルバルブSを点線の状態に切換え
ると、計量ループS内の試料が溶媒によって配管9内
に圧送される。この試料は溶媒にサンドイッチされた形
で三方継手10部分を通過する。三方継手10において
キャピラリーチューブ1の先端口が試料に接触している
時間に比例した量の試料がキャピラリーチューブ1内に
分割注入される。ついでスイッチ12をONにし、キャ
ピラリーチューブ1内において界面動電クロマトグラフ
ィーの原理に従った試料成分の分離を行う。
First, when the sample valve S is switched to the dotted line state from the state (solid line state) in which the solvent is being flown by the head pressure H ′, the sample in the measuring loop S 2 is pumped into the pipe 9 by the solvent. The sample is passed through the three-way joint part 10 in a solvent sandwiched form. In the three-way joint 10, a sample in an amount proportional to the time during which the tip end of the capillary tube 1 is in contact with the sample is dividedly injected into the capillary tube 1. Then, the switch 12 is turned on to separate the sample components in the capillary tube 1 according to the principle of electrokinetic chromatography.

分析の過程で電気分解によって電極11部分に酸素ガス
が発生するが、この部分はキャピラリーチューブ1より
下流側にあり、また溶媒が連続して流されているため、
酸素ガスは溶媒によって装置外に排出される。
Oxygen gas is generated in the electrode 11 part by electrolysis in the process of analysis, but this part is on the downstream side of the capillary tube 1 and the solvent is continuously flown,
Oxygen gas is discharged outside the device by the solvent.

しかし、このような装置の場合、酸素ガスの混入を防ぐ
ため分析中溶媒を排出し続ける必要があり、分析時にお
いて溶媒が無駄に消費される欠点があった。
However, in the case of such an apparatus, it is necessary to continue discharging the solvent during the analysis in order to prevent the mixing of oxygen gas, and there is a disadvantage that the solvent is wasted during the analysis.

〈考案が解決しようとする問題点〉 本考案において解決しようとする技術的課題は、分析
時、溶媒を流し続けて、電気分解によって発生した酸素
ガスが前記キャピラリーチューブ内に混入しないように
した界面動電クロマトグラフにおいて、分析時の溶媒の
無駄な消費を少なくすることにある。
<Problems to be Solved by the Invention> The technical problem to be solved in the present invention is an interface in which a solvent is kept flowing during analysis to prevent oxygen gas generated by electrolysis from mixing into the capillary tube. In electrokinetic chromatography, it is intended to reduce wasteful consumption of solvent during analysis.

〈問題点を解決するための手段〉 本考案の構成は、 溶媒供給手段と、 試料供給手段と、 前記溶媒供給手段から供給される溶媒と前記試料供給手
段から供給される試料とを切換え、前記試料を前記溶媒
でサンドイッチされた形で流すバルブと、 カラムを構成するキャピラリーチューブ(1)と、 前記バルブに接続される第1の接続口と、この接続口に
対向して設けられ、排出管を兼ねた電極(11)に接続
される第2の接続口と、これら第1、第2の接続口を結
ぶ管路に直交して設けられ、前記キャピラリーチューブ
(1)が接続される第3の接続口とを有し、前記バルブ
から、前記溶媒でサンドイッチされた形で与えられる前
記試料の一部を前記キャピラリーチューブ(1)内に分
割注入する三方継手と、 前記三方継手の第2の接続口に接続された排出管を兼ね
た電極(11)と前記キャピラリーチューブ(1)の下
流側に設けられた電極との間に接続された高圧電源
(E)と、 前記キャピラリーチューブ(1)の出口側に設けられ、
前記溶媒との間の界面動電現象に基づいて分離される前
記試料中の成分を検出する検出器と、 分析時に前記排出管を兼ねた電極(11)より排出され
る前記溶媒を前記溶媒供給手段に還流させる手段とより
構成される。
<Means for Solving Problems> The configuration of the present invention is configured to switch between solvent supply means, sample supply means, solvent supplied from the solvent supply means and sample supplied from the sample supply means, and A valve for flowing the sample in a form sandwiched with the solvent, a capillary tube (1) constituting a column, a first connection port connected to the valve, and a discharge pipe provided opposite to the connection port. A second connection port that is connected to the electrode (11) that also serves as the third connection port, and a third connection line that is provided orthogonal to the conduit connecting the first and second connection ports and is connected to the capillary tube (1). A three-way joint for injecting a part of the sample, which is provided in a form sandwiched with the solvent, into the capillary tube (1) from the valve in a divided manner, and a second one of the three-way joints. At the connection A high-voltage power supply (E) connected between an electrode (11) also serving as a connected discharge tube and an electrode provided on the downstream side of the capillary tube (1), and an outlet side of the capillary tube (1) Is provided in
A detector that detects components in the sample that are separated based on the electrokinetic phenomenon with the solvent, and the solvent that supplies the solvent that is discharged from the electrode (11) that also serves as the discharge pipe during analysis. And means for causing the means to recirculate.

〈作用〉 前記の技術手段は次のように作用する。即ち、前記キャ
ピラリーチューブに前記試料が分割注入されているとき
には、前記電極を兼ねた電極部分から試料が混じった溶
媒が排出されるので、この期間を避け、流路切換手段を
切換え、前記溶媒を前記溶媒供給手段に還流する。
<Operation> The above technical means operates as follows. That is, when the sample is dividedly injected into the capillary tube, the solvent mixed with the sample is discharged from the electrode portion that also serves as the electrode. Therefore, avoiding this period, the flow path switching means is switched to change the solvent. Reflux to the solvent supply means.

〈実施例〉 以下図面に従い本考案の実施例を説明する。第1図は本
考案の実施例装置を示す構成図である。図中、第4図に
おける要素と同じ要素には同一符号が付されている。1
3は溶媒供給手段で、この中に含まれる二本の管13
a,13bは途中で接続され、管13aの底部よりポン
プ13cによってタンク13dに貯留された溶媒が送り
込まれる。管13aでオーバーフローした溶媒は管13
bを経て再びタンク13dに還流されている。
<Embodiment> An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an apparatus according to an embodiment of the present invention. In the figure, the same elements as those in FIG. 4 are designated by the same reference numerals. 1
3 is a solvent supply means, and the two tubes 13 contained therein
a and 13b are connected on the way, and the solvent stored in the tank 13d is fed from the bottom of the pipe 13a by the pump 13c. The solvent overflowed in the pipe 13a is
It is returned to the tank 13d again via b.

14は8つの接続口14a〜14hを有し、サンプルバ
ルブの機能と溶媒を還流させる際の流路切換バルブの機
能とを併せ持った八方バルブである。このバルブにおい
て、接続口14aには溶媒供給手段13からの配管15
が接続され、接続口14bからの配管16は三方継手1
0に接続されている。接続口14cには試料を注入する
シリンジ17が接続されると共に接続口hとの間に計量
管18が接続されている。接続口14dを飛ばし、接続
口14eには排出管を兼ねる電極11が接続され、接続
口14fには三方継手10との間に配管19が接続され
ている。接続口14gには排出管20が接続されてい
る。
Reference numeral 14 is an eight-way valve having eight connection ports 14a to 14h and having both the function of the sample valve and the function of the flow path switching valve when the solvent is refluxed. In this valve, a pipe 15 from the solvent supply means 13 is connected to the connection port 14a.
Is connected, and the pipe 16 from the connection port 14b is a three-way joint 1
It is connected to 0. A syringe 17 for injecting a sample is connected to the connection port 14c, and a measuring pipe 18 is connected to the connection port h. The connection port 14d is skipped, the electrode 11 also serving as a discharge pipe is connected to the connection port 14e, and the pipe 19 is connected to the connection port 14f with the three-way joint 10. The discharge pipe 20 is connected to the connection port 14g.

21は排出管11から排出される溶媒を受ける容器で、
この容器の底部から溶媒供給手段13のタンク13dに
溶媒を還流する為の配管22が接続されている。
21 is a container for receiving the solvent discharged from the discharge pipe 11,
A pipe 22 for refluxing the solvent from the bottom of the container to the tank 13d of the solvent supply means 13 is connected.

このような構成で、試料をバルブに注入する状態では、
八方バルブ14は本図では図示されていない制御部から
の信号により実線の位置に切換えられ、シリンジ17に
より試料が計量管18内に充填される。一方、溶媒供給
手段13からの溶媒は配管15→接続口14a→接続口
14b→配管16を経て一定速度で三方継手10に流
れ、三方継手10から排出された溶媒は配管19→接続
口14f→接続口14e→排出管11を経て容器21に
流れ、この容器から配管22を経て溶媒供給手段13の
タンク13dに還流される。
With such a configuration, when the sample is injected into the valve,
The eight-way valve 14 is switched to the position indicated by the solid line by a signal from a control unit (not shown in the figure), and the sample is filled in the measuring tube 18 by the syringe 17. On the other hand, the solvent from the solvent supply means 13 flows to the three-way joint 10 at a constant speed through the pipe 15 → the connection port 14a → the connection port 14b → the pipe 16, and the solvent discharged from the three-way joint 10 is the pipe 19 → the connection port 14f → It flows into the container 21 through the connection port 14e → the discharge pipe 11, and is returned from this container to the tank 13d of the solvent supply means 13 through the pipe 22.

次に、試料をキャピラリーチューブ1に分割注入する時
には、八方バルブ14を点線の位置に切換える。計量管
18内の試料は溶媒供給手段13から供給される溶媒に
よって配管16に圧送され、計量管18から排出された
試料は溶媒によってサンドイッチされバンド状になって
三方継手10を通過する。この際、試料の一部はキャピ
ラリーチューブ1内に分割注入されるが、残りの試料は
配管19→接続口14f→接続口14g→排出管20を
経て溶媒と共に装置外に排出される。
Next, when the sample is dividedly injected into the capillary tube 1, the eight-way valve 14 is switched to the position indicated by the dotted line. The sample in the measuring pipe 18 is pressure-fed to the pipe 16 by the solvent supplied from the solvent supplying means 13, and the sample discharged from the measuring pipe 18 is sandwiched by the solvent to form a band and passes through the three-way joint 10. At this time, a part of the sample is dividedly injected into the capillary tube 1, but the rest of the sample is discharged out of the apparatus together with the solvent through the pipe 19, the connection port 14f, the connection port 14g, and the discharge pipe 20.

この後、八方バルブ14を実線の位置に切換え、スイッ
チ12をONにし、高電圧をキャピラリーチューブ1の
両端に印加し、キャピラリーチューブ1内において界面
動電クロマトグラフィーの原理に従った試料成分の分離
を行う。この間、溶媒は溶媒供給手段13のタンク13
dに還流され、この時点では試料は完全に排出されてい
る為、溶媒に試料が混じるようなことはない。
After that, the eight-way valve 14 is switched to the position of the solid line, the switch 12 is turned on, a high voltage is applied to both ends of the capillary tube 1, and the sample components are separated in the capillary tube 1 according to the principle of electrokinetic chromatography. I do. During this time, the solvent is stored in the tank 13 of the solvent supply means 13.
Since the sample is completely discharged at this point, the sample is not mixed with the solvent.

〈考案の効果〉 本考案によれば、分析時に溶媒を流し続けて電気分解に
よって発生した酸素ガスが前記キャピラリーチューブ内
に混入しないようにした界面動電クロマトグラフにおい
て、最も動作時間の長い分析モードにおいて溶媒の還流
が行なわれるため、溶媒の無駄な消費が防げる。
<Effect of the Invention> According to the present invention, in the electrokinetic chromatograph in which the solvent is kept flowing during the analysis to prevent the oxygen gas generated by electrolysis from mixing into the capillary tube, the analysis mode with the longest operation time is obtained. Since the solvent is refluxed in, the wasteful consumption of the solvent can be prevented.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の実施例装置を示す構成図、第2図は界
面動電クロマトグラフの原理を示す構成図、第3図は第
2図に示す界面動電クロマトグラフの動作説明図、第4
図は従来装置を示す構成図である。 1…キャピラリーチューブ、3…溶媒容器、5…電極、
6…検出器、10…三方継手、11…排出管を兼ねた電
極、12…スイッチ、13…溶媒供給手段、13d…タ
ンク、14…八方バルブ、15,16,19,22…配
管、17…シリンジ、18…計量管、E…高圧電源
FIG. 1 is a block diagram showing an apparatus according to an embodiment of the present invention, FIG. 2 is a block diagram showing the principle of an electrokinetic chromatograph, and FIG. 3 is an operation explanatory diagram of the electrokinetic chromatograph shown in FIG. Fourth
The figure is a block diagram showing a conventional apparatus. 1 ... Capillary tube, 3 ... Solvent container, 5 ... Electrode,
6 ... Detector, 10 ... Three-way joint, 11 ... Electrode also serving as discharge pipe, 12 ... Switch, 13 ... Solvent supply means, 13d ... Tank, 14 ... Eight-way valve, 15, 16, 19, 22 ... Piping, 17 ... Syringe, 18 ... Measuring tube, E ... High-voltage power supply

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】溶媒供給手段と、 試料供給手段と、 前記溶媒供給手段から供給される溶媒と前記試料供給手
段から供給される試料とを切換え、前記試料を前記溶媒
でサンドイッチされた形で流すバルブと、 カラムを構成するキャピラリーチューブ(1)と、 前記バルブに接続される第1の接続口と、この接続口に
対向して設けられ、排出管を兼ねた電極(11)に接続
される第2の接続口と、これら第1、第2の接続口を結
ぶ管路に直交して設けられ、前記キャピラリーチューブ
(1)が接続される第3の接続口とを有し、前記バルブ
から、前記溶媒でサンドイッチされた形で与えらえる前
記試料の一部を前記キャピラリーチューブ(1)内に分
割注入する三方継手と、 前記三方継手の第2の接続口に接続された排出管を兼ね
た電極(11)と前記キャピラリーチューブ(1)の下
流側に設けられた電極との間に接続された高圧電源
(E)と、 前記キャピラリーチューブ(1)の出口側に設けられ、
前記溶媒との間の界面動電現象に基づいて分離される前
記試料中の成分を検出する検出器と、 分析時に前記排出管を兼ねた電極(11)より排出され
る前記溶媒を前記溶媒供給手段に還流させる手段とを具
備する界面動電クロマトグラフ。
1. A solvent supply means, a sample supply means, a solvent supplied from the solvent supply means and a sample supplied from the sample supply means are switched, and the sample is flowed in a sandwiched form with the solvent. A valve, a capillary tube (1) forming a column, a first connection port connected to the valve, and an electrode (11) provided opposite to the connection port and also serving as a discharge pipe. From the valve, there is a second connection port and a third connection port which is provided orthogonally to the pipe line connecting these first and second connection ports and to which the capillary tube (1) is connected. , Also serves as a three-way joint for injecting a part of the sample given in a form sandwiched with the solvent into the capillary tube (1) in a divided manner, and a discharge pipe connected to a second connection port of the three-way joint. Electrode (11 The high voltage power supply connected between the electrode provided on the downstream side of the capillary tube (1) and (E), provided at the outlet side of the capillary tube (1) and,
A detector that detects components in the sample that are separated based on the electrokinetic phenomenon with the solvent, and the solvent that supplies the solvent that is discharged from the electrode (11) that also serves as the discharge pipe during analysis. An electrokinetic chromatograph comprising means for refluxing the means.
JP5558787U 1987-04-13 1987-04-13 Electrokinetic chromatograph Expired - Lifetime JPH06766Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5558787U JPH06766Y2 (en) 1987-04-13 1987-04-13 Electrokinetic chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5558787U JPH06766Y2 (en) 1987-04-13 1987-04-13 Electrokinetic chromatograph

Publications (2)

Publication Number Publication Date
JPS63161355U JPS63161355U (en) 1988-10-21
JPH06766Y2 true JPH06766Y2 (en) 1994-01-05

Family

ID=30883617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5558787U Expired - Lifetime JPH06766Y2 (en) 1987-04-13 1987-04-13 Electrokinetic chromatograph

Country Status (1)

Country Link
JP (1) JPH06766Y2 (en)

Also Published As

Publication number Publication date
JPS63161355U (en) 1988-10-21

Similar Documents

Publication Publication Date Title
US4676897A (en) Solubilization chromatography
JP4992401B2 (en) Autosampler cleaning mechanism
US4662208A (en) Apparatus for the drawing off of untreated and treated dialyzing liquid and/or blood from a dialysis device
JP2007171034A (en) Gradient liquid feed system
JPH08261986A (en) Method and device for mixing liquid using electroosmosis flow
JPH06766Y2 (en) Electrokinetic chromatograph
Zhang et al. Separation of peptides by pressurized capillary electrochromatography
JP2629539B2 (en) Sample liquid supply device
JPH0612511Y2 (en) Flow-through liquid analyzer
JPH0515094Y2 (en)
JPH0521500B2 (en)
JPH0323863B2 (en)
JPH0346065B2 (en)
JPH0736277Y2 (en) Distribution type ion concentration meter
JPH05273187A (en) Trace sample injector
JP4403638B2 (en) Liquid chromatograph
JPS63253247A (en) Sampling device
JPS6271838A (en) Sample injecting device
JPS58206947A (en) Sampling device
JPH0416762A (en) Sample introducing apparatus for supercritical liquid chromatography
JPS6276442A (en) Capillary type isokinetic electrophoresis device
JPH0612537Y2 (en) Flow-type analyzer
SU1453321A1 (en) Apparatus for obtaining uniform flow of eluent in liquid chromatoghraphy
JPH0323862B2 (en)
JPS6291858A (en) Sample collecting device