JPH032900B2 - - Google Patents

Info

Publication number
JPH032900B2
JPH032900B2 JP56085675A JP8567581A JPH032900B2 JP H032900 B2 JPH032900 B2 JP H032900B2 JP 56085675 A JP56085675 A JP 56085675A JP 8567581 A JP8567581 A JP 8567581A JP H032900 B2 JPH032900 B2 JP H032900B2
Authority
JP
Japan
Prior art keywords
higher fatty
hydrotalcite
weight
polyethylene resin
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56085675A
Other languages
Japanese (ja)
Other versions
JPS57200433A (en
Inventor
Yoshiro Shoji
Yasushi Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP8567581A priority Critical patent/JPS57200433A/en
Publication of JPS57200433A publication Critical patent/JPS57200433A/en
Publication of JPH032900B2 publication Critical patent/JPH032900B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリオレフイン樹脂組成物、とくには
耐錆性及び成形性に優れ、しかもインフレーシヨ
ン成形法により極薄フイルムを製造するのに好適
なポリエチレン樹脂組成物に関する。 ポリエチレン樹脂にとくにチーグラー系触媒で
製造されたポリエチレン樹脂にステアリン酸カル
シウムで例示される高級脂肪酸塩を防錆剤として
配合する技術は良く知られているが、該脂肪酸塩
を配合したポリエチレン樹脂組成物から溶融押出
法によりモノフイラメントを製造する際あるいは
インフレーシヨン成形法によりフイルムを製造す
る際などのときにダイの樹脂出口付近にヤニ状物
質が生成し固着する不具合があつた。更にはイン
フレーシヨン成形法によつてフイルムを製造する
際、より薄いフイルムを製造しようと意図するに
従い空気圧によつてふくらみ安定な円筒膜を形成
すべべき膨張部が突如裂け、連続して安定に薄い
フイルムを製造できないという不具合があつた。 一方ポリオレフイン樹脂の耐錆性を付与するた
めの別の技術としてハイドロタルサイトを少量ポ
リオレフイン樹脂に配合する技術が知られており
(特開昭52−49258号公報明細書)、本発明者らが
この技術をポリエチレン樹脂に適用した処、高級
脂肪酸塩を使用したときの前記欠点は全く解消さ
れたが新たな不具合すなわちポリエチレン樹脂を
溶融成形する際に樹脂の押出量が低下する、樹脂
圧が上昇するなどの成形性が低い不具合を認め
た。 本発明者等はかかる欠点を克服すべく鋭意研究
した結果、チーグラー系触媒で製造されたポリエ
チレン樹脂にハイドロタルサイトの他に更に高級
脂肪酸を少量添加することにより該欠点が解消さ
れ、耐錆性、成形性共に優れるポリエチレン樹脂
組成物が得られることを見い出した。そして又、
高級脂肪酸塩を防錆剤として使用したときの前記
欠点がハイドロタルサイトを防錆剤として使用す
ると解消される利点がそのまま生かされることを
発見した。 かくして本発明に従えば、チーグラー系触媒で
製造されたポリエチレン樹脂にハイドロタルサイ
ト0.02ないし0.2重量%及び高級脂肪酸0.02ないし
0.2重量%配合することを特徴とするポリエチレ
ン樹脂組成物が提供される。 以下本発明を詳述することにより本発明の目
的、利点等がより一層理解されよう。 本発明で適用されるポリエチレン樹脂は耐錆性
を付与する必要のあるチーグラー系触媒で製造さ
れたポリエチレン樹脂である。 又本発明のポリエチレン樹脂組成物をインフレ
ーシヨン成形法による極薄フイルム製造原料とす
る観点からはメルトインデツクス(190℃)約
0.02〜約0.05、密度約0.95〜約0.96g/cm3のポリ
エチレン樹脂を好ましく例示できる。 本発明で使用されるハイドロタルサイトとはマ
グネシウム、アルミニウムの含水塩基性炭酸塩で
あつて、天然物、合成品いずれをも包含する。天
然物はMg6Al2(OH)16CO3・4H2Oの構造を有す
とされており、合成品ではMgとAlとの比が異つ
たもの、例えば Mg4Al2(OH)12CO3・3H2O Mg5Al2(OH)14CO3・4H2O Mg10Al2(OH)22(CO32・4H2O Mg8Al2(OH)20CO3・5H2O 等の構造のものを例示できる。 この様なハイドロタルサイトはポリオレフイン
樹脂に対して0.02〜0.2重量%、好ましくは0.03〜
0.1重量%配合される。ハイドロタルサイトの過
少の配合は耐錆性に劣り、過剰の配合はポリオレ
フイン樹脂組成物の物性を低下させるなどの欠点
をもたらす。 本発明で使用される高級脂肪酸は炭素数10以
上、好ましくは14〜24の飽和高級脂肪酸が好まし
く、具体的にはカプリン酸、ラウリン酸、パルミ
チン酸、ステアリン酸、アラキン酸、ベヘン酸、
リグノセリン酸及びこれらの二つ以上の混合物な
どを例示することができる。 かくの如き高級脂肪酸はポリオレフイン樹脂に
対して0.02〜0.2重量%、好ましくは0.05〜0.15重
量%配合される。高級脂肪酸の過少の配合は成形
時、造粒時における押出量の低下、樹脂圧の上昇
などの欠点を示し、過剰の配合は成形時悪臭がす
るなどの作業環境の悪化をもたらし好ましくな
い。 ポリエチレン樹脂、ハイドロタルサイト及び高
級脂肪酸の混合はタンブラーミキサー、ヘンシエ
ルミキサーなどを用いてこれらを一度ドライブレ
ンドした後、押出機などを用いて溶融混練するこ
とにより達成することができる。 本発明のポリエチレン樹脂組成物は通常のポリ
エチレン樹脂の用途にすべて適用することが可能
であり、とくにポリエチレンを用いて前述した如
くインフレーシヨン成形法により極薄フイルムを
製造するための原料として好適である。 以下、実施例、比較例などにより本発明を具体
的に説明する。 実施例 1〜4、比較例 1〜4 高活性チーグラー触媒を用いて重合し、触媒除
去工程を経ずに製造されたポリエチレン(メルト
インデツクス0.045)のパウダーと、酸化防止剤
イルガノツクス1010(チバガイギー社製品)0.1重
量%、ジ−t−ブチルヒドロキシトルエン0.07重
量%、更に表1に記載される量のハイドロタルサ
イト(Mg4Al2(OH)12CO3・3H2Oの構造を有す
る)、ステアリン酸及びステアリン酸カルシウム
とを80〜100℃に加温されたヘンシエルミキサー
で窒素雰囲気下に混合した後、押出機を用いて樹
脂温度260℃でペレツト状に造粒した。 該造粒ペレツトをインフレーシヨン成形機に供
給し、シリンダー内でペレツトを溶融しリング型
三条スパイラルダイからチユーブを押出した。こ
のチユーブの一端を2本のピンチロールに通して
閉じた後、空気を吹き込んで所定の大きさにふく
らませ引取り速度を調整し表1記載の所定の厚さ
のチユーブ状フイルムを巻取つた。この操作を連
続的に2日間行つた。 尚、インフレーシヨン成形機の成形条件は下記
の如くである。 成形機 モダン社製 E50インフレーシヨン成
形機 シリンダー内径50mmφ スクリユー メタリングL/D=26 ダ イ 三条スパイラル方式75mmφ×1.2mm ブロアツプ比 5 温 度 樹脂温度215℃ 又、成形性の目安である押出量は1分間当りの
フイルム巻取重量を測定することにより、耐錆性
はインフレーシヨン成形機を分解してシリンダ
ー、ダイ、スクリユーを点検し赤茶色の錆の発生
の有無を観察することにより、又ヤニの発生状況
はインフレーシヨン成型機ダイ廻りを観察するこ
とにより評価した。更にフイルム成形時の安定性
は膨張部を常時監視し、2日間異常なく安定に膨
張部が形成されているときに良好と判定した。 以上の結果を表1に記載した。
The present invention relates to a polyolefin resin composition, and particularly to a polyethylene resin composition that has excellent rust resistance and moldability and is suitable for producing ultrathin films by inflation molding. The technique of blending higher fatty acid salts such as calcium stearate as a rust preventive agent into polyethylene resins, especially polyethylene resins produced using Ziegler catalysts, is well known. When manufacturing monofilaments by melt extrusion or films by inflation molding, there was a problem in which resin-like substances were formed and stuck near the resin exit of the die. Furthermore, when manufacturing film using the inflation molding method, as the intention is to manufacture a thinner film, the expansion part that should inflate under air pressure to form a stable cylindrical film suddenly ruptures and becomes continuously stable. There was a problem with the inability to produce thin films. On the other hand, as another technique for imparting rust resistance to polyolefin resin, a technique is known in which a small amount of hydrotalcite is blended into polyolefin resin (Japanese Unexamined Patent Publication No. 52-49258), and the present inventors When this technology was applied to polyethylene resin, the above-mentioned drawbacks when using higher fatty acid salts were completely eliminated, but new problems were introduced, namely, a decrease in the amount of resin extruded and an increase in resin pressure when melt-molding polyethylene resin. Problems such as poor moldability were observed. As a result of intensive research aimed at overcoming these drawbacks, the inventors of the present invention have found that by adding a small amount of higher fatty acids in addition to hydrotalcite to polyethylene resin produced using a Ziegler catalyst, these drawbacks have been resolved and the rust resistance has been improved. It has been found that a polyethylene resin composition having excellent moldability can be obtained. And again,
It has been discovered that the above-mentioned disadvantages when using higher fatty acid salts as a rust preventive agent can be overcome by using hydrotalcite as a rust preventive agent, and the advantages can be utilized as they are. Thus, according to the present invention, 0.02 to 0.2% by weight of hydrotalcite and 0.02 to 0.2% by weight of higher fatty acids are added to a polyethylene resin produced using a Ziegler catalyst.
A polyethylene resin composition characterized in that it contains 0.2% by weight is provided. By describing the present invention in detail below, the objects, advantages, etc. of the present invention will be better understood. The polyethylene resin used in the present invention is a polyethylene resin manufactured with a Ziegler catalyst that needs to impart rust resistance. In addition, from the viewpoint of using the polyethylene resin composition of the present invention as a raw material for producing ultra-thin films by the inflation molding method, the melt index (190°C) of approx.
Preferred examples include polyethylene resins having a density of 0.02 to about 0.05 and a density of about 0.95 to about 0.96 g/cm 3 . The hydrotalcite used in the present invention is a hydrous basic carbonate of magnesium or aluminum, and includes both natural products and synthetic products. Natural products are said to have the structure Mg 6 Al 2 (OH) 16 CO 3 4H 2 O, while synthetic products have a different ratio of Mg and Al, such as Mg 4 Al 2 (OH) 12 CO 3・3H 2 O Mg 5 Al 2 (OH) 14 CO 3・4H 2 O Mg 10 Al 2 (OH) 22 (CO 3 ) 2・4H 2 O Mg 8 Al 2 (OH) 20 CO 3・5H 2 Examples include structures such as O. Such hydrotalcite is present in an amount of 0.02 to 0.2% by weight, preferably 0.03 to 0.2% by weight based on the polyolefin resin.
Contains 0.1% by weight. If too little hydrotalcite is added, the rust resistance will be poor, and if too much hydrotalcite is added, the physical properties of the polyolefin resin composition will be deteriorated. The higher fatty acids used in the present invention are preferably saturated higher fatty acids having 10 or more carbon atoms, preferably 14 to 24 carbon atoms, and specifically include capric acid, lauric acid, palmitic acid, stearic acid, arachidic acid, behenic acid,
Examples include lignoceric acid and mixtures of two or more thereof. Such higher fatty acids are blended in an amount of 0.02 to 0.2% by weight, preferably 0.05 to 0.15% by weight, based on the polyolefin resin. Incorporation of too little higher fatty acid presents drawbacks such as a decrease in extrusion rate and an increase in resin pressure during molding and granulation, while incorporation of too much higher fatty acid is undesirable as it causes a deterioration of the working environment such as a bad odor during molding. Mixing of the polyethylene resin, hydrotalcite, and higher fatty acid can be achieved by once dry blending them using a tumbler mixer, a Henschel mixer, etc., and then melt-kneading them using an extruder or the like. The polyethylene resin composition of the present invention can be applied to all common uses of polyethylene resin, and is particularly suitable as a raw material for producing ultra-thin films using polyethylene by the inflation molding method as described above. be. Hereinafter, the present invention will be specifically explained using Examples, Comparative Examples, and the like. Examples 1 to 4, Comparative Examples 1 to 4 Powder of polyethylene (melt index 0.045) produced by polymerization using a highly active Ziegler catalyst without going through a catalyst removal step, and antioxidant Irganox 1010 (Ciba Geigy Co., Ltd.) Product) 0.1% by weight, di-t-butylhydroxytoluene 0.07% by weight, and further hydrotalcite (having the structure Mg 4 Al 2 (OH) 12 CO 3 3H 2 O) in the amount listed in Table 1, Stearic acid and calcium stearate were mixed in a Henschel mixer heated to 80 to 100°C under a nitrogen atmosphere, and then granulated into pellets using an extruder at a resin temperature of 260°C. The granulated pellets were fed into an inflation molding machine, the pellets were melted in a cylinder, and a tube was extruded from a ring-type three-thread spiral die. One end of this tube was passed through two pinch rolls to close it, and then air was blown into it to inflate it to a predetermined size.The take-up speed was adjusted to wind up a tube-shaped film having a predetermined thickness as shown in Table 1. This operation was performed continuously for two days. The molding conditions of the inflation molding machine are as follows. Molding machine Modern E50 inflation molding machine Cylinder inner diameter 50mmφ Screw Metering L/D=26 Die Three-thread spiral method 75mmφ×1.2mm Blow-up ratio 5 Temperature Resin temperature 215℃ Also, the extrusion amount, which is a guideline for moldability, is Rust resistance can be determined by measuring the film winding weight per minute, by disassembling the inflation molding machine and inspecting the cylinder, die, and screw and observing the presence or absence of reddish-brown rust. The state of tar generation was evaluated by observing the area around the die of the inflation molding machine. Furthermore, the stability during film molding was determined by constantly monitoring the expanded portion, and when the expanded portion was stably formed without any abnormality for 2 days, it was judged to be good. The above results are listed in Table 1.

【表】 比較例 5〜6 ハイドロタルサイトを配合しないほかは、実施
例1〜2と同様に行つた。 比較例 7 ステアリン酸の代りにオレイン酸を1.0重量%、
ハイドロタルサイトを50重量%配合するほかは実
施例と同様に行つた。 これらの結果を表2に示す。
[Table] Comparative Examples 5-6 The same procedure as in Examples 1-2 was carried out except that hydrotalcite was not blended. Comparative Example 7 1.0% by weight of oleic acid instead of stearic acid,
The same procedure as in Example was carried out except that 50% by weight of hydrotalcite was added. These results are shown in Table 2.

【表】 * オレイン酸
上記表1及び表2の結果より、比較例4のハイ
ドロタルサイト単独配合の場合は、耐錆性が良好
で、ヤニの発生がないが、押出量が少なくて成形
性が悪い結果が得られ、比較例5〜6の高級脂肪
酸単独添加の場合は、押出量が多くて成形性が良
好であるが、耐錆性が不良で、ヤニの発生もある
という結果が得られている。これに対して実施例
1〜4が、押出量が多くて成形性に優れ、耐錆性
も良好で、ヤニの発生もないという好結果が得ら
れており、ハイドロタルサイトと高級脂肪酸配合
の相乗効果が得られていることがわかる。また大
量のハイドロタルサイトおよび高級脂肪酸を配合
した比較例7では、押出量は多く、耐錆性も良好
であるが、ヤニが発生し、フイルムの破れが多発
してフイルムを極薄にできないという結果が得ら
れている。 以上の結果より、本発明の配合により、相乗効
果が得られることがわかり、またハイドロタルサ
イト及び高級脂肪酸を本発明の範囲より多量に添
加すると、ヤニの発生や、フイルムの破れ発生に
よりフイルムを極薄にできないなどの欠点がある
ことがわかる。
[Table] * Oleic acid From the results in Tables 1 and 2 above, the case of hydrotalcite alone in Comparative Example 4 has good rust resistance and no tar generation, but the extrusion rate is small and moldability is good. In the case of Comparative Examples 5 and 6 in which higher fatty acids were added alone, the extrusion rate was large and the moldability was good, but the rust resistance was poor and tar was generated. It is being On the other hand, Examples 1 to 4 had good results in that they had a large extrusion volume, excellent moldability, good rust resistance, and no tar generation. It can be seen that a synergistic effect is obtained. Comparative Example 7, in which a large amount of hydrotalcite and higher fatty acids were blended, had a large extrusion rate and good rust resistance, but tar was generated and the film frequently broke, making it impossible to make the film extremely thin. Results are being obtained. The above results show that the formulation of the present invention provides a synergistic effect, and that adding hydrotalcite and higher fatty acids in amounts greater than the scope of the present invention may cause tar formation and film tearing, resulting in film damage. It can be seen that there are drawbacks such as the inability to make it extremely thin.

Claims (1)

【特許請求の範囲】 1 チーグラー系触媒で製造されたポリエチレン
樹脂にハイドロタルサイト0.02ないし0.2重量%
及び高級脂肪酸0.02ないし0.2重量%配合するこ
とを特徴とするポリエチレン樹脂組成物。 2 ポリエチレン樹脂組成物がインフレーシヨン
成形法によりフイルムを製造するための原料とし
て使用されるべきものである特許請求の範囲第1
項記載の組成物。 3 高級脂肪酸が炭素数10以上の飽和高級脂肪酸
である特許請求の範囲第1項または第2項記載の
組成物。
[Claims] 1. 0.02 to 0.2% by weight of hydrotalcite in a polyethylene resin produced using a Ziegler catalyst.
and 0.02 to 0.2% by weight of a higher fatty acid. 2. Claim 1, in which the polyethylene resin composition is to be used as a raw material for producing a film by an inflation molding method.
Compositions as described in Section. 3. The composition according to claim 1 or 2, wherein the higher fatty acid is a saturated higher fatty acid having 10 or more carbon atoms.
JP8567581A 1981-06-05 1981-06-05 Polyolefin resin composition Granted JPS57200433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8567581A JPS57200433A (en) 1981-06-05 1981-06-05 Polyolefin resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8567581A JPS57200433A (en) 1981-06-05 1981-06-05 Polyolefin resin composition

Publications (2)

Publication Number Publication Date
JPS57200433A JPS57200433A (en) 1982-12-08
JPH032900B2 true JPH032900B2 (en) 1991-01-17

Family

ID=13865400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8567581A Granted JPS57200433A (en) 1981-06-05 1981-06-05 Polyolefin resin composition

Country Status (1)

Country Link
JP (1) JPS57200433A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699586B2 (en) * 1986-07-31 1994-12-07 昭和電工株式会社 Thermoplastic resin molding for radiation sterilization
JPS6369853A (en) * 1986-09-12 1988-03-29 Mitsubishi Petrochem Co Ltd Propylene polymer composition
ATE172320T1 (en) * 1991-05-15 1998-10-15 Basf Ag MEDIUM AND HIGH VOLTAGE ELECTRICAL CABLE WITH A CABLE SHEATH OF HIGH RESISTANCE TO THE FORMATION AND GROWTH OF WATER TREES
US6979708B2 (en) 2001-08-23 2005-12-27 Sunoco, Inc. (R&M) Hydrotalcites, syntheses, and uses
US6846870B2 (en) 2001-08-23 2005-01-25 Sunoco, Inc. (R&M) Hydrotalcites, syntheses, and uses

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292259A (en) * 1976-01-29 1977-08-03 Matsushita Electric Ind Co Ltd Flame-retardant thermoplastic resin compositions
JPS5534226A (en) * 1978-09-01 1980-03-10 Furukawa Electric Co Ltd:The Flame-retardant resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292259A (en) * 1976-01-29 1977-08-03 Matsushita Electric Ind Co Ltd Flame-retardant thermoplastic resin compositions
JPS5534226A (en) * 1978-09-01 1980-03-10 Furukawa Electric Co Ltd:The Flame-retardant resin composition

Also Published As

Publication number Publication date
JPS57200433A (en) 1982-12-08

Similar Documents

Publication Publication Date Title
WO1991007461A1 (en) Resin composition for film and process for producing film using the same
JPH0415730B2 (en)
JPWO2007013647A1 (en) Polyvinylidene chloride resin compound, biaxially stretched film, and method for producing the biaxially stretched film
JPS59227420A (en) Biaxially stretched film made of ultra-high molecular weight polyolefine and preparation thereof
JPS62129321A (en) Production of porous sheet
DE10104004A1 (en) Environmentally friendly composition for the production of film products, as use in the fields of packaging, agricultural films and disposable packaging
JP3474677B2 (en) Porous sheet and absorbent article using the same
JPH10292059A (en) Production of air-permeable film
JPH032900B2 (en)
JPH055253B2 (en)
US6323269B1 (en) Mineral containing thermoplastic granules
JPH0785907B2 (en) Ultra-high molecular weight polyolefin biaxially stretched film and method for producing the same
JP4540858B2 (en) Porous film and method for producing the same
JPS6218435A (en) Production of gas-permeable film
JPH02258852A (en) Polypropylene film
JPS5824250B2 (en) Method for producing transversely split thin film
JPS58136639A (en) Polyolefin composition
JP2901447B2 (en) Method for producing resin molded product, masterbatch, and resin composition for extrusion molding
JPS6227446A (en) Polyolefin composition
JP2915122B2 (en) Polyethylene composition
JPS63251436A (en) Production of porous sheet
JPH0357936B2 (en)
JP3474662B2 (en) Porous sheet and absorbent article using the same
JP2859346B2 (en) Porous film
JPS6015445A (en) Novel polyethylene composition