JPH03245458A - Carbonaceous material, manufacture thereof, and non-aqueous electrolyte battery using thereof - Google Patents

Carbonaceous material, manufacture thereof, and non-aqueous electrolyte battery using thereof

Info

Publication number
JPH03245458A
JPH03245458A JP2038343A JP3834390A JPH03245458A JP H03245458 A JPH03245458 A JP H03245458A JP 2038343 A JP2038343 A JP 2038343A JP 3834390 A JP3834390 A JP 3834390A JP H03245458 A JPH03245458 A JP H03245458A
Authority
JP
Japan
Prior art keywords
boron
carbonaceous material
lithium
amount
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2038343A
Other languages
Japanese (ja)
Other versions
JP3060471B2 (en
Inventor
Tokuo Komaru
篤雄 小丸
Hideto Azuma
秀人 東
Mio Nishi
西 美緒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2038343A priority Critical patent/JP3060471B2/en
Publication of JPH03245458A publication Critical patent/JPH03245458A/en
Application granted granted Critical
Publication of JP3060471B2 publication Critical patent/JP3060471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase a doping quantity to lithium and, applying to a negative electrode, to increase charging/discharging capacity by adding a specific quantity of a boron compound when an organic material is carbonized into a carbonaceous material. CONSTITUTION:An organic high molecular compound such as a phenol resin, an acrylic resin and the like is used for an organic material, and a boron oxide, boron and the like are used for a boron compound. The boron compound in a state of aqueous solution is added to a system of reaction for carbonization of an organic compound to make a boron content of the carbonized organic material 0.1-2.0 weight percent. When the boron compound content is less than this range, a doping quantity to lithium can not be effectively increased, while more content thereof increases internal resistance. The doping quantity to lithium is thereby increased and application to a negative electrode increases charging/discharging capacity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、リチウムをドープ・脱トープする炭素質材料
及びその製造方法に関するものであり、さらにはかかる
炭素質材料をxiとする非水電解液電池に関するもので
ある。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a carbonaceous material doped with lithium and detopped, and a method for producing the same, and further relates to a non-aqueous electrolysis method using such a carbonaceous material as xi. It is related to liquid batteries.

〔発明の概要〕[Summary of the invention]

本発明は、有機材料を炭素化して炭素質材料とする際に
、ホウ素化合物を添加することでリチウムに対するトー
プ量の大きな炭素質材料となし、これを負極に用いて充
放電容量が大きな非水電解液電池を提供しようとするも
のである。
In the present invention, when an organic material is carbonized to make a carbonaceous material, a boron compound is added to produce a carbonaceous material with a large amount of tope for lithium, and this is used as a negative electrode to form a non-aqueous material with a large charge/discharge capacity. The present invention aims to provide an electrolyte battery.

〔従来の技術) 電子機器の小型化に伴い、電池の高エネルギー密度化が
要求されており、かかる要求に応えるべく種々の新しい
二次電池の提案がなされている。
[Prior Art] As electronic devices become smaller, batteries are required to have higher energy density, and various new secondary batteries have been proposed to meet this demand.

その一つに、リチウムを用いた非水電解液電池があり、
実用化に向けて研究が活発に行われている。
One of these is a non-aqueous electrolyte battery that uses lithium.
Research is being actively conducted toward practical application.

しかしながら、かかる非水電解液電池の実用化に際して
は、負極に金属リチウムを用いていることに伴う次のよ
うな欠点が特に問題となっている。
However, when putting such non-aqueous electrolyte batteries into practical use, the following drawbacks associated with the use of metallic lithium for the negative electrode pose particular problems.

すなわち、 ■充電に5〜IO時間を必要とし、急速充電性に劣るこ
と、 ■サイクル寿命が短いこと、 等である。
That is, (1) it requires 5 to IO hours for charging and is inferior in rapid charging performance, (2) its cycle life is short, and so on.

これらはいずれもリチウム自身に起因するもので、充放
電の繰り返しに伴うリチウム負極の形態変化、デンドラ
イト (樹状結晶)の形成、リチウムの不動態化等がそ
の原因とされている。
All of these are caused by the lithium itself, and are thought to be caused by changes in the shape of the lithium negative electrode due to repeated charging and discharging, the formation of dendrites, and passivation of lithium.

上記問題を解決する一手法として、負極に金属リチウム
を単体で用いるのではなく、炭素質材料にドープさせて
用いることが提案されている。これは、リチウムの炭素
層間化合物が電気化学的に容易に形成できることを利用
したものであり、例えば炭素質材料を負極として非水電
解液中で充電を行うと、正極中のリチウムは電気化学的
に負極炭素の眉間にドープされる。そして、リチウムを
ドープした炭素質材料は、リチウム電極として作用し、
放電に体ってリチウムは炭素層間から脱トープされ、正
極中に戻る。
As one method for solving the above problem, it has been proposed to use metallic lithium as a negative electrode by doping it into a carbonaceous material instead of using it alone. This takes advantage of the fact that carbon intercalation compounds of lithium can be easily formed electrochemically. For example, when a carbonaceous material is used as a negative electrode and charged in a non-aqueous electrolyte, lithium in the positive electrode is electrochemically The negative electrode is doped between the eyebrows of carbon. Then, the lithium-doped carbonaceous material acts as a lithium electrode,
During discharge, lithium is detopped from between the carbon layers and returns to the positive electrode.

〔発明が解決しようとする課H] ところで、このときの炭素質材料の単位重量当たりの電
気容量は、リチウムのドープ量によって決まる。したが
って電池の充放電容量を大きくするためには、炭素質材
料のリチウムに対するドープ量を出来る限り理論最大容
量に近づけることが必要である。たとえば、グラファイ
トにおいては炭素原子6個に対してリチウム原子1個が
ドープされた場合に理論最大容量が得られる。
[Problem H to be Solved by the Invention] Incidentally, the electric capacity per unit weight of the carbonaceous material at this time is determined by the amount of lithium doped. Therefore, in order to increase the charge/discharge capacity of a battery, it is necessary to bring the amount of doping of lithium in the carbonaceous material as close to the theoretical maximum capacity as possible. For example, in graphite, the theoretical maximum capacity is obtained when six carbon atoms are doped with one lithium atom.

従来、この種の電池の負極に用いられる炭素質材料とし
ては、例えば特開昭62−122066号公報、あるい
は特開昭62−90863号公報などに記載されるよう
に、有機材料を炭素化して得られる炭素質材料が知られ
ている。
Conventionally, carbonaceous materials used for the negative electrode of this type of battery include carbonized organic materials, as described in, for example, JP-A-62-122066 or JP-A-62-90863. The resulting carbonaceous materials are known.

しかしながら、これまでの炭素質材料では、リチウムの
ドープ量が不十分で、理論値の半分程度の容量しか得ら
れないのが実情である。
However, the actual situation is that in conventional carbonaceous materials, the amount of lithium doped is insufficient and the capacity is only about half of the theoretical value.

そこで本発明は、前述の従来の実情に鑑みて提案される
ものであって、リチウムのドープ量の大きな炭素質材料
およびその製造方法を開発することを目的とし、これに
より充放電容量が大きく、サイクル寿命特性に優れた非
水電解液電池を掃供することを目的とする。
Therefore, the present invention is proposed in view of the above-mentioned conventional situation, and aims to develop a carbonaceous material doped with a large amount of lithium and a method for producing the same, thereby achieving a large charge/discharge capacity. The purpose is to provide non-aqueous electrolyte batteries with excellent cycle life characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者等は、前述の目的を達成せんものと鋭意検討を
重ねた結果、炭素化に際してホウ素化合物を添加するこ
とが得られる炭素質材料のリチウムに対するドープ量を
大きくする上で非常に有効であることを見出した。本発
明はかかる知見にもとづいて完成されたものである。
As a result of intensive studies to achieve the above-mentioned objective, the present inventors have found that adding a boron compound during carbonization is extremely effective in increasing the amount of lithium doped in the resulting carbonaceous material. I discovered something. The present invention was completed based on this knowledge.

すなわち、本発明の炭素質材料は、有機材料が炭素化さ
れてなり、ホウ素を0.1〜2.0重量%含有すること
を特徴とするものである。
That is, the carbonaceous material of the present invention is made by carbonizing an organic material and is characterized by containing 0.1 to 2.0% by weight of boron.

また、本発明の炭素質材料の製造方法は、有機材料もし
くは炭素質材料に対し、ホウ素換夏で0.15〜2.5
重量%のホウ素化合物を添加し、炭素化することを特徴
とするものである。
In addition, in the method for producing a carbonaceous material of the present invention, boron exchange rate is 0.15 to 2.5% for an organic material or a carbonaceous material.
It is characterized by adding % by weight of a boron compound and carbonizing it.

さらに、本発明の非水電解液電池は、有機材料が炭素化
されホウ素を0.1〜2.0重量%含有してなる炭素質
材料を負極とし、リチウムを含んだ正極と非水電解液と
を有してなることを特徴とするものである。
Furthermore, the nonaqueous electrolyte battery of the present invention uses a carbonaceous material obtained by carbonizing an organic material and containing 0.1 to 2.0% by weight of boron as a negative electrode, a positive electrode containing lithium, and a nonaqueous electrolyte. It is characterized by having the following.

本発明の炭素質材料は、有機材料を焼成等の手法により
炭素化して得られるものである6出発原料となる有機材
料としては、フェノール樹脂、アクリル樹脂、ハロゲン
化ビニル樹脂、ポリアミドイミド樹脂、ポリアミド樹脂
、ポリアセチレン、ポリ(p−フェニレン)等の共役系
樹脂、セルロース樹脂等、任意の有機高分子系化合物を
使用することができる。
The carbonaceous material of the present invention is obtained by carbonizing an organic material by a method such as sintering.6 Organic materials serving as starting materials include phenol resin, acrylic resin, vinyl halide resin, polyamideimide resin, polyamide resin, etc. Any organic polymeric compound such as a resin, a conjugated resin such as polyacetylene or poly(p-phenylene), or a cellulose resin can be used.

さらには、フルフリルアルコールあるいはフルフラール
のホモポリマー、コポリマーよりなるフラン樹脂も好適
である。具体的には、フルフリルアルコール、フルフリ
ルアルコール+ジメチロール尿素、フルフリルアルコー
ル+ホルムアルデヒド、フルフラール+フェノール、フ
ルフラール+ケトン類等よりなる重合体が挙げられる。
Furthermore, furan resins made of furfuryl alcohol or furfural homopolymers or copolymers are also suitable. Specifically, polymers consisting of furfuryl alcohol, furfuryl alcohol + dimethylol urea, furfuryl alcohol + formaldehyde, furfural + phenol, furfural + ketones, etc. can be mentioned.

このフラン樹脂を炭素化した炭素質材料は、(002)
面の面間隔d0゜2が3.70Å以上であり、示差熱分
析(DTA)において700°C以上に発熱ピークを持
たず、電池の負極材として非常に良好な特性を示す。
The carbonaceous material obtained by carbonizing this furan resin is (002)
The interplanar spacing d0°2 is 3.70 Å or more, there is no exothermic peak above 700°C in differential thermal analysis (DTA), and it exhibits very good characteristics as a negative electrode material for batteries.

その他、ナフタレン、フェナントレン、アントラセン、
トリフェニレン、ピレン、クリセン ナフタセン、ビセ
ン、ペリレン、ペンタフェン ペンタセン等の縮合多環
炭化水素化合物、その誘導体(例えば前記各化合物のカ
ルボン酸、カルボン酸無水物、カルボン酸イミド等)、
前記各化合物の混合物を主成分とする各種ピッチ、イン
ドールイソインドール、キノホウ素、イソキノホウ素。
Others include naphthalene, phenanthrene, anthracene,
Condensed polycyclic hydrocarbon compounds such as triphenylene, pyrene, chrysene, naphthacene, bicene, perylene, pentaphene, and pentacene, derivatives thereof (for example, carboxylic acids, carboxylic acid anhydrides, carboxylic acid imides, etc. of each of the above compounds),
Various pitches, indoleisoindole, quinoboron, and isoquinoboron containing mixtures of the above-mentioned compounds as main components.

キノキサホウ素、フタラジン、カルバゾール、アクリジ
ン、フェナジン、フェナントレン等の縮合複素環化合物
、その誘導体等も使用可能である。
Fused heterocyclic compounds such as quinoxaboron, phthalazine, carbazole, acridine, phenazine, and phenanthrene, and derivatives thereof can also be used.

これら有機材料を焼成する等の手法により熱処理して炭
素化する。炭素化温度は出発原料によっても異なるが、
通常は500〜3000℃とされる。
These organic materials are heat-treated by a method such as firing to carbonize them. The carbonization temperature varies depending on the starting material, but
The temperature is usually 500 to 3000°C.

本発明においては、この炭素化の際にホウ素化合物を添
加することで、得られる炭素質材料のリチウムに対する
ドープ量を大きなものとする。
In the present invention, by adding a boron compound during carbonization, the amount of lithium doped in the resulting carbonaceous material is increased.

ホウ素化合物としては、二酸化ニホウ素、三酸化ニホウ
素(いわゆる酸化ホウ素)、 三酸化四ホウ素、五酸化
四ホウ素等のホウ素の酸化物や、オルトホウ酸(いわゆ
るホウ酸)、メタホウ酸、四ホウ酸1次ホウ酸等のホウ
素のオキソ酸およびその塩等が挙げられる。これらのホ
ウ素化合物は、いずれも水?8液の状態で炭素化のため
の反応系に添加することができる。
Examples of boron compounds include boron oxides such as diboron dioxide, diboron trioxide (so-called boron oxide), tetraboron trioxide, and tetraboron pentoxide, orthoboric acid (so-called boric acid), metaboric acid, and tetraboric acid. Examples include boron oxoacids such as primary boric acid and salts thereof. Are all these boron compounds water? It can be added to the reaction system for carbonization in the form of 8 liquids.

本発明では、有機材料の炭素化の際に添加されるホウ素
化合物の添加量はこれら有機材料もしくは炭素質材料に
対してホウ素換算で0.15〜2.5重量%、また炭素
質材料中のホウ素の含量は0.1〜2.0重量%とする
。これらの範囲は、本発明者らが行った次のような予備
実験にもとづいて決定されたものである。
In the present invention, the amount of the boron compound added during carbonization of organic materials is 0.15 to 2.5% by weight in terms of boron relative to these organic materials or carbonaceous materials, and The boron content is 0.1 to 2.0% by weight. These ranges were determined based on the following preliminary experiments conducted by the present inventors.

まず第1図に、ポリフルフリルアルコール樹脂(無水マ
レイン酸触媒)焼成体の焼成に際しでホウ酸を添加した
場合のホウ素仕込み置と焼成体中に残存するホう素の量
との関係を示す。ホウ素の残存量は、誘導結合型プラズ
マ発光分光分析により定量した。また、ホウ素の仕込み
量は、ホウ酸の添加量から換算したものである。これよ
り、ホウ素残存量はホウ素仕込み量にほぼ比例して増大
していることがわかる。
First, FIG. 1 shows the relationship between the boron charging device and the amount of boron remaining in the fired product when boric acid is added during firing of the polyfurfuryl alcohol resin (maleic anhydride catalyst) fired product. The remaining amount of boron was determined by inductively coupled plasma emission spectrometry. Further, the amount of boron charged is calculated from the amount of boric acid added. From this, it can be seen that the residual amount of boron increases almost in proportion to the amount of boron charged.

第2図には、かかる焼成体を負極とした電池における連
続充放電可能電気量のホウ素仕込み量による変化を示す
。これより、焼成に際してのホウ素の添加は充放電容量
を増大させる上で有効であるが、その変化のパターンに
は極大値が存在することがわかる。つまり、負極に残存
するホウ素量は多いほど好ましいとは一概に言えないの
である。
FIG. 2 shows the change in the amount of electricity that can be continuously charged and discharged in a battery using such a fired body as a negative electrode, depending on the amount of boron charged. This shows that although the addition of boron during firing is effective in increasing the charge/discharge capacity, there is a maximum value in the pattern of its change. In other words, it cannot be said unequivocally that the larger the amount of boron remaining in the negative electrode, the better.

一般に、炭素質材料中の炭素原子がホウ素原子に置換さ
れると電気伝導度が低下すると考えられている。そこで
、ホウ素仕込み量と電池の内部抵抗との関係を調べたと
ころ、第3図に示すように、内部抵抗はホウ素仕込み量
の増大にともなって増大していた。
It is generally believed that when carbon atoms in a carbonaceous material are replaced with boron atoms, electrical conductivity decreases. Therefore, when the relationship between the amount of boron charged and the internal resistance of the battery was investigated, as shown in FIG. 3, the internal resistance increased as the amount of boron charged increased.

したがって、ホウ素の仕込み量および残存量は電池の実
用性能を考慮して最適範囲に規定される必要があり、上
述の範囲が決定された。ホウ素化合物の添加量が前記範
囲よりも少なく、その結果として炭素質材料中のホウ素
の割合が少なくなりすぎると、リチウムのドープ量を効
果的に増大させることができない。逆に、ホウ素化合物
の添加量が前記の範囲よりも多く、その結果として炭素
質材料中のホウ素の割合が多くなりすぎると、内部抵抗
が増大する他、リチウムのドープに実質的に関与する炭
素質材料の割合を減少させる虞れがある。
Therefore, the amount of boron charged and the remaining amount must be determined within the optimum range in consideration of the practical performance of the battery, and the above-mentioned range was determined. If the amount of the boron compound added is less than the above range, and as a result, the proportion of boron in the carbonaceous material becomes too small, the amount of lithium doped cannot be effectively increased. On the other hand, if the amount of boron compound added is larger than the above range, and as a result, the proportion of boron in the carbonaceous material becomes too large, the internal resistance will increase and the carbon material that is substantially involved in lithium doping will increase. There is a risk of reducing the proportion of quality materials.

前述の炭素質材料を非水電解液電池の負極とする場合、
正極材料としては十分な量のリチウムを含んだ材料を使
用することが好ましく、一般式LiMO□ (ただし、
MはCo、Niの少な(とも1種を表す。)で表される
複合金属酸化物やリチウムを含んだ眉間化合物等が使用
される。特にLiCo0.やL i Coo、sN i
 o、zoz等を使用した場合に良好な特性が発揮され
る。
When using the aforementioned carbonaceous material as the negative electrode of a non-aqueous electrolyte battery,
It is preferable to use a material containing a sufficient amount of lithium as the positive electrode material, and the general formula LiMO□ (however,
For M, a composite metal oxide containing a small amount of Co or Ni (both represent one type), a lithium-containing compound, or the like is used. Especially LiCo0. YaL i Coo, sN i
Good characteristics are exhibited when o, zoz, etc. are used.

非水電解液は、有機溶媒と電解質を適宜組み合わせて調
製されるが、これらを機溶媒や電解質としてはこの種の
電池に用いられるものであればいずれも使用可能である
The non-aqueous electrolyte is prepared by appropriately combining an organic solvent and an electrolyte, but any organic solvent or electrolyte that is used in this type of battery can be used.

例示するならば、有機溶媒としてはプロピレンカーボネ
ート、エチレンカーボネート、12ジメトキシエタン、
1.2−シェドキンエタン、γ−ブチロラクトン、テト
ラヒドロフラン、2メチルテトラヒドロフラン、1.3
−ジオキソラン、4−メチル−13−ジオキソラン、ジ
エチルエーテル、スルホラン、メチルスルホラン、アセ
トニトリル、プロピオニトリル、アニソール等である。
To illustrate, examples of organic solvents include propylene carbonate, ethylene carbonate, 12 dimethoxyethane,
1.2-shedquin ethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1.3
-dioxolane, 4-methyl-13-dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile, anisole and the like.

電解質としては、LiCf0.、LiAsF、、1iP
Fa、LiBF4、L i B(C6H5)4、CH3
S Os L i 、、CF 3 S O3L i、L
iC1、LiBr等が挙げられる。
As an electrolyte, LiCf0. ,LiAsF,,1iP
Fa, LiBF4, LiB(C6H5)4, CH3
S Os L i ,, CF 3 S O3 L i,L
Examples include iC1, LiBr, and the like.

〔作用〕[Effect]

有機材料を炭素化して炭素質材料とする際に、ホウ酸等
のホウ素化合物を添加しておくと、リチウムのトープ量
が大きなものとなり、脱ドープ量/ドー装置で表される
充放電効率も大きなものとなる。
If a boron compound such as boric acid is added when carbonizing an organic material to make a carbonaceous material, the amount of lithium tope increases, and the charge/discharge efficiency expressed as dedoping amount/doping device also increases. It becomes something big.

このリチウムのドープ量が大きな炭素質材料を非水電解
質電池の負極とすると、充放電容量が拡大され、充放電
操作の繰り返しによる劣化も抑えられる。
When this carbonaceous material doped with a large amount of lithium is used as the negative electrode of a non-aqueous electrolyte battery, the charge/discharge capacity is expanded and deterioration due to repeated charge/discharge operations is suppressed.

〔実施例〕〔Example〕

以下、本発明を具体的な実験結果にもとづいて説明する
The present invention will be explained below based on specific experimental results.

実施例1 フルフリルアルコール500 g、無水マレイン酸1g
、純水200gを混合し、湯浴上で2時間還流させて赤
黒色の粘稠なポリマーを得た。
Example 1 Furfuryl alcohol 500 g, maleic anhydride 1 g
, 200 g of pure water were mixed and refluxed on a hot water bath for 2 hours to obtain a reddish-black viscous polymer.

未反応アルコールおよび残留水を真空蒸溜により除去し
た後、得られたポリマー100gに対してホウ酸5g(
ホウ素換算で0.87 g )を純水50gに溶解した
水溶液を加えた。
After removing unreacted alcohol and residual water by vacuum distillation, 5 g of boric acid (
An aqueous solution of 0.87 g (calculated as boron) dissolved in 50 g of pure water was added.

この混合物を窒素気流中で500°C,5時間保持して
炭化した後、1200°Cに昇温し1時間熱処理した。
This mixture was carbonized by holding it at 500°C in a nitrogen stream for 5 hours, and then heated to 1200°C and heat-treated for 1 hour.

このようにして得られた炭素質材料の特性は、(002
)面間距離3.75人、真密度1.55g/cm”DT
Aにおける発熱ピーク595°C,ホウ素含量0.45
重量%であった。
The characteristics of the carbonaceous material obtained in this way are (002
) Distance between surfaces 3.75 people, true density 1.55 g/cm”DT
Exothermic peak in A 595°C, boron content 0.45
% by weight.

次に、上記炭素質材料を用いてコイン型の非水電界液電
池を構成した。
Next, a coin-shaped non-aqueous electrolyte battery was constructed using the carbonaceous material.

先ず、上記炭素質材料を乳鉢にて粉砕した後、篩により
分級し、390メツシユ以下のものを採取した。
First, the carbonaceous material was ground in a mortar, then classified using a sieve, and those having a size of 390 mesh or less were collected.

分級した炭素質材料1gに結合剤としてポリフッ化ビニ
リデン100mgを加え、ジメチルホルムアミドを用い
てペースト状とし、これをステンレス製の綱に塗布して
5t/cdの圧力で圧着した。
100 mg of polyvinylidene fluoride was added as a binder to 1 g of the classified carbonaceous material, and dimethylformamide was used to form a paste, which was applied to a stainless steel rope and compressed with a pressure of 5 t/cd.

これを適当な形に打ち抜き、負極とした。This was punched out into a suitable shape and used as a negative electrode.

正極は、活物質としてLiN1o、zCo。6,0□を
用い、次のようにして作成した。
The positive electrode uses LiN1o and zCo as active materials. It was created as follows using 6.0 □.

LiN1o、zc Oo、mot 9.1 gにグラフ
ァイト600mg、ポリ四フッ化エチレン300mgを
加えて混合した後、そのIgを取って成形型に入れ、2
t/cdの圧力でコンプレッション成形し、円盤状の正
極とした。
After adding and mixing 600 mg of graphite and 300 mg of polytetrafluoroethylene to 9.1 g of LiN1o, zc Oo, mot, the Ig was taken and put into a mold, and 2
Compression molding was performed at a pressure of t/cd to form a disk-shaped positive electrode.

以上の正極と負極を用い、電解液としてプロピレンカー
ボネートと1,2−ジメトキシエタンの1=1(体積比
)混合溶媒にLiCj20.を1モル/lの割合で溶解
した溶液を用い、さらにセパレータとしてポリプロピレ
ン不織布を用いてコイン型の電池を作成した。このとき
、両極における活物質の使用量は、電気化学当量で比較
した場合に正極が負極に対して十分に大きくなるように
設定し、したがって電池容量が負極規制となるようにし
た。
Using the above positive electrode and negative electrode, LiCj20. A coin-shaped battery was prepared by using a solution in which 1 mol/l of 1 mol/l was dissolved and a polypropylene nonwoven fabric as a separator. At this time, the amount of active material used in both electrodes was set so that the positive electrode was sufficiently larger than the negative electrode when compared in terms of electrochemical equivalent, so that the battery capacity was regulated by the negative electrode.

この電池について充放電サイクル試験を行った。A charge/discharge cycle test was conducted on this battery.

充電および放電は共に0.53 mA/ c m”の定
電流で行い、放電終止電圧は1.5Vとした。ここで、
充電量を380mAH/g (ただし、炭素質材料Ig
当たりの充電量。以下間し。)として充放電サイクル試
験を行った結果を第4図に示す。図中、縦軸は放電容N
(mAH/g)、横軸はサイクル回数(回)を表し、本
実施例の結果は曲線Iで表す。この結果からも明らかな
ように、本実施例にかかる電池は90サイクルを経た後
でも安定して高い放電容量を維持しており、グラファイ
トを負極とした場合の理論最大容量(372mAH/ 
g)と同等以上の充電量にて充放電が可能であることが
わかる。
Both charging and discharging were performed at a constant current of 0.53 mA/cm'', and the discharge end voltage was 1.5V.Here,
Charge amount is 380mAH/g (However, carbonaceous material Ig
Charge amount per unit. For the following time. ) The results of a charge/discharge cycle test are shown in FIG. In the figure, the vertical axis is the discharge capacity N
(mAH/g), the horizontal axis represents the number of cycles (times), and the results of this example are represented by curve I. As is clear from this result, the battery according to this example maintains a stable high discharge capacity even after 90 cycles, and the theoretical maximum capacity (372 mAH/
It can be seen that charging and discharging is possible with a charge amount equal to or higher than g).

また、第5図には充電量を380m A H/ gとし
た場合の放電曲線を示す。図中、縦軸は放電電圧(■)
、横軸は放電容量(mAH/g)を表し、本実施例の結
果は実線で表す。この際の充放電効率は98.3%と極
めて良好であった。
Further, FIG. 5 shows a discharge curve when the charging amount is 380mAH/g. In the figure, the vertical axis is the discharge voltage (■)
, the horizontal axis represents discharge capacity (mAH/g), and the results of this example are represented by a solid line. The charging/discharging efficiency at this time was extremely good at 98.3%.

比較例1 実施例1と同様にしてポリマーを得た後、ホウ酸水溶液
を加えずに熱処理を施し、炭素質材料を得た。
Comparative Example 1 After obtaining a polymer in the same manner as in Example 1, heat treatment was performed without adding an aqueous boric acid solution to obtain a carbonaceous material.

この炭素質材料を用いて実施例1と同様の電池を作成し
、同様の条件で充放電サイクル試験を行った。ただし、
充電量は320.350.380 m A H/ごと変
化させた。結果を前述の第4図に併せて示す。図中、曲
線■は充Eilを320m A H/ gとした場合、
曲線■は350m A H/ g、曲線■は1380m
 A H/ gとした場合にそれぞれ対応する。この結
果、安定した充放電特性が得られるのは充電量がせいぜ
い320mAH/gと低い場合に限られることがわかっ
た。
A battery similar to that in Example 1 was prepared using this carbonaceous material, and a charge/discharge cycle test was conducted under the same conditions. however,
The charging amount was varied by 320.350.380 m AH/. The results are also shown in FIG. 4 mentioned above. In the figure, the curve ■ is when the charge Eil is 320mA H/g.
Curve ■ is 350m A H/g, curve ■ is 1380m
This corresponds to the case of A H/g. As a result, it was found that stable charge/discharge characteristics could be obtained only when the charge amount was as low as 320 mAH/g at most.

また、前述の第5図に充電量を320m A H/ g
とした場合の放電曲線を破線で示す。この際の充放電効
率は97.0%であった。
Also, the charging amount shown in Figure 5 above is 320m A H/g.
The discharge curve in this case is shown by a broken line. The charging/discharging efficiency at this time was 97.0%.

実施例2 ポリーP−フェニレンテレフタルアミド繊維10gを、
ホウ酸500mg(ホウ素換算で87.5mg)を純水
15gに溶解した溶液中で湿潤させたた後、窒素気流中
、500°Cで5時間保持して炭化させ、さらに120
0°Cまで昇温しで1時間の熱処理を行った。このよう
にして得られた炭素質材料の特性は、真密度1.35g
/cm″、  DTAにおける発熱ビーク6jO’C,
ホウ素含10.45重世%であった。
Example 2 10 g of poly P-phenylene terephthalamide fiber,
After moistening 500 mg of boric acid (87.5 mg in terms of boron) in a solution of 15 g of pure water, it was held at 500°C in a nitrogen stream for 5 hours to carbonize, and then
The temperature was raised to 0°C and heat treatment was performed for 1 hour. The characteristics of the carbonaceous material obtained in this way are that the true density is 1.35 g.
/cm'', exothermic peak 6jO'C at DTA,
The boron content was 10.45%.

上記炭素質材料を用いて、実施例1と同様の電池を作成
した。
A battery similar to that in Example 1 was created using the above carbonaceous material.

様々な充放電量で充放電サイクル試験を行った結果、3
80m A H/ gという高い充電量においても安定
した充放電を行えることが判明した。
As a result of charge/discharge cycle tests with various charge/discharge amounts, 3
It was found that stable charging and discharging could be performed even at a high charge amount of 80mAH/g.

充電量を380mAH/gとした場合の放電曲線を第6
図に実線で示す。このときの充放電効率は98.5%で
あった 比較例2 ポリ−p−フェニレンテレフタルアミド繊維にホウ酸を
加えないこと以外は実施例2と全く同様にして電池を作
成し、様々な充電量で充放電サイクル試験を行った。
The discharge curve when the charge amount is 380mAH/g is shown in the sixth
Shown in the figure as a solid line. The charging/discharging efficiency at this time was 98.5%. Comparative Example 2 A battery was prepared in the same manner as in Example 2 except that boric acid was not added to the poly-p-phenylene terephthalamide fiber, and various charging A charge/discharge cycle test was conducted on the battery.

その結果、安定した充放電が行われるのは充電量が36
0m A H/ g程度までの場合に限らることかわか
った。
As a result, stable charging and discharging is possible only when the amount of charge is 36.
It was found that this is limited to cases up to about 0 mAH/g.

充電量を360m A H/ gとした場合の放電曲線
を前述の第6図に破線で示す。このときの充放電効率は
98.0%であった。
The discharge curve when the charging amount is 360mAH/g is shown by the broken line in the above-mentioned FIG. 6. The charge/discharge efficiency at this time was 98.0%.

以十の実施例および比較例から明らかなように、有機材
料の炭化および熱処理を行う際にホウ素を共存させるこ
とで、従来より充放電容量の向上した炭素質材料が得ら
れる。特に、各実施例において示されるように、出発原
料を適切に選択すればグラファイトを負極とする場合の
理論最大容量を上回る充放電容量を有する炭素質材料を
も得ることができる。
As is clear from the following ten examples and comparative examples, by allowing boron to coexist during carbonization and heat treatment of an organic material, a carbonaceous material with improved charge/discharge capacity than before can be obtained. In particular, as shown in each example, if the starting materials are appropriately selected, it is possible to obtain a carbonaceous material having a charge/discharge capacity that exceeds the theoretical maximum capacity when graphite is used as the negative electrode.

以上、本発明を適用した具体的な実施例について説明し
たが、本発明がこれら実施例に限定されるものではなく
、本発明の要旨を逸脱しない範囲で種々の変更が可能で
ある。
Although specific embodiments to which the present invention is applied have been described above, the present invention is not limited to these embodiments, and various changes can be made without departing from the gist of the present invention.

(発明の効果] 以上の説明からも明らかなように、本発明の炭素質材料
はホウ素を含有することから、リチウムに対するドープ
量が大きな炭素質材料を提供することができる。
(Effects of the Invention) As is clear from the above description, since the carbonaceous material of the present invention contains boron, it is possible to provide a carbonaceous material with a large amount of lithium doped.

また、本発明の製造方法によれば、簡単な操作で特性の
優れた炭素質材料を製造することができ、特にリチウム
のドープ量や充放電効率(脱ドープ量/ドープI)の大
きい炭素質材料を製造することが可能である。
Further, according to the production method of the present invention, a carbonaceous material with excellent properties can be produced with simple operations, and in particular, a carbonaceous material with a high lithium doping amount and charge/discharge efficiency (undoping amount/doping I) can be produced. It is possible to manufacture the material.

さらに本発明の非水電解液電池においては、リチウムの
ドープ量や充放電効率の大きな炭素質材料を負極として
いるので、グラファイトを負極とする場合の理論最大容
量をも上回る充放電容量を実現することができ、しかも
サイクル特性や充放電効率に優れた電池を提供すること
が可能である。
Furthermore, in the non-aqueous electrolyte battery of the present invention, since the negative electrode is made of a carbonaceous material with a large amount of lithium doped and a high charge/discharge efficiency, it achieves a charge/discharge capacity that exceeds the theoretical maximum capacity when graphite is used as the negative electrode. Furthermore, it is possible to provide a battery with excellent cycle characteristics and charge/discharge efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はポリフルフリルアルコール樹脂の焼成時におけ
るホウ素仕込み量と得られる焼成体中におけるホウ素残
存量との関係を示す特性図である。 第2図はポリフルフリルアルコール樹脂の焼成における
ホウ素仕込み量と得られる焼成体を負極とする電池の連
続充放電可能電気量との関係を示す特性図である。第3
図はホウ素仕込み量と得られる焼成体を負極とする電池
の内部抵抗との関係を示す特性図である。第4図はポリ
フルフリルアルコール樹脂にホウ酸を添加して作成した
炭素質材料を負極とした非水電解液二次電池の充放電サ
イクル特性をホウ酸を添加しないで作成した炭素質材料
を負極とした電池のそれと比べて示す特性図である。第
5図はポリフルフリルアルコール樹脂にホウ酸を添加し
て作成した炭素質材料を負極とした非水電解液二次電池
の放電曲線をホウ酸を添加しないで作成した炭素質材料
を負極とした電池のそれと比べて示す特性図である。第
6図はポリp−フェニレンテレフタルアミド繊維にホウ
酸を添加して作成した炭素質材料を負極とした非水電解
液二次電池の放電曲線をホウ素酸を添加しないで作成し
た炭素質材料を負極とした電池のそれと比べて示す特性
図である。
FIG. 1 is a characteristic diagram showing the relationship between the amount of boron charged during firing of polyfurfuryl alcohol resin and the amount of boron remaining in the resulting fired product. FIG. 2 is a characteristic diagram showing the relationship between the amount of boron charged in the firing of polyfurfuryl alcohol resin and the amount of electricity that can be continuously charged and discharged of a battery using the obtained fired body as a negative electrode. Third
The figure is a characteristic diagram showing the relationship between the amount of boron charged and the internal resistance of a battery using the obtained fired body as the negative electrode. Figure 4 shows the charge/discharge cycle characteristics of a nonaqueous electrolyte secondary battery using a carbonaceous material made by adding boric acid to polyfurfuryl alcohol resin as the negative electrode. It is a characteristic diagram shown in comparison with that of a battery of Figure 5 shows the discharge curve of a non-aqueous electrolyte secondary battery using a carbonaceous material made by adding boric acid to polyfurfuryl alcohol resin as the negative electrode, and a carbonaceous material made without boric acid being used as the negative electrode. It is a characteristic diagram shown in comparison with that of a battery. Figure 6 shows the discharge curve of a non-aqueous electrolyte secondary battery using a carbonaceous material made by adding boric acid to poly p-phenylene terephthalamide fiber as the negative electrode, and the discharge curve of a nonaqueous electrolyte secondary battery using a carbonaceous material made without boric acid as the negative electrode. It is a characteristic diagram shown in comparison with that of a battery using a negative electrode.

Claims (3)

【特許請求の範囲】[Claims] (1)有機材料が炭素化されてなり、ホウ素を0.1〜
2.0重量%含有することを特徴とする炭素質材料。
(1) The organic material is carbonized and contains 0.1 to 0.1% boron.
A carbonaceous material characterized by containing 2.0% by weight.
(2)有機材料もしくは炭素質材料に対し、ホウ素換算
で0.15〜2.5重量%のホウ素化合物を添加し、炭
素化することを特徴とする炭素質材料の製造方法。
(2) A method for producing a carbonaceous material, which comprises adding 0.15 to 2.5% by weight of a boron compound in terms of boron to an organic material or a carbonaceous material and carbonizing it.
(3)有機材料が炭素化されホウ素を0.1〜2.0重
量%含有してなる炭素質材料を負極とし、リチウムを含
んだ正極と非水電解液とを有してなる非水電解液電池。
(3) Non-aqueous electrolysis comprising a carbonaceous material made of carbonized organic material containing 0.1 to 2.0% by weight of boron as a negative electrode, a positive electrode containing lithium, and a non-aqueous electrolyte. liquid battery.
JP2038343A 1990-02-21 1990-02-21 Negative electrode for battery, method for producing the same, and nonaqueous electrolyte battery using the same Expired - Fee Related JP3060471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2038343A JP3060471B2 (en) 1990-02-21 1990-02-21 Negative electrode for battery, method for producing the same, and nonaqueous electrolyte battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2038343A JP3060471B2 (en) 1990-02-21 1990-02-21 Negative electrode for battery, method for producing the same, and nonaqueous electrolyte battery using the same

Publications (2)

Publication Number Publication Date
JPH03245458A true JPH03245458A (en) 1991-11-01
JP3060471B2 JP3060471B2 (en) 2000-07-10

Family

ID=12522641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2038343A Expired - Fee Related JP3060471B2 (en) 1990-02-21 1990-02-21 Negative electrode for battery, method for producing the same, and nonaqueous electrolyte battery using the same

Country Status (1)

Country Link
JP (1) JP3060471B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182668A (en) * 1991-12-27 1993-07-23 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
EP0692833A1 (en) 1994-07-08 1996-01-17 Moli Energy (1990) Limited Carbonaceous insertion compounds and use as anodes in rechargeable batteries
US5536597A (en) * 1993-12-17 1996-07-16 Mitsubishi Gas Chemical Company Lithium secondary battery employing a non-aqueous electrolyte
US5580538A (en) * 1992-03-18 1996-12-03 Matsushita Electric Industrial Co., Ltd. Process for producing a negative electrode for a storage battery with a non-aqueous electrolyte
EP0762522A1 (en) * 1995-08-18 1997-03-12 PETOCA, Ltd Boron containing carbon material for lithium secondary battery and process for producing the same
US5624606A (en) * 1994-05-03 1997-04-29 Moli Energy (1990) Limited Carbonaceous host compounds and use as anodes in rechargeable batteries
US5679480A (en) * 1993-07-26 1997-10-21 Mitsubishi Gas Chemical Company, Inc. Lithium secondary battery employing a non-aqueous media
US5698340A (en) * 1995-03-03 1997-12-16 Moli Energy (1990) Limited Carbonaceous insertion compounds and use as anodes in rechargeable batteries
WO1998024134A1 (en) * 1996-11-26 1998-06-04 Kao Corporation Negative electrode material for nonaqueous secondary battery
JPH10233208A (en) * 1996-12-20 1998-09-02 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
EP1117141A1 (en) * 1999-07-21 2001-07-18 Mitsubishi Materials Corporation Carbon powder having enhanced electrical characteristics and use of the same
US6355377B1 (en) 2000-03-07 2002-03-12 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and method of preparing same
WO2002093666A1 (en) * 2001-05-15 2002-11-21 Fdk Corporation Nonaqueous electrolytic secondary battery and method of producing anode material thereof
US6489026B1 (en) 1999-03-25 2002-12-03 Showa Denko K.K. Carbon fiber, method for producing the same and electrode for cell
EP2163517A1 (en) 2008-09-04 2010-03-17 Korea Institute Of Science And Technology Transition metal oxides/multi-walled carbon nanotube nanocomposite and method for manufacturing the same
EP2218787A1 (en) 2009-02-12 2010-08-18 Korea Institute of Science and Technology Bacteria/ transition metal oxides organic-inorganic composite and method for manufacturing the same
JP2012028211A (en) * 2010-07-26 2012-02-09 Hitachi Chem Co Ltd Lithium secondary battery negative electrode material, lithium secondary battery negative electrode using the same and lithium secondary battery using the electrode

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182668A (en) * 1991-12-27 1993-07-23 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US5580538A (en) * 1992-03-18 1996-12-03 Matsushita Electric Industrial Co., Ltd. Process for producing a negative electrode for a storage battery with a non-aqueous electrolyte
US5679480A (en) * 1993-07-26 1997-10-21 Mitsubishi Gas Chemical Company, Inc. Lithium secondary battery employing a non-aqueous media
US5536597A (en) * 1993-12-17 1996-07-16 Mitsubishi Gas Chemical Company Lithium secondary battery employing a non-aqueous electrolyte
US5624606A (en) * 1994-05-03 1997-04-29 Moli Energy (1990) Limited Carbonaceous host compounds and use as anodes in rechargeable batteries
US5587256A (en) * 1994-07-08 1996-12-24 Moli Energy (1990) Limited Carbonaceous insertion compounds and use as anodes in rechargeable batteries
EP0692833A1 (en) 1994-07-08 1996-01-17 Moli Energy (1990) Limited Carbonaceous insertion compounds and use as anodes in rechargeable batteries
US5698340A (en) * 1995-03-03 1997-12-16 Moli Energy (1990) Limited Carbonaceous insertion compounds and use as anodes in rechargeable batteries
EP0762522A1 (en) * 1995-08-18 1997-03-12 PETOCA, Ltd Boron containing carbon material for lithium secondary battery and process for producing the same
KR100273710B1 (en) * 1995-08-18 2000-12-15 가타야마 노부오 Carbon material for lithium secondary battery and process for producing the same
WO1998024134A1 (en) * 1996-11-26 1998-06-04 Kao Corporation Negative electrode material for nonaqueous secondary battery
JPH10233208A (en) * 1996-12-20 1998-09-02 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
US6489026B1 (en) 1999-03-25 2002-12-03 Showa Denko K.K. Carbon fiber, method for producing the same and electrode for cell
US6946110B2 (en) 1999-03-25 2005-09-20 Showa Denko K.K. Carbon fibers, production process therefor and electrode for batteries
EP1117141A1 (en) * 1999-07-21 2001-07-18 Mitsubishi Materials Corporation Carbon powder having enhanced electrical characteristics and use of the same
EP1117141A4 (en) * 1999-07-21 2007-02-21 Mitsubishi Materials Corp Carbon powder having enhanced electrical characteristics and use of the same
US6355377B1 (en) 2000-03-07 2002-03-12 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and method of preparing same
WO2002093666A1 (en) * 2001-05-15 2002-11-21 Fdk Corporation Nonaqueous electrolytic secondary battery and method of producing anode material thereof
US7238449B2 (en) 2001-05-15 2007-07-03 Fdk Corporation Nonaqueous electrolytic secondary battery and method of producing anode material thereof
US7608366B2 (en) 2001-05-15 2009-10-27 Fdk Corporation Nonaqueous electrolytic secondary battery and method of producing anode material thereof
EP2163517A1 (en) 2008-09-04 2010-03-17 Korea Institute Of Science And Technology Transition metal oxides/multi-walled carbon nanotube nanocomposite and method for manufacturing the same
EP2218787A1 (en) 2009-02-12 2010-08-18 Korea Institute of Science and Technology Bacteria/ transition metal oxides organic-inorganic composite and method for manufacturing the same
US8685550B2 (en) 2009-02-12 2014-04-01 Korea Institute Of Science And Technology Bacteria/transition metal oxides organic-inorganic composite and method for manufacturing the same
JP2012028211A (en) * 2010-07-26 2012-02-09 Hitachi Chem Co Ltd Lithium secondary battery negative electrode material, lithium secondary battery negative electrode using the same and lithium secondary battery using the electrode

Also Published As

Publication number Publication date
JP3060471B2 (en) 2000-07-10

Similar Documents

Publication Publication Date Title
CA2055305C (en) Nonaqueous electrolyte secondary battery
JP4228593B2 (en) Nonaqueous electrolyte secondary battery
JPH0266856A (en) Nonaqueous electrolyte battery
JP3126030B2 (en) Lithium secondary battery
JPH04237971A (en) Nonaqueous electrolyte secondary battery
JP2005038720A (en) Method of manufacturing negative electrode and method of manufacturing battery
JPH03245458A (en) Carbonaceous material, manufacture thereof, and non-aqueous electrolyte battery using thereof
JPH06333594A (en) Nonaqueous electrolyte secondary battery
JP3532016B2 (en) Organic electrolyte secondary battery
JP2005005117A (en) Battery
JP3709628B2 (en) Non-aqueous electrolyte secondary battery
JPH04284374A (en) Nonaqueous electrolytic secondary battery
JP2003157900A (en) Battery
JPH11233140A (en) Nonaqueous electrolyte secondary battery
JP4354723B2 (en) Method for producing graphite particles
JP2000251890A (en) Negative electrode for nonaqueous electrolyte secondary battery, and secondary battery using the same
JPH06215761A (en) Nonaqueous electrolyte secondary battery graphite electrode and nonaqueous electrolyte secondary battery using it
JP3552377B2 (en) Rechargeable battery
JP2005197175A (en) Positive electrode, negative electrode, electrolyte and battery
JP4192574B2 (en) Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery
JP2002117830A (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP2005005118A (en) Battery
JP2002280080A (en) Method of charging secondary battery
JP4016497B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JPH0613109A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees