JPH05182668A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH05182668A
JPH05182668A JP3360253A JP36025391A JPH05182668A JP H05182668 A JPH05182668 A JP H05182668A JP 3360253 A JP3360253 A JP 3360253A JP 36025391 A JP36025391 A JP 36025391A JP H05182668 A JPH05182668 A JP H05182668A
Authority
JP
Japan
Prior art keywords
battery
present
content
weight
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3360253A
Other languages
Japanese (ja)
Inventor
Ikurou Nakane
育朗 中根
Seiji Yoshimura
精司 吉村
Sanehiro Furukawa
修弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP3360253A priority Critical patent/JPH05182668A/en
Publication of JPH05182668A publication Critical patent/JPH05182668A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve battery capacity and a preservation characteristic by using an active material, in which lithium can be stored and released, and a carbon material respectively as positive and negative electrode materials, and containing specific weight% of a specific element atom in the carbon material. CONSTITUTION:As an active material of a positive electrode 1, metal oxide of MnO2 or the like, metal sulfide of FeS or the like, metal selenide and compound oxide of Li and a metal of at least one kind, selected from a group consisting of Cr, Mn, Fe, Co, Ni, are shown as examples. As a carbon material of a negative electrode 2, graphite, cokes, organic sintered material, etc., of containing 10<-10> to 3wt.% atom of at least one kind, selected from a group consisting of Al, Ga, In, Tl, P, As, Sb and Bi, are used. In this way, a lattice defect in a carbon crystal is stabilized and also to increase a quantity, and a storage/release possible amount of lithium is increased to improve a preservation characteristic by decreasing a self discharge.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水系電解質二次電池
に係わり、特に負極材料たる炭素材料の物性が改良され
た非水系電解質二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery in which the physical properties of a carbon material as a negative electrode material are improved.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】最近、
充電時に電析リチウムの生成がないこと、可撓性に優れ
るため電池形状が制限されないことなどの理由から、リ
チウムを吸蔵放出可能な炭素材料が非水系電解質二次電
池の負極材料として提案され脚光を浴びている。
2. Description of the Related Art Recently, the problems to be solved by the invention
A carbon material capable of inserting and extracting lithium has been proposed as a negative electrode material for non-aqueous electrolyte secondary batteries because it does not generate electrodeposited lithium during charging and because the battery shape is not limited due to its excellent flexibility. Taking a bath.

【0003】この炭素材料を負極材料とする非水系電解
質二次電池においては、充電により炭素結晶内に吸蔵さ
れたリチウムが放電の際にリチウムイオンとして放出さ
れ、このリチウムイオンの生成と同時に生成した電子が
正極に流れることにより、電池内部で生じた化学エネル
ギーが電気エネルギーとして取り出される。上記炭素材
料によるリチウムの吸蔵放出は、炭素結晶の格子欠陥に
リチウムが出入りすることにより行われる。
In a non-aqueous electrolyte secondary battery using this carbon material as a negative electrode material, the lithium occluded in the carbon crystal by charging is released as lithium ion during discharging, and is produced at the same time as the production of this lithium ion. When the electrons flow to the positive electrode, the chemical energy generated inside the battery is taken out as electric energy. The absorption and desorption of lithium by the carbon material is performed by the lithium entering and leaving the lattice defects of the carbon crystal.

【0004】しかしながら、炭素結晶の格子欠陥数はさ
ほど多くないため、リチウムの吸蔵放出可能な量も実用
上充分ではなく、このことが炭素材料を用いて実用上充
分満足のいく容量を有する非水系電解質二次電池を得る
上での大きな障壁となっていた。
However, since the number of lattice defects in carbon crystals is not so large, the amount of lithium that can be inserted and released is not practically sufficient. This means that a non-aqueous system having a sufficiently satisfactory practical capacity using a carbon material is used. It has been a great barrier to obtaining an electrolyte secondary battery.

【0005】また、負極材料たる炭素材料は、吸蔵せる
リチウムと電解質との反応を促進させる触媒としても機
能するため、無負荷状態での保存中に、前記リチウムが
リチウムイオンとして電解質中に溶出する現象、すなわ
ち自己放電が起こり易く、その結果保存特性が低下する
という問題があった。
Further, since the carbon material as the negative electrode material also functions as a catalyst for promoting the reaction between the occluded lithium and the electrolyte, the lithium is eluted as lithium ions into the electrolyte during storage under no load condition. There is a problem that a phenomenon, that is, self-discharge easily occurs, resulting in deterioration of storage characteristics.

【0006】さらにまた、充放電サイクルを重ねると炭
素結晶の一部が崩壊して活性点が増加するが、この活性
点にはヒドロキシル基やカルボキシル基などの活性水素
含有基(プロトン放出体)が吸着し易いため、活性点の
増加に伴い無負荷状態での保存中に電解質中に放出され
る水素イオン(プロトン)の量も増加する。これによる
自己放電も、非水系電解質二次電池の保存特性を悪くし
ている大きな要因であった。
Furthermore, when the charge / discharge cycle is repeated, a part of the carbon crystal collapses to increase the active site, and the active site contains an active hydrogen-containing group (proton-emitter) such as a hydroxyl group or a carboxyl group. Since it is easily adsorbed, the amount of hydrogen ions (protons) released into the electrolyte during storage in an unloaded state also increases as the number of active sites increases. The self-discharge due to this is also a major factor that deteriorates the storage characteristics of the non-aqueous electrolyte secondary battery.

【0007】本発明は、以上の事情に鑑みなされたもの
であって、その目的とすることころは、リチウムの吸蔵
放出量が多いため電池容量が大きく、しかも自己放電が
少ないため保存特性に優れる非水系電解質二次電池を提
供するにある。
The present invention has been made in view of the above circumstances, and an object thereof is to have a large battery capacity because of a large amount of inserted and discharged lithium, and to have excellent storage characteristics because of little self-discharge. A non-aqueous electrolyte secondary battery is provided.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る非水系電解質二次電池は、リチウムを吸
蔵放出可能な活物質を正極材料とする正極と、リチウム
を吸蔵放出可能な炭素材料を負極材料とする負極と、こ
れら両極間に介装されたセパレータとを備えてなる非水
系電解質二次電池であって、前記炭素材料がアルミニウ
ム、ガリウム、インジウム、タリウム、リン、ヒ素、ア
ンチモン及びビスマスよりなる群から選ばれた少なくと
も一種の原子を10-10 〜3重量%含有するものである
ことを特徴とする。
Means for Solving the Problems A non-aqueous electrolyte secondary battery according to the present invention for achieving the above object is a positive electrode using an active material capable of occluding and releasing lithium as a positive electrode material, and capable of occluding and releasing lithium. A non-aqueous electrolyte secondary battery comprising a negative electrode using a carbon material as a negative electrode material, and a separator interposed between these electrodes, wherein the carbon material is aluminum, gallium, indium, thallium, phosphorus, arsenic, It is characterized in that it contains at least one atom selected from the group consisting of antimony and bismuth in an amount of 10 −10 to 3% by weight.

【0009】本発明における正極材料(活物質)として
は、金属酸化物(MnO2 、改質MnO2 、重質化Mn
2 、MoO2 、CuO、Cr2 3 、CrO3 、V2
5 、LiCoO2 、LiNiO2 、NiOOHな
ど);金属硫化物(FeS、TiS2 、又はMoS2
ど);金属セレン化物(TiSe2 など);Cr、M
n、Fe、Co及びNiよりなる群から選ばれた少なく
とも一種の金属とLiとの複合酸化物が例示される。
The positive electrode material (active material) in the present invention includes metal oxides (MnO 2 , modified MnO 2 , heavy Mn).
O 2 , MoO 2 , CuO, Cr 2 O 3 , CrO 3 , V 2
O 5 , LiCoO 2 , LiNiO 2 , NiOOH, etc.); metal sulfide (FeS, TiS 2 , or MoS 2, etc.); metal selenide (TiSe 2, etc.); Cr, M
A composite oxide of at least one metal selected from the group consisting of n, Fe, Co and Ni and Li is exemplified.

【0010】本発明における正極は、たとえば上記した
正極材料をアセチレンブラック、カーボンブラック等の
導電剤及びPTFE、PVdF等の結着剤と混練して正
極合剤とした後、この正極合剤を集電体としてのアルミ
ニウム製の箔やラス板に圧延して、50〜250°C程
度の温度で2時間程度真空下で加熱処理することにより
作製される。
In the positive electrode of the present invention, for example, the above-mentioned positive electrode material is kneaded with a conductive agent such as acetylene black or carbon black and a binder such as PTFE or PVdF to prepare a positive electrode mixture, which is then collected. It is produced by rolling an aluminum foil or lath plate as an electric body and heat-treating it under vacuum at a temperature of about 50 to 250 ° C. for about 2 hours.

【0011】本発明における負極材料たる炭素材料とし
ては、黒鉛(天然黒鉛、人造黒鉛、キッシュ黒鉛)、コ
ークス、有機物焼成体などが挙げられるが、本発明にお
いては、これらの炭素材料アルミニウム(Al)、ガリ
ウム(Ga)、インジウム(In)、タリウム(T
l)、リン(P)、ヒ素(As)、アンチモン(Sb)
及びビスマス(Bi)よりなる群から選ばれた少なくと
も一種の原子を含有せしめたものが用いられる。
Examples of the carbon material serving as the negative electrode material in the present invention include graphite (natural graphite, artificial graphite, quiche graphite), coke, and an organic material fired body. In the present invention, these carbon materials aluminum (Al) are used. , Gallium (Ga), indium (In), thallium (T
l), phosphorus (P), arsenic (As), antimony (Sb)
And those containing at least one atom selected from the group consisting of bismuth (Bi) are used.

【0012】本発明における炭素材料は、上記各原子を
10-10 〜3重量%含有するものである。このように各
原子の含有比率が特定の範囲に規制されるのは、10
-10 重量%未満の場合は、これらの原子を炭素材料に添
加することによる効果が充分に得られず、また3重量%
を越えた場合は、結晶構造が崩壊し易くなり却って保存
特性が悪くなるからである。
The carbon material in the present invention contains the above atoms in an amount of 10 −10 to 3% by weight. In this way, the content ratio of each atom is restricted to a specific range by 10
If the amount is less than -10 % by weight, the effect of adding these atoms to the carbon material cannot be sufficiently obtained, and the amount is 3% by weight.
If it exceeds, the crystal structure is likely to collapse and the storage characteristics are rather deteriorated.

【0013】炭素材料への各原子の挿入は、炭素材料と
各原子との混合物を焼成する焼成法、炭素材料に各原子
をスパッタリングするスパッタ法、炭素粉末に各原子を
蒸着させる蒸着法などにより行うことができる。
The insertion of each atom into the carbon material is performed by a firing method of firing a mixture of the carbon material and each atom, a sputtering method of sputtering each atom in the carbon material, a vapor deposition method of depositing each atom in carbon powder, and the like. It can be carried out.

【0014】本発明における負極は、たとえば上記の如
き処理を施した炭素材料を、PTFE(ポリテトラフル
オロエチレン)、PVdF(ポリ二フッ化ビニリデン)
等の結着剤と混練した後、この混練物をCu、Ni又は
ステンレス(SUS)製の箔やラス板(負極集電体)に
圧延して、50〜250°C程度の温度で2時間程度真
空下において加熱処理することにより作製される。
The negative electrode in the present invention comprises, for example, a carbon material treated as described above, PTFE (polytetrafluoroethylene), PVdF (polyvinylidene difluoride).
After kneading with a binder such as the above, the kneaded product is rolled into a foil or lath plate (negative electrode current collector) made of Cu, Ni or stainless (SUS), and the temperature is about 50 to 250 ° C. for 2 hours. It is prepared by heat treatment under vacuum.

【0015】本発明におけるセパレータは、特に制限さ
れず、ポリプロピレン、ポリエチレンなどからなる微孔
性薄膜など、非水系電解質二次電池用として従来使用さ
れている種々のセパレータを用いることができる。
The separator in the present invention is not particularly limited, and various separators conventionally used for non-aqueous electrolyte secondary batteries such as microporous thin films made of polypropylene, polyethylene and the like can be used.

【0016】本発明における非水系電解質についても、
特に制限されず、プロピレンカーボネート、エチレンカ
ーボネート、1,2−ブチレンカーボネート、ジメチル
カーボネート、ジエチルカーボネート等の溶媒又はこれ
らと1,2−ジメトキシエタン等の低沸点溶媒との混合
溶媒にLiPF6 、LiClO4 等の溶質を溶かした溶
液など、種々の液体電解質を用いることができる。
Regarding the non-aqueous electrolyte in the present invention,
There is no particular limitation, and a solvent such as propylene carbonate, ethylene carbonate, 1,2-butylene carbonate, dimethyl carbonate, diethyl carbonate, or a mixed solvent thereof with a low boiling point solvent such as 1,2-dimethoxyethane may be used as LiPF 6 , LiClO 4 or the like. Various liquid electrolytes can be used, such as a solution obtained by dissolving a solute such as.

【0017】液体電解質に代えて、LiI(ヨウ化リチ
ウム)や、リチウム塩をポリエチレンオキシド(PE
O)に溶かしたもの等の固体電解質を用いるようにすれ
ば、これをセパレータに兼用することができるため、電
池のエネルギー密度を高めることができるとともに、オ
ールソリッドステート化により液漏れのない、メンテナ
ンスフリーの電池が得られるので、信頼性の点で有利で
ある。
Instead of the liquid electrolyte, LiI (lithium iodide) or a lithium salt is used as polyethylene oxide (PE).
If a solid electrolyte such as that dissolved in O) can be used also as a separator, the energy density of the battery can be increased, and liquid leakage does not occur due to the all solid state maintenance. Since a free battery can be obtained, it is advantageous in terms of reliability.

【0018】[0018]

【作用】本発明に係る非水系電解質二次電池において
は、負極材料たる炭素材料として、特定の原子を特定の
比率で含有する炭素材料が用いられているので、炭素結
晶中の格子欠陥が安定化するとともに格子欠陥の数が増
えて、炭素材料のリチウム吸蔵放出可能な量が増大す
る。また、格子欠陥が安定化するため、充放電の繰り返
しによる炭素材料の結晶構造の崩壊が少なくなり、活性
点が新生し難くなる。このため、炭素材料の触媒作用が
抑制されるとともに、活性点への活性水素含有基の吸着
量が減少する。
In the non-aqueous electrolyte secondary battery according to the present invention, a carbon material containing a specific atom in a specific ratio is used as a carbon material as a negative electrode material, so that lattice defects in the carbon crystal are stable. As the number of lattice defects increases, the number of lattice defects increases, and the amount of lithium storage and desorption of the carbon material increases. Further, since the lattice defects are stabilized, the collapse of the crystal structure of the carbon material due to repeated charging / discharging is reduced, and it becomes difficult to generate new active points. Therefore, the catalytic action of the carbon material is suppressed and the amount of active hydrogen-containing groups adsorbed on the active sites is reduced.

【0019】[0019]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications can be made without departing from the scope of the invention. Is possible.

【0020】(実施例1〜5、比較例1及び比較例2) 〔正極の作製〕LiCoO2 を、導電剤としてのアセチ
レンブラック及び結着剤としてのフッ素樹脂と、重量比
80:10:10の比率で混練して正極合剤を得た。次
いで、この正極合剤を集電体としてのアルミニウム箔に
圧延し、250°Cで2時間真空下で加熱処理して正極
を作製した。
(Examples 1 to 5, Comparative Example 1 and Comparative Example 2) [Preparation of Positive Electrode] LiCoO 2 was mixed with acetylene black as a conductive agent and a fluororesin as a binder in a weight ratio of 80:10:10. The mixture was kneaded at a ratio of to obtain a positive electrode mixture. Next, this positive electrode mixture was rolled into an aluminum foil as a current collector and heat-treated under vacuum at 250 ° C. for 2 hours to produce a positive electrode.

【0021】〔負極の作製〕炭化ホウ素と400メッシ
ュパスの石炭系ピッチコークスとを混合し、これをアル
ゴン中、1200°Cで焼成して、ホウ素の含有率が1
-6、10-4、10-2、1、3、10重量%である6種
の炭素粉末を作製した。これらの炭素粉末又はホウ素を
全く含有しない炭素粉末と、結着剤としてのポリフッ化
ビニリデンとを重量比95:5の比率で混合した後、分
散溶媒としてN−メチルピロリドンを加えてスラリーを
作製し、このスラリーをドクターブレード法により予め
焼鈍処理を施した厚み15μmの銅箔に片面80μmの
塗布厚で両面に塗布しその後所定寸法に切断して7種の
負極を作製した。
[Production of Negative Electrode] Boron carbide and 400-mesh-pass coal-based pitch coke were mixed, and the mixture was calcined in argon at 1200 ° C. to obtain a boron content of 1
Six types of carbon powders having 0 -6 , 10 -4 , 10 -2 , 1, 3, 10 wt% were prepared. These carbon powder or carbon powder containing no boron and polyvinylidene fluoride as a binder were mixed at a weight ratio of 95: 5, and then N-methylpyrrolidone was added as a dispersion solvent to prepare a slurry. This slurry was applied to both sides of a copper foil having a thickness of 15 μm, which had been annealed in advance by a doctor blade method, with a coating thickness of 80 μm on one side, and then cut to a predetermined size to produce seven types of negative electrodes.

【0022】〔非水系電解液の調製〕エチレンカーボネ
ートとジメチルカーボネートとの等体積比の混合溶媒
に、六フッ化燐酸リチウム(LiPF6 )を0.75モ
ル/リットル溶かして非水系電解液を調製した。
[Preparation of Non-Aqueous Electrolyte] Lithium hexafluorophosphate (LiPF 6 ) (0.75 mol / liter) was dissolved in a mixed solvent of ethylene carbonate and dimethyl carbonate in an equal volume ratio to prepare a non-aqueous electrolyte. did.

【0023】〔非水系電解質二次電池の作製〕上記正負
両極、セパレータ、負極缶などで7種の円筒形の非水系
電解質二次電池を組み立て、それぞれに上記の非水系電
解液を注液して本発明電池BA1(ホウ素含有率:10
-6重量%)、本発明電池BA2(ホウ素含有率:10-4
重量%)、本発明電池BA3(ホウ素含有率:10-2
量%)、本発明電池BA4(ホウ素含有率:1重量
%)、本発明電池BA5(ホウ素含有率:3重量%)、
比較電池BC1(ホウ素含有しないもの)、比較電池B
C2(ホウ素含有率:10重量%)を作製した。なお、
作製した電池の電池寸法は、直径15mm、高さ:50
mmであり、またセパレータとしては、ポリプロピレン
製の微孔性薄膜を用いた。
[Preparation of Non-Aqueous Electrolyte Secondary Battery] Seven types of cylindrical non-aqueous electrolyte secondary batteries were assembled with the above-mentioned positive and negative electrodes, separator, negative electrode can, etc., and the above-mentioned non-aqueous electrolyte solution was poured into each. The present invention battery BA1 (boron content: 10
-6 % by weight), battery BA2 of the present invention (boron content: 10 -4)
% By weight), the present battery BA3 (boron content: 10 -2 % by weight), the present battery BA4 (boron content: 1% by weight), the present battery BA5 (boron content: 3% by weight),
Comparative battery BC1 (without boron), Comparative battery B
C2 (boron content: 10% by weight) was produced. In addition,
The battery size of the manufactured battery is 15 mm in diameter and 50 in height.
In addition, a polypropylene microporous thin film was used as the separator.

【0024】図1は作製した電池BA1(BA2〜BA
5、BC1及びBC2についても同様)の断面図であ
り、同図に示す電池BA1は、正極1及び負極2、これ
ら両電極を離隔するセパレータ3、正極リード4、負極
リード5、正極外部端子6、負極缶7などからなる。正
極1及び負極2は非水電解液が注入されたセパレータ3
を介して渦巻き状に巻き取られた状態で負極缶7内に収
容されており、正極1は正極リード4を介して正極外部
端子6に、また負極2は負極リード5を介して負極缶7
に接続され、電池BA1内部で生じた化学エネルギーを
電気エネルギーとして外部へ取り出し得るようになって
いる。
FIG. 1 shows the manufactured battery BA1 (BA2 to BA
5, BC1 and BC2), a battery BA1 shown in FIG. 1 includes a positive electrode 1 and a negative electrode 2, a separator 3 for separating these electrodes, a positive electrode lead 4, a negative electrode lead 5, and a positive electrode external terminal 6. , The negative electrode can 7 and the like. The positive electrode 1 and the negative electrode 2 are separators 3 in which a non-aqueous electrolyte is injected.
It is housed in a negative electrode can 7 in a spirally wound state via a positive electrode 1 via a positive electrode lead 4 to a positive electrode external terminal 6, and a negative electrode 2 via a negative electrode lead 5 into a negative electrode can 7.
The chemical energy generated inside the battery BA1 can be taken out to the outside as electric energy.

【0025】(実施例6〜10及び比較例3)水酸化ア
ルミニウムと400メッシュパスの石炭系ピッチコーク
スとを混合し、これをアルゴン中、1200°Cで焼成
して、アルミニウムの含有率が10-6、10-4、1
-2、1、3、10重量%である6種の炭素粉末を作製
した。これらの炭素粉末を、ホウ素を含有する炭素粉末
に代えて用いたこと以外は実施例1と同様にして、本発
明電池BA6(アルミニウム含有率:10-6重量%)、
本発明電池BA7(アルミニウム含有率:10-4重量
%)、本発明電池BA8(アルミニウム含有率:10-2
重量%)、本発明電池BA9(アルミニウム含有率:1
重量%)、本発明電池BA10(アルミニウム含有率:
3重量%)、比較電池BC3(アルミニウム含有率:1
0重量%)を作製した。
(Examples 6 to 10 and Comparative Example 3) Aluminum hydroxide and 400-mesh-pass coal-based pitch coke were mixed, and the mixture was fired in argon at 1200 ° C to obtain an aluminum content of 10%. -6 , 10 -4 , 1
Six types of carbon powders having 0 -2 , 1, 3, 10% by weight were prepared. The battery BA6 of the present invention (aluminum content: 10 −6 wt%), in the same manner as in Example 1 except that these carbon powders were used instead of the carbon powder containing boron.
Inventive battery BA7 (aluminum content: 10 −4 wt%), Inventive battery BA8 (aluminum content: 10 −2)
% By weight), battery BA9 of the present invention (aluminum content: 1
% By weight), battery BA10 of the present invention (aluminum content:
3% by weight), comparative battery BC3 (aluminum content: 1
0% by weight) was prepared.

【0026】(実施例11〜15及び比較例4)水酸化
ガリウムと400メッシュパスの石炭系ピッチコークス
とを混合し、これをアルゴン中、1200°Cで焼成し
て、ガリウムの含有率が10-6、10-4、10-2、1、
3、10重量%である6種の炭素粉末を作製した。これ
らの炭素粉末を、ホウ素を含有する炭素粉末に代えて用
いたこと以外は実施例1と同様にして、本発明電池BA
11(ガリウム含有率:10-6重量%)、本発明電池B
A12(ガリウム含有率:10-4重量%)、本発明電池
BA13(ガリウム含有率:10-2重量%)、本発明電
池BA14(ガリウム含有率:1重量%)、本発明電池
BA15(ガリウム含有率:3重量%)、比較電池BC
4(ガリウム含有率:10重量%)を作製した。
(Examples 11 to 15 and Comparative Example 4) Gallium hydroxide was mixed with 400 mesh pass coal-based pitch coke, and the mixture was fired in argon at 1200 ° C. so that the gallium content was 10%. -6 , 10 -4 , 10 -2 , 1,
Six types of carbon powder, which are 3, 10% by weight, were produced. The battery BA of the present invention was manufactured in the same manner as in Example 1 except that these carbon powders were used instead of the carbon powder containing boron.
11 (gallium content: 10 −6 wt%), battery B of the present invention
A12 (gallium content: 10 -4 % by weight), battery of the present invention BA13 (gallium content: 10 -2 % by weight), battery BA14 of the present invention (gallium content: 1% by weight), battery BA15 of the present invention (gallium content: Ratio: 3% by weight), comparative battery BC
4 (gallium content: 10% by weight) was produced.

【0027】(実施例16〜20及び比較例5)水酸化
インジウムと400メッシュパスの石炭系ピッチコーク
スとを混合し、これをアルゴン中、1200°Cで焼成
して、インジウムの含有率が10-6、10-4、10-2
1、3、10重量%である6種の炭素粉末を作製した。
これらの炭素粉末を、ホウ素を含有する炭素粉末に代え
て用いたこと以外は実施例1と同様にして、本発明電池
BA16(インジウム含有率:10-6重量%)、本発明
電池BA17(インジウム含有率:10-4重量%)、本
発明電池BA18(インジウム含有率:10-2重量
%)、本発明電池BA19(インジウム含有率:1重量
%)、本発明電池BA20(インジウム含有率:3重量
%)、比較電池BC5(インジウム含有率:10重量
%)を作製した。
(Examples 16 to 20 and Comparative Example 5) Indium hydroxide was mixed with 400-mesh pass coal-based pitch coke, and the mixture was fired at 1200 ° C in argon to give an indium content of 10%. -6 , 10 -4 , 10 -2 ,
Six kinds of carbon powders, which are 1, 3, and 10% by weight, were prepared.
Battery BA16 of the present invention (indium content: 10 −6 wt%), battery BA17 of the present invention (indium), in the same manner as in Example 1 except that these carbon powders were used instead of the carbon powder containing boron. Content rate: 10 −4 wt%), the present invention battery BA 18 (indium content rate: 10 −2 wt%), the present invention battery BA 19 (indium content rate: 1 wt%), the present invention battery BA 20 (indium content rate: 3) %), And a comparative battery BC5 (indium content: 10% by weight).

【0028】(実施例21〜25及び比較例6)水酸化
タリウムと400メッシュパスの石炭系ピッチコークス
とを混合し、これをアルゴン中、1200°Cで焼成し
て、タリウムの含有率が10-6、10-4、10-2、1、
3、10重量%である6種の炭素粉末を作製した。これ
らの炭素粉末を、ホウ素を含有する炭素粉末に代えて用
いたこと以外は実施例1と同様にして、本発明電池BA
21(タリウム含有率:10-6重量%)、本発明電池B
A22(タリウム含有率:10-4重量%)、本発明電池
BA23(タリウム含有率:10-2重量%)、本発明電
池BA24(タリウム含有率:1重量%)、本発明電池
BA25(タリウム含有率:3重量%)、比較電池BC
6(タリウム含有率:10重量%)を作製した。
(Examples 21 to 25 and Comparative Example 6) Thallium hydroxide was mixed with 400 mesh pass coal-based pitch coke, and the mixture was fired at 1200 ° C. in argon to give a thallium content of 10%. -6 , 10 -4 , 10 -2 , 1,
Six types of carbon powder, which are 3, 10% by weight, were produced. The battery BA of the present invention was manufactured in the same manner as in Example 1 except that these carbon powders were used instead of the carbon powder containing boron.
21 (Thallium content: 10 −6 wt%), Battery B of the present invention
A22 (Thallium content: 10 -4 wt%), Battery of the present invention BA23 (Thallium content: 10 -2 wt%), Battery of the present invention BA24 (Thallium content: 1 wt%), Battery of the present invention BA25 (Thallium included) Ratio: 3% by weight), comparative battery BC
6 (thallium content: 10% by weight) was produced.

【0029】(実施例26〜30及び比較例7)リンと
400メッシュパスの石炭系ピッチコークスとを混合
し、これをアルゴン中、1200°Cで焼成して、リン
の含有率が10-6、10-4、10-2、1、3、10重量
%である6種の炭素粉末を作製した。これらの炭素粉末
を、ホウ素を含有する炭素粉末に代えて用いたこと以外
は実施例1と同様にして、本発明電池BA26(リン含
有率:10-6重量%)、本発明電池BA27(リン含有
率:10-4重量%)、本発明電池BA28(リン含有
率:10-2重量%)、本発明電池BA29(リン含有
率:1重量%)、本発明電池BA30(リン含有率:3
重量%)、比較電池BC7(リン含有率:10重量%)
を作製した。
(Examples 26 to 30 and Comparative Example 7) Phosphorus and 400 mesh pass coal-based pitch coke were mixed, and the mixture was fired at 1200 ° C in argon to give a phosphorus content of 10 -6. Six kinds of carbon powders having 10 −4 , 10 −2 , 1, 3, 10 wt% were prepared. The battery BA26 of the present invention (phosphorus content: 10 −6 wt%), the battery BA27 of the present invention (phosphorus) was used in the same manner as in Example 1 except that these carbon powders were used instead of the carbon powder containing boron. Content rate: 10 -4 % by weight), battery BA28 of the present invention (phosphorus content: 10 -2 % by weight), battery BA29 of the present invention (phosphorus content: 1% by weight), battery BA30 of the present invention (phosphorus content: 3)
Wt%), comparative battery BC7 (phosphorus content: 10 wt%)
Was produced.

【0030】(実施例31〜35及び比較例8)ヒ素と
400メッシュパスの石炭系ピッチコークスとを混合
し、これをアルゴン中、1200°Cで焼成して、ヒ素
の含有率が10-6、10-4、10-2、1、3、10重量
%である6種の炭素粉末を作製した。これらの炭素粉末
を、ホウ素を含有する炭素粉末に代えて用いたこと以外
は実施例1と同様にして、本発明電池BA31(ヒ素含
有率:10-6重量%)、本発明電池BA32(ヒ素含有
率:10-4重量%)、本発明電池BA33(ヒ素含有
率:10-2重量%)、本発明電池BA34(ヒ素含有
率:1重量%)、本発明電池BA35(ヒ素含有率:3
重量%)、比較電池BC8(ヒ素含有率:10重量%)
を作製した。
(Examples 31 to 35 and Comparative Example 8) Arsenic was mixed with 400 mesh pass coal-based pitch coke, and the mixture was fired in argon at 1200 ° C. so that the arsenic content was 10 −6. Six kinds of carbon powders having 10 −4 , 10 −2 , 1, 3, 10 wt% were prepared. The battery BA31 of the present invention (arsenic content: 10 −6 wt%), the battery BA32 of the present invention (arsenic), in the same manner as in Example 1 except that these carbon powders were used instead of the carbon powder containing boron. Content rate: 10 -4 % by weight), battery BA33 of the present invention (arsenic content: 10 -2 % by weight), battery BA34 of the present invention (arsenic content: 1% by weight), battery BA35 of the present invention (arsenic content: 3)
Wt%), comparative battery BC8 (arsenic content: 10 wt%)
Was produced.

【0031】(実施例36〜40及び比較例9)アンチ
モンと400メッシュパスの石炭系ピッチコークスとを
混合し、これをアルゴン中、1200°Cで焼成して、
アンチモンの含有率が10-6、10-4、10-2、1、
3、10重量%である6種の炭素粉末を作製した。これ
らの炭素粉末を、ホウ素を含有する炭素粉末に代えて用
いたこと以外は実施例1と同様にして、本発明電池BA
36(アンチモン含有率:10-6重量%)、本発明電池
BA37(アンチモン含有率:10-4重量%)、本発明
電池BA38(アンチモン含有率:10-2重量%)、本
発明電池BA39(アンチモン含有率:1重量%)、本
発明電池BA40(アンチモン含有率:3重量%)、比
較電池BC9(アンチモン含有率:10重量%)を作製
した。
(Examples 36 to 40 and Comparative Example 9) Antimony and 400 mesh pass coal-based pitch coke were mixed, and the mixture was fired in argon at 1200 ° C.
Antimony content is 10 -6 , 10 -4 , 10 -2 , 1,
Six types of carbon powder, which are 3, 10% by weight, were produced. The battery BA of the present invention was manufactured in the same manner as in Example 1 except that these carbon powders were used instead of the carbon powder containing boron.
36 (antimony content: 10 −6 wt%), the present battery BA 37 (antimony content: 10 −4 wt%), the present battery BA 38 (antimony content: 10 −2 wt%), the present battery BA 39 ( Antimony content: 1% by weight), battery of the present invention BA40 (antimony content: 3% by weight), and comparative battery BC9 (antimony content: 10% by weight) were produced.

【0032】(実施例41〜45及び比較例10)ビス
マスと400メッシュパスの石炭系ピッチコークスとを
混合し、これをアルゴン中、1200°Cで焼成して、
ビスマスの含有率が10-6、10-4、10-2、1、3、
10重量%である6種の炭素粉末を作製した。これらの
炭素粉末を、ホウ素を含有する炭素粉末に代えて用いた
こと以外は実施例1と同様にして、本発明電池BA41
(ビスマス含有率:10-6重量%)、本発明電池BA4
2(ビスマス含有率:10-4重量%)、本発明電池BA
43(ビスマス含有率:10-2重量%)、本発明電池B
A44(ビスマス含有率:1重量%)、本発明電池BA
45(ビスマス含有率:3重量%)、比較電池BC10
(ビスマス含有率:10重量%)を作製した。
(Examples 41 to 45 and Comparative Example 10) Bismuth and 400 mesh pass coal-based pitch coke were mixed, and the mixture was fired in argon at 1200 ° C.
Bismuth content of 10 -6 , 10 -4 , 10 -2 , 1, 3,
Six carbon powders of 10% by weight were produced. The battery BA41 of the present invention was manufactured in the same manner as in Example 1 except that these carbon powders were used instead of the carbon powder containing boron.
(Bismuth content: 10 −6 wt%), battery BA 4 of the present invention
2 (bismuth content rate: 10 −4 wt%), battery BA of the present invention
43 (bismuth content: 10 -2 % by weight), battery B of the present invention
A44 (bismuth content: 1% by weight), battery BA of the present invention
45 (bismuth content rate: 3% by weight), comparative battery BC10
(Bismuth content: 10% by weight) was prepared.

【0033】(実施例46〜48)高純度のショ糖を石
英管に入れ、真空中において800°Cで加熱処理を行
いショ糖を炭化させた。この炭化物を粉砕した後、真空
中において2000°Cの温度で50時間加熱すること
により黒鉛化させて高純度黒鉛粉末を得た。この黒鉛粉
末1Kgを1リットルの塩酸で処理し、黒鉛中の不純物
を塩酸中に抽出した。次に、この抽出溶液を100倍に
濃縮してICP発光分析を行ったところ、3b族及び5
b族の不純物は検出されなかった。なお、使用したIC
P発光分析装置の3b族及び5b族の測定限界値は約1
-6重量%であり、黒鉛中の3b族及び5b族の不純物
は10-8重量%以下であると考えられる。上記高純度黒
鉛10gに、インジウム金属板をスパッタリングターゲ
ットとして、10-4torrの真空中においてアルゴン
ガスでスパッタリングして黒鉛中にインジウムを挿入
し、このときのスパッタリング時間と、黒鉛中に挿入さ
れるインジウムの量との関係を求め、この関係を外挿し
て、所定の微小量のインジウムを添加させるに必要な各
時間を予め求めた。次いで、インジウム金属板をスパッ
タリングのターゲットとし、10-4torrの真空中に
おいてアルゴンガスでインジウムを時間を変えてスパッ
タリングして、黒鉛100gにインジウムを挿入し、イ
ンジウムの含有率が10-10 、10-8、10-6重量%で
ある3種の黒鉛粉末を作製した。なお、各スパッタリン
グは、上記外挿法により求めた時間だけ行った。すなわ
ち、上記各インジウムの含有率はそのスパッタリング時
間から算出したものである。これらの黒鉛粉末を、ホウ
素を含有する炭素粉末に代えて用いたこと以外は実施例
1と同様にして、本発明電池BA46(インジウム含有
率:10-10 重量%)、本発明電池BA47(インジウ
ム含有率:10-8重量%)、本発明電池BA48(イン
ジウム含有率:10-6重量%)を作製した。
(Examples 46 to 48) High-purity sucrose was placed in a quartz tube and heat-treated at 800 ° C in vacuum to carbonize the sucrose. After crushing this carbide, it was graphitized by heating in a vacuum at a temperature of 2000 ° C. for 50 hours to obtain a high-purity graphite powder. 1 kg of this graphite powder was treated with 1 liter of hydrochloric acid to extract impurities in graphite into hydrochloric acid. Next, this extracted solution was concentrated 100 times and subjected to ICP emission spectrometry.
No Group b impurities were detected. The IC used
The measurement limit value of the 3b group and 5b group of the P emission spectrometer is about 1
It is considered to be 0 −6 wt%, and the impurities of Group 3b and Group 5b in graphite are considered to be 10 −8 wt% or less. 10 g of the above high-purity graphite was sputtered with argon gas in a vacuum of 10 −4 torr by using an indium metal plate as a sputtering target to insert indium into the graphite, and the sputtering time at this time and the insertion into the graphite The relationship with the amount of indium was obtained, and this relationship was extrapolated to previously obtain each time required for adding a predetermined minute amount of indium. Next, using an indium metal plate as a sputtering target, indium was sputtered in a vacuum of 10 −4 torr with argon gas at different times to insert indium into 100 g of graphite, and the indium content was 10 −10 , 10 -8 , 10 -6 % by weight of three kinds of graphite powder were prepared. Note that each sputtering was performed for the time determined by the above extrapolation method. That is, the content rate of each indium is calculated from the sputtering time. The battery BA46 of the present invention (indium content rate: 10 −10 wt%), the battery BA47 of the present invention (indium) was used in the same manner as in Example 1 except that these graphite powders were used instead of the carbon powder containing boron. content: 10-8% by weight), the present invention battery BA48 (indium content: to prepare a 10-6% by weight).

【0034】(実施例49〜51)インジウムに変えて
ビスマスを用いたこと以外は実施例46と同様にして、
ビスマスの含有率が10-10 、10-8、10-6重量%で
ある3種の黒鉛粉末を作製し、これらの黒鉛粉末を、ホ
ウ素を含有する炭素粉末に代えて用いたこと以外は実施
例1と同様にして、本発明電池BA49(ビスマス含有
率:10-10 重量%)、本発明電池BA50(ビスマス
含有率:10-8重量%)、本発明電池BA51(ビスマ
ス含有率:10-6重量%)を作製した。
(Examples 49 to 51) Except that bismuth was used instead of indium, the same procedure as in Example 46 was conducted.
Except that three kinds of graphite powders having a bismuth content of 10 -10 , 10 -8 , and 10 -6 wt% were prepared, and these graphite powders were used instead of the carbon powder containing boron. in the same manner as in example 1, the present invention battery BA49 (bismuth rate: 10 -10 wt%), the present invention battery BA50 (bismuth rate: 10 -8 wt%), the present invention battery BA51 (bismuth rate: 10 - 6 % by weight) was prepared.

【0035】(実施例52〜54)10-4torrの真
空中において、黒鉛粉末に蒸着時間を変えてアルミニウ
ムを真空蒸着させた後、1800°Cで加熱して、アル
ミニウムの含有率が10-10 、10-8、10-6重量%で
ある3種の黒鉛粉末を作製し、これらの黒鉛粉末を、ホ
ウ素を含有する炭素粉末に代えて用いたこと以外は実施
例1と同様にして、本発明電池BA52(アルミニウム
含有率:10-10 重量%)、本発明電池BA53(アル
ミニウム含有率:10-8重量%)、本発明電池BA54
(アルミニウム含有率:10-6重量%)を作製した。
(Examples 52 to 54) In a vacuum of 10 -4 torr, aluminum was vacuum-deposited on graphite powder by changing the vapor deposition time and then heated at 1800 ° C., so that the aluminum content was 10 −. In the same manner as in Example 1 except that three kinds of graphite powders with 10 10 , 10 -8 , and 10 -6 % by weight were prepared and these graphite powders were used in place of the carbon powder containing boron. The present invention battery BA52 (aluminum content rate: 10 −10 wt%), the present invention battery BA53 (aluminum content rate: 10 −8 wt%), the present invention battery BA54
(Aluminum content: 10 −6 wt%) was produced.

【0036】図2〜図13は、本発明電池及び比較電池
の保存特性を、縦軸に60°Cで10日間保存した後の
容量残存率(%)を、横軸に各原子の含有率(重量%)
をとって示したグラフである。これらの図より、本発明
電池BA1〜BA54は、比較電池BC1〜BC10に
比し、優れた保存特性を発現することが分かる。
2 to 13 show the storage characteristics of the battery of the present invention and the comparative battery, in which the vertical axis represents the capacity remaining ratio (%) after storage at 60 ° C. for 10 days, and the horizontal axis represents the content of each atom. (weight%)
It is the graph which took and showed. From these figures, it is understood that the batteries BA1 to BA54 of the present invention exhibit excellent storage characteristics as compared with the comparative batteries BC1 to BC10.

【0037】叙上の実施例では本発明を円筒形電池に適
用する場合の具体例について説明したが、電池の形状に
特に制限はなく、本発明は扁平型、角型など、種々の形
状の非水系電解質二次電池に適用し得るものである。
In the above embodiment, a specific example in which the present invention is applied to a cylindrical battery is described, but the shape of the battery is not particularly limited, and the present invention has various shapes such as a flat type and a square type. It is applicable to non-aqueous electrolyte secondary batteries.

【0038】[0038]

【発明の効果】本発明に係る非水系電解質二次電池は、
負極材料たる炭素材料のリチウム吸蔵放出可能な量が多
いので、電池容量が大きく、また炭素材料の触媒作用や
活性点への活性水素含有基の吸着量が少なく自己放電し
難いので、保存特性に優れるなど、本発明は優れた特有
の効果を奏する。
The non-aqueous electrolyte secondary battery according to the present invention is
Since the amount of lithium material that can be stored and released in the carbon material, which is the negative electrode material, is large, the battery capacity is large, and since the catalytic activity of the carbon material and the amount of active hydrogen-containing groups adsorbed on the active sites are small, it is difficult for self-discharge, so storage characteristics The present invention has excellent unique effects such as excellent.

【図面の簡単な説明】[Brief description of drawings]

【図1】円筒型電池の断面図である。FIG. 1 is a cross-sectional view of a cylindrical battery.

【図2】本発明電池及び比較電池の保存特性図である。FIG. 2 is a storage characteristic diagram of a battery of the present invention and a comparative battery.

【図3】本発明電池及び比較電池の保存特性図である。FIG. 3 is a storage characteristic diagram of a battery of the present invention and a comparative battery.

【図4】本発明電池及び比較電池の保存特性図である。FIG. 4 is a storage characteristic diagram of a battery of the present invention and a comparative battery.

【図5】本発明電池及び比較電池の保存特性図である。FIG. 5 is a storage characteristic diagram of a battery of the present invention and a comparative battery.

【図6】本発明電池及び比較電池の保存特性図である。FIG. 6 is a storage characteristic diagram of a battery of the present invention and a comparative battery.

【図7】本発明電池及び比較電池の保存特性図である。FIG. 7 is a storage characteristic diagram of a battery of the present invention and a comparative battery.

【図8】本発明電池及び比較電池の保存特性図である。FIG. 8 is a storage characteristic diagram of a battery of the present invention and a comparative battery.

【図9】本発明電池及び比較電池の保存特性図である。FIG. 9 is a storage characteristic diagram of the battery of the present invention and the comparative battery.

【図10】本発明電池及び比較電池の保存特性図であ
る。
FIG. 10 is a storage characteristic diagram of a battery of the present invention and a comparative battery.

【図11】本発明電池及び比較電池の保存特性図であ
る。
FIG. 11 is a storage characteristic diagram of the battery of the present invention and the comparative battery.

【図12】本発明電池及び比較電池の保存特性図であ
る。
FIG. 12 is a storage characteristic diagram of the battery of the present invention and the comparative battery.

【図13】本発明電池及び比較電池の保存特性図であ
る。
FIG. 13 is a storage characteristic diagram of the battery of the present invention and the comparative battery.

【符号の説明】[Explanation of symbols]

BA1 電池 1 正極 2 負極 3 セパレータ 4 正極リード 5 負極リード 6 正極外部端子 7 負極缶 BA1 battery 1 positive electrode 2 negative electrode 3 separator 4 positive electrode lead 5 negative electrode lead 6 positive electrode external terminal 7 negative electrode can

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】リチウムを吸蔵放出可能な活物質を正極材
料とする正極と、リチウムを吸蔵放出可能な炭素材料を
負極材料とする負極と、これら両極間に介装されたセパ
レータとを備えてなる非水系電解質二次電池であって、
前記炭素材料がアルミニウム、ガリウム、インジウム、
タリウム、リン、ヒ素、アンチモン及びビスマスよりな
る群から選ばれた少なくとも一種の原子を10-10 〜3
重量%含有するものであることを特徴とする非水系電解
質二次電池。
1. A positive electrode comprising an active material capable of occluding and releasing lithium as a positive electrode material, a negative electrode comprising a carbon material capable of occluding and releasing lithium as a negative electrode material, and a separator interposed between both electrodes. A non-aqueous electrolyte secondary battery comprising:
The carbon material is aluminum, gallium, indium,
10 -10 to 3 at least one atom selected from the group consisting of thallium, phosphorus, arsenic, antimony and bismuth.
A non-aqueous electrolyte secondary battery, characterized in that the non-aqueous electrolyte secondary battery contains it by weight%.
【請求項2】前記活物質が、クロム、マンガン、鉄、コ
バルト及びニッケルよりなる群から選ばれた少なくとも
一種の金属とリチウムとの複合酸化物である請求項1記
載の非水系電解質二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the active material is a composite oxide of lithium and at least one metal selected from the group consisting of chromium, manganese, iron, cobalt and nickel. ..
JP3360253A 1991-12-27 1991-12-27 Nonaqueous electrolyte secondary battery Pending JPH05182668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3360253A JPH05182668A (en) 1991-12-27 1991-12-27 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3360253A JPH05182668A (en) 1991-12-27 1991-12-27 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH05182668A true JPH05182668A (en) 1993-07-23

Family

ID=18468586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3360253A Pending JPH05182668A (en) 1991-12-27 1991-12-27 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH05182668A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0629012A2 (en) * 1993-06-11 1994-12-14 Moli Energy (1990) Limited Electron acceptor substituted carbons for use as anodes in rechargeable lithium batteries
EP0692833A1 (en) * 1994-07-08 1996-01-17 Moli Energy (1990) Limited Carbonaceous insertion compounds and use as anodes in rechargeable batteries
JPH08171936A (en) * 1994-12-16 1996-07-02 Sanyo Electric Co Ltd Lithium secondary battery
KR970004131A (en) * 1995-06-12 1997-01-29 가나이 쯔도무 Non-aqueous secondary battery and its negative electrode material
US5624606A (en) * 1994-05-03 1997-04-29 Moli Energy (1990) Limited Carbonaceous host compounds and use as anodes in rechargeable batteries
EP0874410A2 (en) * 1997-04-24 1998-10-28 Matsushita Electric Industrial Co., Ltd Non-aqueous electrolyte secondary batteries
US5985489A (en) * 1995-06-20 1999-11-16 Nippon Sanso Corporation Carbon for a lithium secondary battery, lithium secondary battery, and manufacturing methods therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121260A (en) * 1986-11-08 1988-05-25 Asahi Chem Ind Co Ltd Lightweight secondary battery
JPS63210290A (en) * 1987-02-25 1988-08-31 Toyobo Co Ltd Carbon-base electrode material for electrolytic cell
JPH03245458A (en) * 1990-02-21 1991-11-01 Sony Corp Carbonaceous material, manufacture thereof, and non-aqueous electrolyte battery using thereof
JPH0574457A (en) * 1991-03-02 1993-03-26 Sony Corp Negative electrode material and manufacture thereof, and nonaqueous electrolyte battery using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121260A (en) * 1986-11-08 1988-05-25 Asahi Chem Ind Co Ltd Lightweight secondary battery
JPS63210290A (en) * 1987-02-25 1988-08-31 Toyobo Co Ltd Carbon-base electrode material for electrolytic cell
JPH03245458A (en) * 1990-02-21 1991-11-01 Sony Corp Carbonaceous material, manufacture thereof, and non-aqueous electrolyte battery using thereof
JPH0574457A (en) * 1991-03-02 1993-03-26 Sony Corp Negative electrode material and manufacture thereof, and nonaqueous electrolyte battery using it

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0629012A2 (en) * 1993-06-11 1994-12-14 Moli Energy (1990) Limited Electron acceptor substituted carbons for use as anodes in rechargeable lithium batteries
EP0629012A3 (en) * 1993-06-11 1995-01-04 Moli Energy 1990 Ltd
US5498493A (en) * 1993-06-11 1996-03-12 Moli Energy (1990) Limited Electron acceptor substituted carbons for use as anodes in rechargeable lithium batteries
US5624606A (en) * 1994-05-03 1997-04-29 Moli Energy (1990) Limited Carbonaceous host compounds and use as anodes in rechargeable batteries
EP0692833A1 (en) * 1994-07-08 1996-01-17 Moli Energy (1990) Limited Carbonaceous insertion compounds and use as anodes in rechargeable batteries
US5587256A (en) * 1994-07-08 1996-12-24 Moli Energy (1990) Limited Carbonaceous insertion compounds and use as anodes in rechargeable batteries
JPH08171936A (en) * 1994-12-16 1996-07-02 Sanyo Electric Co Ltd Lithium secondary battery
KR970004131A (en) * 1995-06-12 1997-01-29 가나이 쯔도무 Non-aqueous secondary battery and its negative electrode material
US5985489A (en) * 1995-06-20 1999-11-16 Nippon Sanso Corporation Carbon for a lithium secondary battery, lithium secondary battery, and manufacturing methods therefor
EP0874410A2 (en) * 1997-04-24 1998-10-28 Matsushita Electric Industrial Co., Ltd Non-aqueous electrolyte secondary batteries
EP0874410A3 (en) * 1997-04-24 2001-06-13 Matsushita Electric Industrial Co., Ltd Non-aqueous electrolyte secondary batteries

Similar Documents

Publication Publication Date Title
JP5972513B2 (en) Cathode and lithium battery using the same
JP3059832B2 (en) Lithium secondary battery
US7927506B2 (en) Cathode active material and lithium battery using the same
EP1936718B1 (en) Cathode active material for a lithium battery
US7556881B2 (en) Lithium secondary battery
KR101754800B1 (en) Cathode, preparation method thereof, and lithium battery containing the same
EP1909345A1 (en) Cathode active material for a lithium battery
JP3141858B2 (en) Lithium transition metal halide oxide, method for producing the same and use thereof
JPH06111819A (en) Nonaqueous secondary battery
JP2001202960A (en) Positive electrode material and secondary battery using the same
US20060014076A1 (en) Non-aqueous electrolyte secondary battery
KR20110094980A (en) Cathode and lithium battery using same
US6410188B1 (en) Non-aqueous electrolyte secondary cell
JP2971403B2 (en) Non-aqueous solvent secondary battery
JP3197779B2 (en) Lithium battery
JP3229635B2 (en) Lithium secondary battery
WO2003088382A1 (en) Non-aqueous secondary cell
JP3717544B2 (en) Lithium secondary battery
JP2005302300A (en) Nonaqueous electrolyte battery
JP2002367602A (en) Nonaqueous electrolyte secondary cell
JPH0684542A (en) Nonaqueous electrolytic solution secondary battery
JPH05182668A (en) Nonaqueous electrolyte secondary battery
JPH06338325A (en) Nonaqueous electrolytic secondary battery
JP4656710B2 (en) Non-aqueous electrolyte secondary battery
JP5076301B2 (en) Secondary battery