JP3532016B2 - Organic electrolyte secondary battery - Google Patents

Organic electrolyte secondary battery

Info

Publication number
JP3532016B2
JP3532016B2 JP32841395A JP32841395A JP3532016B2 JP 3532016 B2 JP3532016 B2 JP 3532016B2 JP 32841395 A JP32841395 A JP 32841395A JP 32841395 A JP32841395 A JP 32841395A JP 3532016 B2 JP3532016 B2 JP 3532016B2
Authority
JP
Japan
Prior art keywords
carbon
secondary battery
negative electrode
graphitized carbon
aspect ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32841395A
Other languages
Japanese (ja)
Other versions
JPH09147862A (en
Inventor
圭一郎 植苗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP32841395A priority Critical patent/JP3532016B2/en
Publication of JPH09147862A publication Critical patent/JPH09147862A/en
Application granted granted Critical
Publication of JP3532016B2 publication Critical patent/JP3532016B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、有機電解液二次電
池に係わり、さらに詳しくは、その負極活物質の改良に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electrolyte secondary battery, and more particularly to improvement of a negative electrode active material thereof.

【0002】[0002]

【従来の技術】リチウム含有遷移金属カルコゲナイドを
正極活物質とする有機電解液二次電池では、負極活物質
として一般にカーボンが用いられている。このカーボン
は層状構造をしており、その層間をリチウムがインター
カレートすることによって充電される。この層状構造に
ついては原料を熱処理することによって制御でき、たと
えばカーボン作製過程において熱処理温度が高い場合に
は、層間距離d002 が狭くなり、現存する最高の結晶性
を有する天然黒鉛では層間距離d002 が3.35Å
(0.335nm)近くになり、c軸方向の結晶子サイ
ズLcは大きくなり1000Å以上にもなる。また、原
料に比較的多くのベンゼン環を含んでいる場合と、たと
えば炭素の一次結合が多い原料とでは、同じ熱処理温度
でも、異なった層間距離d002 とc軸方向の結晶子サイ
ズLcを持つことになる。
2. Description of the Related Art Carbon is generally used as a negative electrode active material in an organic electrolyte secondary battery using a lithium-containing transition metal chalcogenide as a positive electrode active material. This carbon has a layered structure and is charged by intercalating lithium between the layers. This layered structure can be controlled by heat-treating the raw material. For example, when the heat treatment temperature is high in the carbon production process, the interlayer distance d 002 becomes narrow, and in the existing natural graphite having the highest crystallinity, the interlayer distance d 002. Is 3.35Å
(0.335 nm), the crystallite size Lc in the c-axis direction becomes large, reaching 1000 Å or more. Further, when the raw material contains a relatively large number of benzene rings and, for example, the raw material having a large number of carbon primary bonds, different interlayer distances d 002 and crystallite sizes Lc in the c-axis direction are obtained even at the same heat treatment temperature. It will be.

【0003】ところで、これらのカーボンを負極活物質
として用い、たとえばLiNiO2、LiCoO2 など
のリチウム含有遷移金属カルコゲナイドを正極活物質と
して用いた有機電解液二次電池では、黒鉛化が進んだカ
ーボン、すなわち、層間距離d002 が小さく、c軸方向
の結晶子サイズLcが大きいカーボンを負極活物質とし
て用いた方が高い充放電容量を得ることができ、理論的
にはC6 Li、つまり372mAh/gの充放電容量を
得ることができることになっている。
By the way, in an organic electrolyte secondary battery using these carbons as a negative electrode active material and a lithium-containing transition metal chalcogenide such as LiNiO 2 or LiCoO 2 as a positive electrode active material, carbon that has undergone graphitization That is, a higher charge / discharge capacity can be obtained by using carbon having a small interlayer distance d 002 and a large crystallite size Lc in the c-axis direction as the negative electrode active material, and theoretically C 6 Li, that is, 372 mAh / It is supposed that a charge / discharge capacity of g can be obtained.

【0004】これらのカーボンを用いて負極を作製する
場合、通常、これらのカーボンは粉末状態にしてバイン
ダーと混合し、要すれば、スラリー状にして、塗布、乾
燥する工程を経て、それを集電体に担持させることによ
り、負極を作製している。
In the case of producing a negative electrode using these carbons, usually, these carbons are made into a powder state and mixed with a binder, and if necessary, made into a slurry, coated and dried, and then collected. A negative electrode is manufactured by supporting it on an electric body.

【0005】そして、そのカーボンを粉末化する方法と
しては、あらかじめバルク状の炭素材料を2000℃
以上の高温に加熱して黒鉛化カーボンを作製し、後にそ
れを粉砕する方法、あらかじめ球状のピッチを用意
し、それを加熱する方法、炭素繊維を加熱する方法、
の3種類が一般に採用されており、得られるカーボン粉
末は、それぞれ鱗片状、球状、繊維状と、形状が異なっ
ている。
As a method for powderizing the carbon, a bulk carbon material is previously prepared at 2000 ° C.
To produce graphitized carbon by heating to a high temperature above, a method of crushing it later, a spherical pitch prepared in advance, a method of heating it, a method of heating carbon fiber,
The following three types are generally adopted, and the obtained carbon powders have different shapes such as scaly, spherical, and fibrous.

【0006】これらの中で、特に鱗片状黒鉛化カーボン
は、製造工程でのエネルギー投資などの点から最も低価
格にできる。しかし、電池用の負極としての性能は単位
体積当たりの充放電容量が大きいことが要求されるの
で、単位体積当たりの充放電容量を大きくするため、上
記鱗片状黒鉛化カーボンを用いた負極を圧縮すると、他
の2種類の形状のカーボンを用いた場合に比べて、急激
に充放電容量が低下するという問題があった。
[0006] Of these, the scale-like graphitized carbon can be made the lowest in price in terms of energy investment in the manufacturing process. However, since performance as a negative electrode for a battery is required to have a large charge / discharge capacity per unit volume, in order to increase the charge / discharge capacity per unit volume, a negative electrode using the above scale-like graphitized carbon is compressed. Then, there is a problem that the charge / discharge capacity is drastically reduced as compared with the case of using the other two types of carbon.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記のよう
な鱗片状黒鉛化カーボンを負極活物質として用いた場合
の問題点を解決し、鱗片状黒鉛化カーボンを負極活物質
として用いる有機電解液二次電池において充放電特性を
向上させ、充放電特性の優れた有機電解液二次電池を提
供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the problems in the case of using scaly graphitized carbon as a negative electrode active material as described above, and organic electrolysis using scaly graphitized carbon as a negative electrode active material. An object of the present invention is to provide an organic electrolyte secondary battery having improved charge / discharge characteristics and excellent charge / discharge characteristics in a liquid secondary battery.

【0008】[0008]

【課題を解決するための手段】本発明は、アスペクト比
が3以上の鱗片状黒鉛化カーボンとアスペクト比が1以
上2以下の球状カーボンとの混合比を負極活物質として
用いることによって、上記目的を達成したものである。
Means for Solving the Problems The present invention achieves the above object by using a mixture ratio of scaly graphitized carbon having an aspect ratio of 3 or more and spherical carbon having an aspect ratio of 1 or more and 2 or less as a negative electrode active material. Has been achieved.

【0009】以下、これを詳細に説明すると、本発明者
は、まず、鱗片状黒鉛化カーボンが圧縮されることによ
って容量が低下するのは、次の理由によるものと推定し
た。たとえば、球状カーボンを圧縮した場合も負極内で
のカーボン粒子間のすき間(以下、単に「すき間」とい
う)が減少するが、球と球とのすき間は、この球が形状
破壊を起こさない限り、小さくはならず、一定の空間が
確保される。通常、負極の厚み方向において直接負極表
面で電解液に接していない内部粒子も充放電できるの
は、負極内部の上記すき間に電解液が保持されているか
らであって、負極内部のすき間が負極の充放電特性に大
きな影響を及ぼすことは明らかである。つまり、球状の
カーボンや繊維状のカーボンでは、かなり高圧で圧縮し
ても、そのようなすき間が確保されるので急激な容量低
下が生じない。
To explain this in detail below, the present inventor first estimated that the reason that the capacity of the scaly graphitized carbon is reduced by compression is as follows. For example, when spherical carbon is compressed, the gap between carbon particles in the negative electrode (hereinafter, simply referred to as "gap") is reduced, but the gap between spheres is limited as long as this sphere does not cause shape destruction. It does not become small, but a certain space is secured. Usually, the internal particles that are not in direct contact with the electrolytic solution on the surface of the negative electrode in the thickness direction of the negative electrode can also be charged and discharged because the electrolytic solution is held in the above-mentioned gap inside the negative electrode, and the gap inside the negative electrode is the negative electrode. It is obvious that the charging and discharging characteristics of the are greatly affected. That is, with spherical carbon or fibrous carbon, even if compressed at a considerably high pressure, such a gap is ensured, so that a sudden decrease in capacity does not occur.

【0010】これに対して、鱗片状黒鉛化カーボン、特
にアスペクト比が3以上、すなわち、粒子の長軸方向の
長さと短軸方向の長さとの比が3以上の鱗片状黒鉛化カ
ーボンでは、圧縮により粒子が重なり合うようにして揃
うため、すき間がほとんどなくなったり、すき間が粒子
で密閉されてしまい、そのため、電解液がすみやかに負
極内部に浸透することができず、その結果、負極を構成
する活物質の一部しか充放電反応に寄与できず、充放電
容量が低くなる。
On the other hand, in the case of scaly graphitized carbon, in particular, the scaly graphitized carbon having an aspect ratio of 3 or more, that is, a ratio of the length in the major axis direction to the length in the minor axis direction of the particles is 3 or more, Since the particles are aligned so as to overlap each other by compression, the gap is almost eliminated or the gap is sealed with the particles, and therefore the electrolytic solution cannot quickly penetrate into the negative electrode, and as a result, the negative electrode is formed. Only part of the active material can contribute to the charge / discharge reaction, and the charge / discharge capacity becomes low.

【0011】ただし、鱗片状黒鉛化カーボンでも、多少
の充放電容量が得られるのは、充放電過程において、鱗
片状黒鉛化カーボン粒子が10%程度の膨張、収縮を起
こすので、密閉されたすき間に電解液が徐々に浸透し、
充放電反応が生じるようになるからであるが、それでも
高々理論容量の50%程度しか充放電できない。
However, even with the scale-like graphitized carbon, some charge / discharge capacity can be obtained because the scale-like graphitized carbon particles expand and contract by about 10% during the charging / discharging process. The electrolyte gradually penetrates into the
This is because a charge / discharge reaction occurs, but even then, at most about 50% of the theoretical capacity can be charged / discharged.

【0012】そこで、本発明者は、そのような鱗片状黒
鉛化カーボンに球状のカーボンを混合することによっ
て、そのような電解液の通路となるすき間が密閉される
のが防止され、電解液が負極内部まですみやかに浸透し
て、負極内部のカーボン粒子まで充分に充放電に寄与で
きるようになることを見出し、本発明を完成したのであ
る。
Therefore, the present inventor mixed the scaly graphitized carbon with the spherical carbon to prevent the gap serving as the passage of the electrolytic solution from being sealed, and The present invention has been completed by discovering that the carbon particles inside the negative electrode can quickly permeate into the negative electrode and can fully contribute to charging and discharging.

【0013】すなわち、鱗片状黒鉛化カーボンだけであ
れば、圧縮によって重なるところを、その間に球状のカ
ーボン粒子が存在することによって、電解液が浸透でき
る程度のすき間を確保できるようにしたのである。
That is, in the case of only the scale-like graphitized carbon, it is possible to secure a gap where the electrolytic solution can permeate by the presence of spherical carbon particles between the overlapping places by compression.

【0014】上記の球状カーボンとしては、カーボンマ
イクロビーズを2500℃以上で熱処理した黒鉛化カー
ボンでもよいし、また低結晶カーボンでもよい。そし
て、上記球状カーボンの粒子形状はアスペクト比が1以
上2以下のものであることが必要であり、アスペクト比
が2より大きくなると、鱗片状カーボンと同様の挙動を
示すようになるので好ましくない。なお、本発明におい
て、球状カーボンのアスペクト比を1以上としているの
は、アスペクト比が1より小さいものは存在しないから
である。
The spherical carbon may be graphitized carbon obtained by heat-treating carbon microbeads at 2500 ° C. or higher, or low crystalline carbon. The particle shape of the spherical carbon is required to have an aspect ratio of 1 or more and 2 or less, and if the aspect ratio is larger than 2, the same behavior as that of scale-like carbon is exhibited, which is not preferable. In the present invention, the spherical carbon has an aspect ratio of 1 or more because there is no one having an aspect ratio smaller than 1.

【0015】また、球状カーボンの粒子サイズは、鱗片
状黒鉛化カーボンと同程度のサイズでもよく、また1/
10程度の小さいものでもよいが、すき間を効率よく確
保するためにはなるべく小さい方が好ましく、鱗片状黒
鉛化カーボンの粒径にもよるが、平均粒径で1〜15μ
m程度のものが好ましい。すなわち、上記範囲内では所
望とする充放電特性の充分な向上が得られるが、球状カ
ーボンの粒子サイズが大きくなると、その混合量を多く
しないと、すき間を充分に確保することがむつかしくな
り、その球状カーボンの増量によって、放電容量が小さ
くなったり、コストが高くなる場合が生じるためであ
る。
The particle size of the spherical carbon may be the same as that of the scale-like graphitized carbon.
Although it may be as small as about 10, it is preferably as small as possible in order to efficiently secure a gap, and depending on the particle size of the scaly graphitized carbon, the average particle size is 1 to 15 μm.
It is preferably about m. That is, within the above range, a desired sufficient improvement in charge / discharge characteristics can be obtained, but when the particle size of the spherical carbon becomes large, it becomes difficult to secure a sufficient gap unless the mixing amount is increased, This is because the increase in the amount of spherical carbon may reduce the discharge capacity or increase the cost.

【0016】鱗片状黒鉛化カーボンと球状カーボンとの
混合比は、特に限定されるものではなく種々の範囲を採
用することができるが、通常、70:30〜95:5、
特に85:15〜95:05が好ましい。鱗片状黒鉛化
カーボンの量が上記範囲より多い場合は、球状カーボン
による効果が充分に発現しなくなって、充放電特性の充
分な向上が得られなくなるおそれがあり、また、鱗片状
黒鉛化カーボンの量が上記範囲より少ない場合は、放電
容量が低下するおそれがある。
The mixing ratio of the scale-like graphitized carbon and the spherical carbon is not particularly limited and various ranges can be adopted, but usually 70:30 to 95: 5,
Particularly, 85:15 to 95:05 is preferable. If the amount of scaly graphitized carbon is more than the above range, the effect due to spherical carbon may not be sufficiently expressed, and sufficient improvement of charge / discharge characteristics may not be obtained. If the amount is less than the above range, the discharge capacity may decrease.

【0017】ここで、本発明において用いる鱗片状黒鉛
化カーボンについても詳しく説明すると、この鱗片状黒
鉛化カーボンはアスペクト比が3以上のものである。つ
まり、アスペクト比が3以上の鱗片状黒鉛化カーボンで
あれば、低価格のカーボンを得る可能性があるが、アス
ペクト比が3より小さい場合は、価格面で有利性を持つ
カーボンが得られにくくなるおそれがあるからである。
The scaly graphitized carbon used in the present invention will now be described in detail. The scaly graphitized carbon has an aspect ratio of 3 or more. In other words, if the scale-like graphitized carbon has an aspect ratio of 3 or more, it is possible to obtain low-priced carbon, but if the aspect ratio is smaller than 3, it is difficult to obtain carbon having a price advantage. This is because there is a risk that

【0018】また、本発明において用いる鱗片状黒鉛化
カーボンは、層間距離d002 が3.37Å以上で、c軸
方向の結晶子サイズLcが400Å以上のものであるこ
とが好ましい。すなわち、カーボンの層間距離d002
3.37Å以上になると、結晶性の向上が顕著になり、
それによって、カーボンの層間へのリチウムイオンのイ
ンターカレーション量が増加し、理想的なC6 Liの状
態に近付くことができ、充放電容量が大きくなる可能性
が生じ、また、カーボンのc軸方向の結晶子サイズLc
が400Å以上になると、カーボンの層間へのリチウム
のインターカレーション量の増加が助長されて、充放電
容量が大きくなる可能性が生じる。そして、層間距離に
関しては、自然界の限界の層間距離d002 が3.35Å
のものまで使用可能であり、また、c軸方向の結晶子サ
イズLcに関し2000Å程度のものまで好適に使用す
ることができる。
The scale-like graphitized carbon used in the present invention preferably has an interlayer distance d 002 of 3.37 Å or more and a crystallite size Lc in the c-axis direction of 400 Å or more. That is, when the carbon interlayer distance d 002 is 3.37 Å or more, the crystallinity is remarkably improved,
As a result, the amount of intercalation of lithium ions between the layers of carbon is increased, and it is possible to approach the ideal C 6 Li state, which may lead to an increase in charge and discharge capacity. Direction crystallite size Lc
Is more than 400 Å, the increase in the amount of lithium intercalation between carbon layers is promoted, and the charge / discharge capacity may increase. Regarding the interlayer distance, the limit interlayer distance d 002 in nature is 3.35Å
Those having a crystallite size Lc in the c-axis direction of about 2000 Å can be suitably used.

【0019】本発明において、正極活物質としては、た
とえばリチウムニッケル酸化物、リチウムマンガン酸化
物、リチウムコバルト酸化物(これらは、通常、それぞ
れ、LiNiO2 、LiMnO2 、LiCoO2 などで
表すが、これらのLiとNiの比、LiとMnの比、L
iとCoの比は化学量論組成からずれている場合が多
い)などのリチウム含有遷移金属カルコゲナイドが単独
でまたは2種以上の混合物として用いられる。ただし、
正極活物質が上記化合物として存在するのは、電池が放
電状態にある時であり、電池が充放電状態にある時はリ
チウムを放出した状態で存在する。
In the present invention, examples of the positive electrode active material include lithium nickel oxide, lithium manganese oxide and lithium cobalt oxide (these are usually represented by LiNiO 2 , LiMnO 2 and LiCoO 2 , respectively. Ratio of Li to Ni, ratio of Li to Mn, L
The ratio of i to Co is often deviated from the stoichiometric composition), and a lithium-containing transition metal chalcogenide is used alone or as a mixture of two or more kinds. However,
The positive electrode active material exists as the above compound when the battery is in a discharged state, and when the battery is in a charged and discharged state, it exists in a state in which lithium is released.

【0020】そして、正極は、上記正極活物質に、必要
に応じて、たとえばりん(鱗)状黒鉛、アセチレンブラ
ック、カーボンブラックなどの導電助剤と、たとえばポ
リフッ化ビニリデン、ポリテトラフルオロエチレン、エ
チレンプロピレンジエンターポリマーなどのバインダー
を加えて調製した正極合剤を加圧成形するか、あるいは
さらに溶媒を加えてペースト状にし、それをたとえば金
属箔(たとえば、アルミニウム箔、チタン箔、白金箔な
ど)などからなる集電体上に塗布、乾燥する工程を経て
作製される。ただし、正極の作製方法は上記例示のもの
に限定されることはない。
The positive electrode may be made by adding the conductive material such as phosphorus (scaly) graphite, acetylene black or carbon black to the positive electrode active material, if necessary, and polyvinylidene fluoride, polytetrafluoroethylene or ethylene. A positive electrode mixture prepared by adding a binder such as propylene diene terpolymer is pressure-molded, or a solvent is further added to form a paste, which is made of, for example, metal foil (eg, aluminum foil, titanium foil, platinum foil, etc.). It is manufactured through a process of coating and drying on a current collector made of, for example. However, the method for producing the positive electrode is not limited to the above-exemplified one.

【0021】負極は、上記特定のカーボンの混合物から
なる負極活物質(ただし、負極活物質がカーボンそのも
のとして存在するのは、電池が放電状態にある時であ
り、電池が充電状態にある時にはカーボンの層間にリチ
ウムイオンがインターカレートした状態になる)に、必
要に応じて、たとえばポリフッ化ビニリデン、ポリテト
ラフルオロエチレン、エチレンプロピレンジエンターポ
リマーなどのバインダーを適宜加え、混合して調製した
負極合剤を加圧成形するか、あるいは、さらに溶媒を加
えてペースト状にし、そのペーストをたとえば金属箔
(たとえば、銅箔、ニッケル箔など)などからなる集電
体上に塗布、乾燥する工程を経て作製される。ただし、
負極の作製方法も上記例示のものに限定されることはな
い。
The negative electrode is a negative electrode active material composed of a mixture of the above-mentioned specific carbons (however, the negative electrode active material exists as carbon itself when the battery is in a discharged state and when the battery is in a charged state. In the state where lithium ions are intercalated between the layers), a binder such as polyvinylidene fluoride, polytetrafluoroethylene, or ethylene propylene diene terpolymer is appropriately added to the negative electrode mixture prepared as necessary. After pressure-molding the agent, or adding a solvent to form a paste, the paste is applied onto a current collector made of, for example, a metal foil (eg, copper foil, nickel foil, etc.), and dried. It is made. However,
The method for producing the negative electrode is not limited to the above-exemplified one.

【0022】有機電解液(以下、電池を表す場合を除
き、簡略化して「電解液」という)としては、たとえば
1,2−ジメトキシエタン、1,2−ジエトキシエタ
ン、プロピレンカーボネート、エチレンカーボネート、
γ−ブチロラクトン、テトラヒドロフラン、1,3−ジ
オキソラン、ジエチレンカーボネート、ジメチルカーボ
ネート、エチルメチルカーボネートなどの単独または2
種以上の混合溶媒に、たとえばLiCF3 SO3 、Li
4 9 SO3 、LiClO4 、LiPF6 、LiBF
4 などの電解質を単独でまたは2種以上を溶解させたも
のが用いられる。
Examples of the organic electrolytic solution (hereinafter, simply referred to as “electrolytic solution” unless otherwise indicated as a battery) include 1,2-dimethoxyethane, 1,2-diethoxyethane, propylene carbonate, ethylene carbonate,
γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, diethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, etc. alone or 2
In a mixed solvent of one or more kinds, for example, LiCF 3 SO 3 , Li
C 4 F 9 SO 3 , LiClO 4 , LiPF 6 , LiBF
Electrolyte such as 4 is used alone or in which two or more kinds are dissolved.

【0023】[0023]

【発明の実施の形態】つぎに、実施例を挙げて本発明を
より具体的に説明する。ただし、本発明はそれらの実施
例のみに限定されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described more specifically with reference to Examples. However, the present invention is not limited to only those examples.

【0024】実施例1 鱗片状黒鉛化カーボンとして、コークスを3000℃で
熱処理して得たバルクカーボンを粉砕して、平均粒径が
10μmで、アスペクト比が6の鱗片状粉末を得た。こ
の鱗片状黒鉛化カーボンは、層間距離d002 が3.36
Åで、c軸方向の結晶子サイズLcが853Åであっ
た。また、球状カーボンとしては、カーボンマイクロビ
ーズを3000℃で熱処理して得た平均粒径10μm
で、アスペクト比1.1の黒鉛化カーボンを用意した。
Example 1 As scale-like graphitized carbon, bulk carbon obtained by heat-treating coke at 3000 ° C. was pulverized to obtain scale-like powder having an average particle size of 10 μm and an aspect ratio of 6. This scale-like graphitized carbon has an interlayer distance d 002 of 3.36.
And the crystallite size Lc in the c-axis direction was 853Å. The spherical carbon has an average particle size of 10 μm obtained by heat-treating carbon microbeads at 3000 ° C.
Then, graphitized carbon having an aspect ratio of 1.1 was prepared.

【0025】これらの鱗片状黒鉛化カーボンと球状カー
ボンとを重量比60:40で混合し、得られたカーボン
混合物90重量部に対して、バインダーとしてポリフッ
化ビニリデン10重量部、溶媒としてN−メチル−2−
ピロリドン150重量部を配合して、カーボンペースト
を調製し、そのカーボンペーストを集電体としての厚さ
20μmの銅箔上に塗布し、乾燥した後、カレンダーロ
ールでプレスして、負極として用いるカーボン電極を作
製した。なお、上記カーボンペーストの調製にあたって
は、あらかじめポリフッ化ビニリデンをN−メチル−2
−ピロリドンに溶解させておいた。また、上記のように
して得られた合剤層(集電体としての銅箔上に形成され
たカーボンとバインダーとの合剤の層)との密度は1.
64g/ccであった。
These scale-like graphitized carbons and spherical carbons were mixed at a weight ratio of 60:40, and to 90 parts by weight of the obtained carbon mixture, 10 parts by weight of polyvinylidene fluoride as a binder and N-methyl as a solvent were mixed. -2-
A carbon paste was prepared by mixing 150 parts by weight of pyrrolidone, and the carbon paste was applied onto a copper foil having a thickness of 20 μm as a current collector, dried, and then pressed with a calendar roll to be used as a negative electrode. An electrode was prepared. In preparing the carbon paste, polyvinylidene fluoride was previously added to N-methyl-2.
-Dissolved in pyrrolidone. The density of the mixture layer obtained as described above (the layer of the mixture of carbon and binder formed on the copper foil as the current collector) was 1.
It was 64 g / cc.

【0026】一方、正極は次のようにして作製した。す
なわち、正極活物質としては、リチウムニッケル酸化物
(通常、LiNiO2 として表すが、LiとNiの比は
化学量論組成から若干ずれている)を用い、このリチウ
ムニッケル酸化物とりん状黒鉛とポリフッ化ビニリデン
とを下記の割合で含む正極形成用の活物質含有ペースト
を調製した。
On the other hand, the positive electrode was manufactured as follows. That is, as the positive electrode active material, lithium nickel oxide (usually expressed as LiNiO 2 , but the ratio of Li and Ni is slightly deviated from the stoichiometric composition) was used, and this lithium nickel oxide and phosphorous graphite were used. An active material-containing paste for forming a positive electrode containing polyvinylidene fluoride in the following ratio was prepared.

【0027】 リチウムニッケル酸化物 91重量部 りん状黒鉛 6重量部 ポリフッ化ビニリデン 3重量部[0027] Lithium nickel oxide 91 parts by weight Phosphorous graphite 6 parts by weight Polyvinylidene fluoride 3 parts by weight

【0028】上記の正極形成用の活物質含有ペーストの
調製は、ポリフッ化ビニリデンをN−メチル−2−メチ
ルピロリドンにあらかじめ溶解し、それにリチウムニッ
ケル酸化物とりん状黒鉛を加えて混合し、さらにN−メ
チルピロリドンを加えて混合することによって行った。
To prepare the above-mentioned paste containing the active material for forming the positive electrode, polyvinylidene fluoride was previously dissolved in N-methyl-2-methylpyrrolidone, and lithium nickel oxide and phosphorous graphite were added thereto and mixed, and This was done by adding N-methylpyrrolidone and mixing.

【0029】得られた正極形成用の活物質含有ペースト
を厚さ20μmのアルミニウム箔上にアプリケーターを
用いて塗布し、その後、乾燥した後、カレンダーロール
でプレスして、正極を作製した。
The obtained active material-containing paste for forming a positive electrode was applied onto an aluminum foil having a thickness of 20 μm using an applicator, dried and then pressed with a calendar roll to produce a positive electrode.

【0030】そして、電解液としては、エチレンカーボ
ネートと1,2−ジメトキシエタンとの体積比1:1の
混合溶媒にLiPF6 を1モル/リットル溶解させたも
のを用い、図1に示す構造で、外径20mm、高さ5m
mのボタン形有機電解液二次電池を作製した。
As the electrolytic solution, a solution obtained by dissolving 1 mol / liter of LiPF 6 in a mixed solvent of ethylene carbonate and 1,2-dimethoxyethane in a volume ratio of 1: 1 was used. , Outer diameter 20mm, height 5m
A m-type button-type organic electrolyte secondary battery was produced.

【0031】図1において、1は上記の正極であり、2
は上記の負極である。3は微孔性ポリプロピレンフィル
ムからなるセパレータで、4はポリプロピレン不織布か
らなる電解液吸収体である。5はステンレス鋼製の正極
缶であり、6はアルミニウム箔からなる正極集電体で、
7はステンレス鋼製で表面にニッケルメッキを施した負
極缶である。8は銅箔からなる負極集電体であり、9は
ポリプロピレン製の環状ガスケットであって、この電池
にはエチレンカーボネートとメチルエチルカーボネート
との体積比1:1の混合溶媒にLiPF6 を1モル/リ
ットル溶解した電解液が注入されている。
In FIG. 1, 1 is the above positive electrode, and 2
Is the above-mentioned negative electrode. Reference numeral 3 is a separator made of a microporous polypropylene film, and 4 is an electrolytic solution absorber made of a polypropylene nonwoven fabric. 5 is a stainless steel positive electrode can, 6 is a positive electrode current collector made of aluminum foil,
Reference numeral 7 is a negative electrode can made of stainless steel and having a surface plated with nickel. 8 is a negative electrode current collector made of copper foil, 9 is a polypropylene annular gasket, and 1 mol of LiPF 6 is mixed in a mixed solvent of ethylene carbonate and methyl ethyl carbonate at a volume ratio of 1: 1. / Liter Dissolved electrolyte is injected.

【0032】実施例2 鱗片状黒鉛化カーボンとしては実施例1と同様のものを
用い、球状カーボンとしては、カーボンマイクロビーズ
を3000℃で熱処理して得た平均粒径2μmで、アス
ペクト比1.1の黒鉛化カーボンを用い、かつ鱗片状黒
鉛化カーボンと球状カーボンとの混合比を重量比で9
0:10にした以外は、実施例1と同様にしてボタン形
有機電解液二次電池を作製した。
Example 2 As the scale-like graphitized carbon, the same one as in Example 1 was used, and as the spherical carbon, an average particle diameter of 2 μm obtained by heat-treating carbon microbeads at 3000 ° C. and an aspect ratio of 1. 1 is used, and the mixing ratio of the scale-like graphitized carbon and the spherical carbon is 9 by weight.
A button type organic electrolyte secondary battery was produced in the same manner as in Example 1 except that the time was set to 0:10.

【0033】実施例3 鱗片状黒鉛化カーボンとしては実施例1と同様のものを
用い、球状カーボンとしては、コークスを1000℃で
熱処理して得た平均粒径10μmで、アスペクト比1.
1の黒鉛化カーボンを用い、かつ鱗片状黒鉛化カーボン
と球状カーボンとの混合比を重量比で70:30とした
以外は、実施例1と同様にしてボタン形有機電解液二次
電池を作製した。
Example 3 As the scale-like graphitized carbon, the same one as in Example 1 was used, and as the spherical carbon, the average particle size obtained by heat treatment of coke at 1000 ° C. was 10 μm, and the aspect ratio was 1.
A button type organic electrolyte secondary battery was produced in the same manner as in Example 1 except that the graphitized carbon of No. 1 was used and the mixing ratio of the scaly graphitized carbon and the spherical carbon was 70:30 by weight. did.

【0034】実施例4 鱗片状黒鉛化カーボンとしては、コークスを2500℃
で熱処理したものを粉砕して、平均粒径12μmで、ア
スペクト比が3の鱗片状粉末を得た。この鱗片状黒鉛化
カーボンは、層間距離d002 が3.38Åで、c軸方向
の結晶子サイズLcが530Åであった。球状カーボン
としては、コークスを1000℃で熱処理して得た平均
粒径1μmで、アスペクト比1.1の低結晶カーボンを
用意した。これらの鱗片状黒鉛化カーボンと球状カーボ
ンを用いたことと、両者の混合比を重量比で90:10
にした以外は、実施例1と同様にしてボタン形有機電解
液二次電池を作製した。
Example 4 As scale-like graphitized carbon, coke was 2,500 ° C.
The powder heat-treated in (1) was pulverized to obtain a scaly powder having an average particle diameter of 12 μm and an aspect ratio of 3. This scale-like graphitized carbon had an interlayer distance d 002 of 3.38Å and a crystallite size Lc in the c-axis direction of 530Å. As the spherical carbon, low crystalline carbon having an average particle size of 1 μm and an aspect ratio of 1.1, which was obtained by heat-treating coke at 1000 ° C., was prepared. These scale-like graphitized carbon and spherical carbon were used, and the mixing ratio of both was 90:10 by weight.
A button type organic electrolyte secondary battery was produced in the same manner as in Example 1 except that the above was used.

【0035】実施例5 鱗片状黒鉛化カーボンとしては実施例1と同様のものを
用い、球状カーボンとしては、コークスを1800℃で
熱処理して得た平均粒径3μmで、アスペクト比1.9
の乱層カーボンを用い、かつ鱗片状黒鉛化カーボンと球
状カーボンとの混合比を重量比で80:20にした以外
は、実施例1と同様にしてボタン形有機電解液二次電池
を作製した。
Example 5 As the scale-like graphitized carbon, the same one as in Example 1 was used, and as the spherical carbon, the average particle size obtained by heat treatment of coke at 1800 ° C. was 3 μm, and the aspect ratio was 1.9.
A button type organic electrolyte secondary battery was produced in the same manner as in Example 1 except that the turbostratic carbon of No. 1 was used and the mixing ratio of the scale-like graphitized carbon and the spherical carbon was 80:20 by weight. .

【0036】実施例6 鱗片状黒鉛化カーボンとしては実施例1と同様のものを
用い、球状カーボンとしては、フェノール樹脂を120
0℃で熱処理して得た平均粒径7μmで、アスペクト比
1.5の低結晶カーボンを用い、かつ鱗片状黒鉛化カー
ボンと球状カーボンとの混合比を重量比で90:10と
した以外は、実施例1と同様にしてボタン形有機電解液
二次電池を作製した。
Example 6 As the scale-like graphitized carbon, the same one as in Example 1 was used, and as the spherical carbon, 120 phenol resin was used.
Except that low crystalline carbon having an average particle size of 7 μm and an aspect ratio of 1.5 obtained by heat treatment at 0 ° C. was used, and the mixing ratio of scaly graphitized carbon and spherical carbon was 90:10 by weight. A button type organic electrolyte secondary battery was prepared in the same manner as in Example 1.

【0037】比較例1 球状カーボンを用いず、そのぶん鱗片状黒鉛化カーボン
を増量した以外は、実施例1と同様にしてボタン形有機
電解液二次電池を作製した。
Comparative Example 1 A button type organic electrolyte secondary battery was prepared in the same manner as in Example 1 except that spherical carbon was not used and the scale-like graphitized carbon was increased.

【0038】比較例2 球状カーボンとして、コークスを2600℃で熱処理し
て得た平均粒径2μmで、アスペクト比2.7の黒鉛化
カーボンを用い、かつ鱗片状黒鉛化カーボンと球状カー
ボンとの混合比を重量比90:10にした以外は、実施
例1と同様にしてボタン形有機電解液二次電池を作製し
た。
Comparative Example 2 As the spherical carbon, a graphitized carbon having an average particle size of 2 μm obtained by heat treatment of coke at 2600 ° C. and an aspect ratio of 2.7 was used, and the flaky graphitized carbon and the spherical carbon were mixed. A button type organic electrolyte secondary battery was produced in the same manner as in Example 1 except that the weight ratio was 90:10.

【0039】上記のようにして作製した実施例1〜6お
よび比較例1〜2の電池について、20℃、0.5mA
/cm2 で充放電させた場合の最高放電容量、上記最高
放電容量に達するまでに必要なサイクル数、2mA/c
2 で充電し、0.5mA/cm2 で放電させた場合の
放電容量の最高放電容量に対する比率、0.5mA/c
2 で充電し、2mA/cm2 で放電させた場合の放電
容量の最高放電容量に対する比率を調べた。その結果を
表1に示す。
Regarding the batteries of Examples 1 to 6 and Comparative Examples 1 and 2 produced as described above, 20 ° C., 0.5 mA
Discharge capacity when charging / discharging at 1 / cm 2 , the number of cycles required to reach the above maximum discharge capacity, 2 mA / c
Ratio of discharge capacity to maximum discharge capacity when charged at m 2 and discharged at 0.5 mA / cm 2 , 0.5 mA / c
The ratio of the discharge capacity to the maximum discharge capacity when charged at m 2 and discharged at 2 mA / cm 2 was examined. The results are shown in Table 1.

【0040】[0040]

【表1】 [Table 1]

【0041】表1に示すように、実施例1〜6は、比較
例1〜2に比べて、放電容量が高く、また、高電流密度
での充放電での放電容量も高く、最高放電容量にも少な
いサイクル数で到達することができた。すなわち、本発
明の実施例1〜6の電池は、高電流密度での充放電にお
いても充放電特性が優れており、また、その結果から、
負荷特性も優れていることが明らかにされていた。
As shown in Table 1, Examples 1 to 6 have higher discharge capacities and higher discharge capacities in charging and discharging at a high current density as compared with Comparative Examples 1 and 2, and thus have the highest discharge capacities. I was able to reach it with a small number of cycles. That is, the batteries of Examples 1 to 6 of the present invention have excellent charge / discharge characteristics even in charge / discharge at high current density, and from the results,
It has been revealed that the load characteristics are also excellent.

【0042】[0042]

【発明の効果】以上説明したように、本発明では、鱗片
状黒鉛化カーボンに球状カーボンを混合して負極活物質
として用いることにより、高電流密度での充放電におい
ても、充放電特性が優れていて、負荷特性においても優
れた有機電解液二次電池を提供することができた。
As described above, according to the present invention, the scaly graphitized carbon is mixed with the spherical carbon to be used as the negative electrode active material, so that the charge and discharge characteristics are excellent even in the charge and discharge at high current density. Therefore, it was possible to provide an organic electrolyte secondary battery having excellent load characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る有機電解液二次電池の一例を示す
断面図である。
FIG. 1 is a cross-sectional view showing an example of an organic electrolyte secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 電解液吸収体 1 positive electrode 2 Negative electrode 3 separator 4 Electrolyte solution absorber

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リチウム含有遷移金属カルコゲナイドを
正極活物質とする正極、負極および有機電解液を有する
有機電解液二次電池において、負極活物質が、アスペク
ト比が3以上の鱗片状黒鉛化カーボンとアスペクト比が
1以上2以下の球状カーボンとの混合物からなることを
特徴とする有機電解液二次電池。
1. In an organic electrolyte secondary battery having a positive electrode, a negative electrode, and an organic electrolytic solution using a lithium-containing transition metal chalcogenide as a positive electrode active material, the negative electrode active material is scaly graphitized carbon having an aspect ratio of 3 or more. An organic electrolyte secondary battery comprising a mixture of spherical carbon having an aspect ratio of 1 or more and 2 or less.
【請求項2】 アスペクト比が3以上の鱗片状黒鉛化カ
ーボンとアスペクト比が1以上2以下の球状カーボンと
の混合比が重量比で70:30〜95:5であることを
特徴とする請求項1記載の有機電解液二次電池。
2. The weight ratio of the scaly graphitized carbon having an aspect ratio of 3 or more and the spherical carbon having an aspect ratio of 1 or more and 2 or less is 70:30 to 95: 5. Item 2. The organic electrolyte secondary battery according to item 1.
【請求項3】 鱗片状黒鉛化カーボンの層間距離d002
が3.38Å以下で、c軸方向の結晶子サイズLcが4
00Å以上であることを特徴とする請求項1または2記
載の有機電解液二次電池。
3. An interlayer distance d 002 of scale-like graphitized carbon
Is 3.38Å or less, and the crystallite size Lc in the c-axis direction is 4
The organic electrolytic solution secondary battery according to claim 1 or 2, wherein the organic electrolytic solution secondary battery is 00 Å or more.
JP32841395A 1995-11-22 1995-11-22 Organic electrolyte secondary battery Expired - Fee Related JP3532016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32841395A JP3532016B2 (en) 1995-11-22 1995-11-22 Organic electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32841395A JP3532016B2 (en) 1995-11-22 1995-11-22 Organic electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH09147862A JPH09147862A (en) 1997-06-06
JP3532016B2 true JP3532016B2 (en) 2004-05-31

Family

ID=18209992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32841395A Expired - Fee Related JP3532016B2 (en) 1995-11-22 1995-11-22 Organic electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3532016B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3783706A4 (en) * 2019-01-03 2021-09-01 Lg Chem, Ltd. Anode active material for secondary battery, electrode comprising same, and method for manufacturing same

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6337156B1 (en) * 1997-12-23 2002-01-08 Sri International Ion battery using high aspect ratio electrodes
JP2002008655A (en) * 2000-06-20 2002-01-11 Sony Corp Negative electrode and non-aqueous electrolyte cell
JP5430063B2 (en) * 2000-09-26 2014-02-26 三菱化学株式会社 Lithium secondary battery and negative electrode
US7662265B2 (en) 2000-10-20 2010-02-16 Massachusetts Institute Of Technology Electrophoretic assembly of electrochemical devices
US20070128518A1 (en) * 2004-02-12 2007-06-07 Mitsubishi Chemical Corporation Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same, and lithium secondary battery
US20090067118A1 (en) * 2004-11-19 2009-03-12 Ube Industries, Ltd. Electric double layer capacitor
JP5082221B2 (en) * 2005-10-05 2012-11-28 ソニー株式会社 Negative electrode for secondary battery and secondary battery
US20070178310A1 (en) * 2006-01-31 2007-08-02 Rudyard Istvan Non-woven fibrous materials and electrodes therefrom
KR100817977B1 (en) * 2007-05-03 2008-03-31 엘에스전선 주식회사 Anode material of secondary battery and secondary battery using the same
US20090202903A1 (en) 2007-05-25 2009-08-13 Massachusetts Institute Of Technology Batteries and electrodes for use thereof
CN104993114B (en) * 2010-12-17 2018-07-03 艾利电力能源有限公司 Negative electrode for nonaqueous secondary battery and its manufacturing method, nonaqueous electrolytic solution secondary battery
WO2012133611A1 (en) * 2011-03-29 2012-10-04 三菱化学株式会社 Negative electrode material for nonaqueous secondary battery, negative electrode using the same, and nonaqueous secondary battery
US9065093B2 (en) 2011-04-07 2015-06-23 Massachusetts Institute Of Technology Controlled porosity in electrodes
JP6221832B2 (en) * 2014-02-28 2017-11-01 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
WO2016054530A1 (en) 2014-10-03 2016-04-07 Massachusetts Institute Of Technology Pore orientation using magnetic fields
US10675819B2 (en) 2014-10-03 2020-06-09 Massachusetts Institute Of Technology Magnetic field alignment of emulsions to produce porous articles
GB2609985A (en) * 2021-08-20 2023-02-22 Amte Power Plc Electrode
WO2023204215A1 (en) * 2022-04-18 2023-10-26 Apb株式会社 Electrode composition for lithium ion batteries, coated negative electrode active material particles for lithium ion batteries, method for producing coated negative electrode active material particles for lithium ion batteries, negative electrode for lithium ion batteries, and lithium ion battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3783706A4 (en) * 2019-01-03 2021-09-01 Lg Chem, Ltd. Anode active material for secondary battery, electrode comprising same, and method for manufacturing same
US11799072B2 (en) 2019-01-03 2023-10-24 Lg Energy Solution, Ltd. Anode active material for secondary battery, electrode comprising same, and method for manufacturing same

Also Published As

Publication number Publication date
JPH09147862A (en) 1997-06-06

Similar Documents

Publication Publication Date Title
JP2884746B2 (en) Non-aqueous electrolyte secondary battery
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP3532016B2 (en) Organic electrolyte secondary battery
CA2496374C (en) Positive electrode active material and non-aqueous electrolyte secondary cell
JP5268315B2 (en) Non-aqueous electrolyte battery active material and non-aqueous electrolyte battery
JP3032757B1 (en) Non-aqueous electrolyte secondary battery
JPH0935715A (en) Manufacture of positive electrode active material and nonaqueous electrolyte secondary battery
JP5799500B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
KR20130035911A (en) Positive electrode material, lithium ion secondary battery using thereof, and manufacturing method of positive electrode material
US11784314B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery including the same
JPH07226204A (en) Manufacture of nonaqueous electrolyte secondary battery
JP2012124116A (en) Negative electrode material for lithium ion secondary battery, method for manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP3633223B2 (en) Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery
CN116210102A (en) Negative electrode material, and negative electrode and secondary battery comprising same
JP3048808B2 (en) Non-aqueous electrolyte secondary battery
JP3499739B2 (en) Lithium secondary battery and method of manufacturing lithium secondary battery
WO2014103558A1 (en) Nonaqueous electrolyte secondary cell electrode and method for manufacturing same
JP4120771B2 (en) Non-aqueous secondary battery
JP4085244B2 (en) Non-aqueous secondary battery
JP2015165510A (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2004296106A (en) Nonaqueous secondary battery
JP3568247B2 (en) Non-aqueous electrolyte secondary battery
JP2012124117A (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN114586199A (en) Negative electrode active material, method of preparing the same, and negative electrode and secondary battery including the same
CN114600277A (en) Negative active material comprising silicon composite formed by network of conductive fibers, method of preparing the same, and lithium secondary battery comprising the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040302

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees