JPH03203225A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH03203225A
JPH03203225A JP34058289A JP34058289A JPH03203225A JP H03203225 A JPH03203225 A JP H03203225A JP 34058289 A JP34058289 A JP 34058289A JP 34058289 A JP34058289 A JP 34058289A JP H03203225 A JPH03203225 A JP H03203225A
Authority
JP
Japan
Prior art keywords
substrate
oxygen concentration
layer
compound semiconductor
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34058289A
Other languages
Japanese (ja)
Other versions
JP2853226B2 (en
Inventor
Takashi Eshita
隆 恵下
Riichi Inoue
利一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP34058289A priority Critical patent/JP2853226B2/en
Publication of JPH03203225A publication Critical patent/JPH03203225A/en
Application granted granted Critical
Publication of JP2853226B2 publication Critical patent/JP2853226B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To prevent mixture of Si into a III-V compound semiconductor hetero epitaxial growth layer from an Si substrate and to ensure a full mechanical strength for achieving a large aperture by providing the III-V compound semiconductor layer which is allowed to grow being in contact with the surface of the Si substrate where the surface oxygen concentration is specific. CONSTITUTION:An Si substrate 1 whose surface oxygen concentration is equal to or less than 1X10<17>cm<-3> and a III-V compound semiconductor layer 3 which is allowed to grow being in contact with the surface of the Si substrate 1 are provided. Namely, the surface oxygen concentration of the Si substrate 1 for performing epitaxial growth needs to be 10<17>cm<-2> or less to prevent mixture of Si into the III-V compound semiconductor layer which was subjected to epitaxial growth to the extent which is sufficient for ensuring element characteristics. Also, oxygen concentration within the Si substrate 1 can be set to a concentration for ensuring a sufficient mechanical strength according to the aperture of the substrate 1, thus preventing mixture of Si into the III-V compound semiconductor hetero epitaxial growth layer 3 from the Si substrate 1 and ensuring a sufficient mechanical strength of the substrate 1 for achieving a large aperture.

Description

【発明の詳細な説明】 〔概 要〕 本発明は、半導体装置およびその製造方法に関し、 Si基板から■−V族化合物半導体へテロエピタキシャ
ル成長層中へのSi混人を防止すると共に大口径化に十
分な基板の機械的強度を確保した半導体装置およびその
製造方法を提供することを目的とし、 本発明の半導体装置は、表面の酸素濃度が1×I Q 
+’7C「3以下のSi基板と、前記Si基板の表面に
接して成長された■−V族化合物半導体層とを備えて構
成し、 本発明の半導体装置の製造方法は、Si基板に対して不
活性雰囲気中で加熱処理を施し、表面の酸素濃度を1×
10′″以下にせしめる工程と、前記Si基板の表面に
■−■族化合物半導体を成長する工程とを含むように構
成する。
[Detailed Description of the Invention] [Summary] The present invention relates to a semiconductor device and a method for manufacturing the same, which prevents Si contamination from a Si substrate into a heteroepitaxially grown layer of a ■-V group compound semiconductor, and facilitates an increase in diameter. An object of the present invention is to provide a semiconductor device in which a sufficient mechanical strength of the substrate is ensured, and a method for manufacturing the same.
The semiconductor device manufacturing method of the present invention comprises a Si substrate of 3 or less and a -V group compound semiconductor layer grown in contact with the surface of the Si substrate. heat treatment in an inert atmosphere to reduce the oxygen concentration on the surface to 1×
10'' or less, and a step of growing a ■-■ group compound semiconductor on the surface of the Si substrate.

〔産業上の利用分野〕[Industrial application field]

本発明は、半導体装置およびその製造方法に関する。 The present invention relates to a semiconductor device and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

近年、m−v族化合物半導体を用いた集積回路の集積度
が向上し、それに伴ってチップサイズが大型化している
。このような集積回路の生産性を向上させるためには、
基板の大口径化が必要である。
In recent years, the degree of integration of integrated circuits using m-v group compound semiconductors has improved, and the chip size has accordingly increased. In order to improve the productivity of such integrated circuits,
It is necessary to increase the diameter of the substrate.

■=V族化合物半導体は大口径の単結晶インゴットを製
造することが困難であるため、大口径化が可能な81基
板上に■−V族化合吻半導体をヘテロエピタキシャル成
長することにより大口径化を図っている。
Since it is difficult to manufacture single crystal ingots with large diameters for ■=V group compound semiconductors, large diameters can be achieved by heteroepitaxially growing ■-V group compound semiconductors on 81 substrates that allow for larger diameters. I'm trying.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、その際に基板のStがへテロエピタキシ
ャル成長層中に拡散して混入する。■−■族化合物半導
体のへテロエピタキシャル成長層のSi混入領域では、
Siがドナーとして作用して電気抵抗が低下するため、
ヘテロエピタキシャル成長層中に形成した素子とSi基
板との間の電気的絶縁およびヘテロエピタキシャル成長
層中の素子間の電気的絶縁が不十分にな、って、素子特
性を劣化させる原因となっていた。
However, at this time, St from the substrate diffuses into the heteroepitaxially grown layer. In the Si-containing region of the heteroepitaxial growth layer of the ■-■ group compound semiconductor,
Because Si acts as a donor and the electrical resistance decreases,
The electrical insulation between the elements formed in the heteroepitaxially grown layer and the Si substrate and the electrical insulation between the elements in the heteroepitaxially grown layer are insufficient, which causes deterioration of the element characteristics.

本発明は、81基板から■−V族化合物半導体へテロエ
ピタキシャル成長層中へのSt混人を防止すると共に大
口径化に十分な基板の機械的強度を確保した半導体装置
およびその製造方法を提供することを目的とする。
The present invention provides a semiconductor device and a method for manufacturing the same, which prevents St contamination from an 81 substrate into a heteroepitaxial growth layer of a -V group compound semiconductor, and ensures sufficient mechanical strength of the substrate for increasing the diameter. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的は、本発明によれば、表面の酸素濃度がI 
X 10 ”cm−″以下のSi基板と、前記Si基板
の表面に接して成長された■−V族化合物半導体層とを
備えることを特徴とする半導体装置、またはSi基板に
対して不活性雰囲気中で加熱処理を施し、表面の酸素濃
度をlXl0”以下にせしめる工程と、前記Si基板の
表面に■−■族化(3) (4) 合物半導体を成長する工程とを含むことを特徴とする半
導体装置の製造方法によって達成される。
According to the present invention, the above object is achieved by reducing the surface oxygen concentration to
A semiconductor device characterized by comprising a Si substrate of X 10 "cm-" or less and a ■-V group compound semiconductor layer grown in contact with the surface of the Si substrate, or an inert atmosphere for the Si substrate. The method is characterized by comprising a step of performing heat treatment in the Si substrate to reduce the oxygen concentration on the surface to 1Xl0'' or less, and a step of growing a ■-■ group compound semiconductor (3) (4) on the surface of the Si substrate. This is achieved by a method of manufacturing a semiconductor device.

〔作 用〕[For production]

本発明者が種々の実験を行った結果、表面の酸素濃度が
I X 10 ”cm−3以下のSiの表面に■V族化
合物半導体を成長した場合は、ヘテロエピタキシャル成
長した■−V族化合物半導体中へのSNの混入が抑制で
きることが判明した。
As a result of various experiments conducted by the present inventors, it has been found that when a ■-V group compound semiconductor is grown on the surface of Si with a surface oxygen concentration of I x 10 ''cm-3 or less, a ■-V group compound semiconductor grown heteroepitaxially. It was found that the contamination of SN into the inside could be suppressed.

本発明は、この知見を基に槽底されている。The present invention is based on this knowledge.

また、Si基板全体の酸素濃度を低下させるためには、
いわゆるフローティングゾーン法によって作製する必要
があり、コスト高となるばかりか、機械的強度が低下す
る恐れもある。
In addition, in order to reduce the oxygen concentration of the entire Si substrate,
It is necessary to manufacture by a so-called floating zone method, which not only increases the cost but also may reduce mechanical strength.

しかし、本発明者は、ヘテロエピタキシャル成長層中へ
のSt混入を防止するには、Si基板全体の酸素濃度を
低下させる必要はなく、成長を行う基板表面の酸素濃度
を低下させれば十分であること、また表面の酸素濃度を
低下させても内部の酸素濃度を低下させずに維持してお
けば基板の機械的強度を確保できることを見出した。
However, the present inventor believes that in order to prevent St incorporation into the heteroepitaxial growth layer, it is not necessary to reduce the oxygen concentration of the entire Si substrate, but it is sufficient to reduce the oxygen concentration of the surface of the substrate where the growth is performed. In addition, it has been found that even if the surface oxygen concentration is reduced, the mechanical strength of the substrate can be ensured by maintaining the internal oxygen concentration without reducing it.

エピタキシャル成長した■−V族化合物半導体層中への
St混人を、素子特性を確保するのに十分な程度まで防
止するには、エピタキシャル成長を行うSi基板表面の
酸素濃度が10”cyn−3以下であることが必要であ
る。Si基板表面のSi濃度は、できるだけ低いこと望
ましく、1016CI11−3以下とすることが望まし
い。
In order to prevent St incorporation into the epitaxially grown ■-V group compound semiconductor layer to a sufficient extent to ensure device characteristics, the oxygen concentration on the surface of the Si substrate on which epitaxial growth is performed must be 10" cyn-3 or less. The Si concentration on the surface of the Si substrate is desirably as low as possible, preferably 1016 CI11-3 or less.

Si基板内部の酸素濃度は、基板口径に応じて十分な機
械的強度が確保される濃度とすることができる。
The oxygen concentration inside the Si substrate can be set to a concentration that ensures sufficient mechanical strength depending on the diameter of the substrate.

第1図に、種々の表面酸素濃度のSi基板上に■−V族
化合物半導体としてGaAsを有機金属化学気相成長法
(MOCVD法)によりヘテロエピタキシャル成長させ
た場合の、基板/成長層界面付近のSt濃度分布を示す
。いずれの場合も、基板表面の深さ15μm程度までを
図中に表示した酸素濃度とし、基板内部の酸素濃度はI
 Q 18 cm −3である。基板表面酸素濃度I 
Q I s Cm −3同図中の曲線1)ではGaAs
層側の1μm程度までSN混(5) (6) 人が認められるが、基板表面酸素濃度が1017cyn
−3以下(同図中の曲線2および3)になるとSi混入
が著しく低減され、実質的に素子特性に影響するSi混
入は防止されている。また、基板内部酸素濃度が101
8cm−3程度であれば、Si基板の機械的強度は十分
に確保される。
Figure 1 shows the area near the substrate/growth layer interface when GaAs is heteroepitaxially grown as a ■-V group compound semiconductor by metal organic chemical vapor deposition (MOCVD) on Si substrates with various surface oxygen concentrations. The St concentration distribution is shown. In either case, the oxygen concentration shown in the figure is up to a depth of about 15 μm on the substrate surface, and the oxygen concentration inside the substrate is I
Q 18 cm −3. Substrate surface oxygen concentration I
Q I s Cm -3 In curve 1) in the same figure, GaAs
SN mixture (5) (6) is observed up to about 1 μm on the layer side, but the oxygen concentration on the substrate surface is 1017 cyn.
-3 or less (curves 2 and 3 in the figure), Si contamination is significantly reduced, and Si contamination that would affect device characteristics is substantially prevented. In addition, the oxygen concentration inside the substrate is 101
If it is about 8 cm-3, the mechanical strength of the Si substrate is sufficiently ensured.

本発明においては、Si基板の表面をB170m−3以
下の低酸素濃度とすることによりヘテロエピタキシャル
成長層中へのSi混入を防止し、且つ基板内部の酸素濃
度を適宜選択できることにより十分な機械的強度を確保
する。
In the present invention, the surface of the Si substrate has a low oxygen concentration of B170m-3 or less to prevent Si from entering the heteroepitaxial growth layer, and the oxygen concentration inside the substrate can be appropriately selected to provide sufficient mechanical strength. ensure that

以下に、実施例により本発明をより詳細に説明する。EXAMPLES Below, the present invention will be explained in more detail with reference to Examples.

〔実施例1] 第2図(a)は、本実施例の構成を示している。[Example 1] FIG. 2(a) shows the configuration of this embodiment.

まず、Si基板1表面の酸素濃度を低下させる処理とし
て、Si基板1を通常の酸化炉内に装入し、温度110
0°c、N2雰囲気中で30〜60分間加熱した。この
加熱処理によって形成されたSi基板表面(深さ10〜
30μmまで)の低酸素濃度領域2の酸素濃度は101
10l6”であった。
First, as a treatment to reduce the oxygen concentration on the surface of the Si substrate 1, the Si substrate 1 is placed in a normal oxidation furnace, and the temperature is 110.
Heated at 0°C for 30-60 minutes in a N2 atmosphere. The Si substrate surface formed by this heat treatment (depth 10~
The oxygen concentration in the low oxygen concentration region 2 (up to 30 μm) is 101
It was 10l6”.

この低酸素濃度領域2上に、M、Akiyama、 Y
、Kawarada、 and K、Kawanisi
:Jpn、 J、^pp1. Phys。
On this low oxygen concentration area 2, M, Akiyama, Y
, Kawarada, and K. Kawanisi
: Jpn, J, ^pp1. Phys.

vol、23 L843 (1984)に記載されてい
る減圧MOCVD法による二段階成長法を用いて、Ga
As層3をヘテロエピタキシャル成長させた。GaAs
層3の原料としては、ASH3およびTMG ()リメ
チルガリウム)を用いた。全成長過程を通して、反応管
内の圧力を70Torrとした。手順は以下の通りであ
った。
vol. 23 L843 (1984), Ga
The As layer 3 was grown heteroepitaxially. GaAs
As raw materials for layer 3, ASH3 and TMG ()limethylgallium) were used. The pressure inside the reaction tube was maintained at 70 Torr throughout the entire growth process. The procedure was as follows.

前記加熱処理済みのSi基板をHF水溶液中で洗浄処理
し、水洗した後、反応管内のサセプターに装入した。反
応管内にN2およびA s I−13をそれぞれ12S
LMおよび30SCCMの流量で導入し、基板を100
0″Cに10分間加熱した。次に、N2およびA s 
H3の流量をそれぞれ12SLMおよび0.2SLMと
し、TMGを13.33CCMの流量で導入し、基板温
度を450°Cにして、先ず、下地となるアモルファス
状のGaAs層(7) (8) (図示せず)を50〜200人の厚さに成長させた。そ
の後、基板温度を600〜700°Cに上げて、N2、
AsH+、およびTMGの流量をそれぞれ12SLM、
O,ISLM、および33.33CCMとして、GaA
s層3を2〜3μm成長させた。
The heat-treated Si substrate was washed in an HF aqueous solution, washed with water, and then placed in a susceptor in a reaction tube. Inject 12S of N2 and As I-13 into the reaction tube.
LM and a flow rate of 30 SCCM, the substrate was
Heated to 0″C for 10 minutes. Then N2 and A s
The H3 flow rate was set to 12SLM and 0.2SLM, respectively, TMG was introduced at a flow rate of 13.33CCM, and the substrate temperature was set to 450°C. First, an amorphous GaAs layer (7) (8) (Fig. (not shown) were grown to a thickness of 50 to 200 people. After that, the substrate temperature was raised to 600-700°C, and N2,
The flow rates of AsH+ and TMG were each 12SLM,
GaA as O, ISLM, and 33.33CCM
The s-layer 3 was grown to a thickness of 2 to 3 μm.

基板/ G a A s層へテロ界面付近のSi濃度分
布は第1図の曲線3と同様であり、実質的に素子特性に
影響するSi混入は防止されていた。
The Si concentration distribution near the substrate/GaAs layer heterointerface was similar to curve 3 in FIG. 1, and Si contamination that would substantially affect device characteristics was prevented.

〔実施例2〕 第2図(b)は、本実施例を説明する図である。[Example 2] FIG. 2(b) is a diagram illustrating this embodiment.

まず、表面酸素濃度の低いSi基板を得る別の手段とし
て、酸素濃度10 ” 〜10 ”cm−”のSi基板
1上に、下記の2段階の手順で低酸素濃度Si層4をエ
ピタキシャル成長させた。第1段階として、上記Si基
板を流量101!、/ll1inのN2気流中で100
0“Cに加熱して20分間保持することにより、基板表
面のSi20層を除去した。第2段階として、N2およ
びSiH,をそれぞれ10ffi/InInおよび10
0 c c/minの流量で流し、基板を1000 ’
Cに加熱して1〜3.3時間保持することにより、Si
基板上に低酸素濃度34層4を厚さ3〜10μmにエピ
タキシャル成長させた。
First, as another means of obtaining a Si substrate with a low surface oxygen concentration, a low oxygen concentration Si layer 4 was epitaxially grown on a Si substrate 1 with an oxygen concentration of 10'' to 10'' cm by the following two-step procedure. As a first step, the above Si substrate was heated in a N2 air flow of 101!,/ll1in.
The Si20 layer on the substrate surface was removed by heating to 0"C and holding for 20 minutes. In the second step, N2 and SiH were heated to 10ffi/InIn and 10
The flow rate was 0 c c/min, and the substrate was
By heating to C and holding for 1 to 3.3 hours, Si
A low oxygen concentration 34 layer 4 was epitaxially grown to a thickness of 3 to 10 μm on the substrate.

表面酸素濃度は1016cm−3であった。The surface oxygen concentration was 1016 cm-3.

次に、このSi基板を用いて、上記低酸素濃度Si層4
上に、実施例1と同様の手順でG a A、 s層3を
ヘテロエピタキシャル成長させた。
Next, using this Si substrate, the low oxygen concentration Si layer 4
A Ga A, s layer 3 was heteroepitaxially grown thereon in the same manner as in Example 1.

低酸素濃度34層4 / G a A s層3ヘテロ界
面付近のSi濃度分布は第1図の曲線3と同様であり、
実質的に素子特性に影響するSi混入は防止されていた
The Si concentration distribution near the low oxygen concentration 34 layer 4/GaAs layer 3 heterointerface is similar to curve 3 in FIG.
The contamination of Si, which would substantially affect the device characteristics, was prevented.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、Si基板から■
−V族化合物半導体へテロエピタキシャル成長層中への
Si混入を防止すると共に大口径化に十分な基板の機械
的強度を確保して■−■族化合物半導体をエピタキシャ
ル成長させることができる。
As explained above, according to the present invention, from the Si substrate
It is possible to epitaxially grow a -V group compound semiconductor while preventing Si from being mixed into the heteroepitaxially grown layer of the -V group compound semiconductor and ensuring sufficient mechanical strength of the substrate for increasing the diameter.

(9) (10)(9) (10)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、種々の表面酸素濃度のSi基板につイテ、G
aAsヘテロエピタキシャル成長層とSi基板との界面
付近のSt濃度分布を示すグラフ、および 第2図(a)および(b)は、本発明の詳細な説明する
ための断面図である。 1 :Si基板、2:低酸素濃度領域、3:GaA、s
層、4:低酸素濃度Si層。
Figure 1 shows Si substrates with various surface oxygen concentrations, G
A graph showing the St concentration distribution near the interface between the aAs heteroepitaxial growth layer and the Si substrate, and FIGS. 2(a) and 2(b) are cross-sectional views for explaining the present invention in detail. 1: Si substrate, 2: low oxygen concentration region, 3: GaA, s
Layer 4: Low oxygen concentration Si layer.

Claims (1)

【特許請求の範囲】 1、表面の酸素濃度が1×10^1^7cm^−^3以
下のSi基板と、前記Si基板の表面に接して成長され
たIII−V族化合物半導体層とを備えることを特徴とす
る半導体装置。 2、前記Si基板の表面は、エピタキシャル成長された
酸素濃度が1×10^1^7cm^−^3以下のSi層
で構成されることを特徴とする請求項1記載の半導体装
置。 3、前記Si基板の内部の酸素濃度は、1×10^1^
7cm^−^3以上であることを特徴とする請求項1ま
たは2に記載の半導体装置。 4、Si基板に対して不活性雰囲気中で加熱処理を施し
、表面の酸素濃度を1×10^1^7以下にせしめる工
程と、前記Si基板の表面にIII−V族化合物半導体を
成長する工程とを含むことを特徴とする半導体装置の製
造方法。
[Claims] 1. A Si substrate with a surface oxygen concentration of 1×10^1^7 cm^-^3 or less, and a III-V compound semiconductor layer grown in contact with the surface of the Si substrate. A semiconductor device comprising: 2. The semiconductor device according to claim 1, wherein the surface of the Si substrate is composed of an epitaxially grown Si layer having an oxygen concentration of 1×10^1^7 cm^-^3 or less. 3. The oxygen concentration inside the Si substrate is 1×10^1^
3. The semiconductor device according to claim 1, wherein the semiconductor device is 7 cm^-^3 or more. 4. Heat-treating the Si substrate in an inert atmosphere to reduce the oxygen concentration on the surface to 1×10^1^7 or less, and growing a III-V compound semiconductor on the surface of the Si substrate. A method for manufacturing a semiconductor device, comprising the steps of:
JP34058289A 1989-12-29 1989-12-29 Semiconductor device and manufacturing method thereof Expired - Lifetime JP2853226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34058289A JP2853226B2 (en) 1989-12-29 1989-12-29 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34058289A JP2853226B2 (en) 1989-12-29 1989-12-29 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH03203225A true JPH03203225A (en) 1991-09-04
JP2853226B2 JP2853226B2 (en) 1999-02-03

Family

ID=18338378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34058289A Expired - Lifetime JP2853226B2 (en) 1989-12-29 1989-12-29 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2853226B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001127326A (en) * 1999-08-13 2001-05-11 Oki Electric Ind Co Ltd Semiconductor substrate, method of manufacturing the same, solar cell using the same and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001127326A (en) * 1999-08-13 2001-05-11 Oki Electric Ind Co Ltd Semiconductor substrate, method of manufacturing the same, solar cell using the same and manufacturing method thereof

Also Published As

Publication number Publication date
JP2853226B2 (en) 1999-02-03

Similar Documents

Publication Publication Date Title
JP3093904B2 (en) Method for growing compound semiconductor crystal
US5019529A (en) Heteroepitaxial growth method
US20140159112A1 (en) Method for forming group iii/v conformal layers on silicon substrates
US20240071756A1 (en) Method for manufacturing group iii nitride semiconductor substrate
JPH07235692A (en) Compound semiconductor device and forming method thereof
JP4449357B2 (en) Method for manufacturing epitaxial wafer for field effect transistor
JP4519947B2 (en) Si layer aggregation suppressing method, semiconductor device manufacturing method, and vacuum processing apparatus
JPH04198095A (en) Method for growing thin film of compound semiconductor
CN113053731B (en) Gallium metal film manufacturing method and gallium nitride substrate protection method
JPH03203225A (en) Semiconductor device and its manufacture
US20210210340A1 (en) Group iii nitride semiconductor substrate and manufacturing method thereof
EP0496382A2 (en) Intrinsic gettering for a semiconducteur epitaxial wafer
JP3270945B2 (en) Heteroepitaxial growth method
JPH01179788A (en) Method for growing iii-v compound semiconductor on si substrate
JP2874262B2 (en) Method for manufacturing semiconductor device
WO2023037838A1 (en) Method for manufacturing nitride semiconductor substrate
JPH09306844A (en) Semiconductor device and manufacture thereof
WO2023165808A1 (en) A method for manufacturing a substrate wafer for building group iii-v devices thereon and a substrate wafer for building group iii-v devices thereon
JPH09213635A (en) Formation of heteroepitaxial semiconductor substrate, compound semiconductor device having the substrate and its manufacture
JPH03195016A (en) Thermal cleaning method of si substrate; epitaxial growth and heat treatment apparatus
JPH047819A (en) Gaas thin film
JPH04324626A (en) Manufacture of hetero epitaxial substrate
JPH02175690A (en) Production of substrate of compound semiconductor
JPH04280898A (en) Process for growing compound semiconductor crystal on si substrate
JPH05234907A (en) Gaas substrate and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081120

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081120

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091120

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101120

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101120

Year of fee payment: 12