JPH047819A - Gaas thin film - Google Patents

Gaas thin film

Info

Publication number
JPH047819A
JPH047819A JP10929890A JP10929890A JPH047819A JP H047819 A JPH047819 A JP H047819A JP 10929890 A JP10929890 A JP 10929890A JP 10929890 A JP10929890 A JP 10929890A JP H047819 A JPH047819 A JP H047819A
Authority
JP
Japan
Prior art keywords
growth
substrate
thin film
gaas
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10929890A
Other languages
Japanese (ja)
Inventor
Yoshio Ito
義夫 伊藤
Mitsuru Sugo
須郷 満
Hidefumi Mori
森 英史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10929890A priority Critical patent/JPH047819A/en
Publication of JPH047819A publication Critical patent/JPH047819A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To enable the title GaAs thin film high in quality developing neither cracking nor defects at all to be easily formed on an Si substrate by specifying the film thickness of a low temperature deposited layer to be 3000Angstrom or larger. CONSTITUTION:An Si substrate set up on an MOCVD (organic metal chemical vapor deposition) device and then vacuumized is shifted to a deposition chamber so as to be heat-treated in hydrogen atmosphere for removing the surface oxide. Later, AsH3 is led in during the cooling down process at 350-450 deg.C for two step low temperature deposition and after waiting until the temperature is stabilized, the deposition is started by feeding trimethyl gallium. Finally, the film thickness of low temperature deposited layer is specified to be 3000Angstrom or larger. Through these procedures, the title GaAs thin film in high quality can be formed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、GaAs薄膜に係り、より詳細にはシリコン
基板上に形成されたGaA3化合物半導体単結晶薄膜に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a GaAs thin film, and more particularly to a GaA3 compound semiconductor single crystal thin film formed on a silicon substrate.

[従来の技術] GaAs、InP等の化合物半導体はその優れた特徴を
活かして、高性能、高機能デバイスに利用されつつある
。しかし化合物半導体は一般に高価であり、また大面積
の高品質基板結晶を得にくい等の問題点がある。このよ
うな問題点を克服するための試みとして、安価で、良買
、軽量、大面積のシリコンを基板とし、このシリコン基
板上に化合物半導体を積層し、この化合物半導体層にデ
バイスを製造することが行われている。
[Prior Art] Compound semiconductors such as GaAs and InP are being utilized for high-performance and highly functional devices by taking advantage of their excellent characteristics. However, compound semiconductors are generally expensive and have problems such as difficulty in obtaining large-area, high-quality substrate crystals. In an attempt to overcome these problems, we have used cheap, well-purchased, lightweight, and large-area silicon as a substrate, stacked compound semiconductors on this silicon substrate, and manufactured devices on this compound semiconductor layer. is being carried out.

しかし、SiとGaAsとの格子定数は4%異なるため
通常のエピタキシャル成長方法では良好な品質のGaA
sの単結晶薄膜(例えば転位密度が低い単結晶薄膜)は
得られない。
However, since the lattice constants of Si and GaAs differ by 4%, it is difficult to produce good quality GaAs using normal epitaxial growth methods.
A single crystal thin film of s (for example, a single crystal thin film with a low dislocation density) cannot be obtained.

そこで、低温成長と高温成長とからなる二段階成長法が
考案されている。二段階成長法は、格子定数が大きく異
なる基板への単結晶薄膜の成長に広く採用され、良好な
品質を有する単結晶薄膜の成長に成功している。この二
段階成長においては低温成長層の厚みは約100人が最
適とされていた(Appl、 Phys、 Lette
r 51巻 36ページ)。
Therefore, a two-step growth method consisting of low-temperature growth and high-temperature growth has been devised. The two-step growth method has been widely adopted for growing single-crystal thin films on substrates with significantly different lattice constants, and has been successful in growing single-crystal thin films with good quality. In this two-step growth, the optimal thickness of the low-temperature growth layer was approximately 100 (Appl, Phys, Lette
r Volume 51, Page 36).

しかしながら、Si基板上へのGaAs薄膜の成長にお
いては、基板と成長薄膜との格子定数および熱膨張係数
の差はいかんともし難く、高品質のGaAs薄膜は得ら
れるには至っていない。
However, when growing a GaAs thin film on a Si substrate, the difference in lattice constant and thermal expansion coefficient between the substrate and the grown thin film is difficult to manage, and a high quality GaAs thin film has not yet been obtained.

GaAs薄膜の高品質化を図るためには、Si基板上に
成長するGaAs薄膜の成長モードが問題とされる。成
長には2次元的な成長と3次元的な成長がある。3次元
的な成長では基板の随所でGaAsの核が発生し、成長
過程で多くの核から基板に垂直方向および水平な方向に
広がり会合しながら膜が成長していく、それに対し、2
次元的な成長では基板に到達した原子は基板上を動き回
り基板のステップ(未完成の一原子層の端)のキンクに
順次到達しながら基板の水平方向に成長することを繰り
返しながら、全体として成長して行く、この2f!類の
成長モードの差異は、3次元成長ではそれぞれの核から
成長し、会合する際その境界から転位が発生するとされ
ているのに対し、理想的な2次元的な成長では会合する
核が存在しないため転位の発生がないとされている。
In order to improve the quality of GaAs thin films, the growth mode of GaAs thin films grown on Si substrates is an issue. Growth includes two-dimensional growth and three-dimensional growth. In three-dimensional growth, GaAs nuclei are generated everywhere on the substrate, and during the growth process, many nuclei spread out to the substrate in the vertical and horizontal directions and the film grows.
In dimensional growth, the atoms that reach the substrate move around on the substrate, successively reaching kinks on the substrate's steps (edges of unfinished single atomic layers), and grow horizontally on the substrate, repeating the process of growing as a whole. Let's go to this 2F! The difference between the growth modes of these types is that in three-dimensional growth, each nucleus grows, and dislocations occur from the boundary when they meet, whereas in ideal two-dimensional growth, there are nuclei that meet. Therefore, it is said that no dislocation occurs.

したがって、2次元的な成長を行わせるための方策が種
々提案されてきた。そのひとつが原子層エピタキシャル
成長法であり、もう−っがMl:F:。
Therefore, various measures have been proposed to achieve two-dimensional growth. One of them is the atomic layer epitaxial growth method, and the other is Ml:F:.

(Migration Enhanced Ep’1t
axy)法である。しかしながら、これらの方法はいず
れも成長速度が極端に遅いこと、原料Gaと原料Asと
を交互に供給するため成長装置上特別の工夫が必要なこ
と、さらにこのような努力の割には膜質が改善されない
ことなどの問題点であった。
(Migration Enhanced Ep'1t
axy) method. However, in all of these methods, the growth rate is extremely slow, special measures are required for the growth equipment because the raw material Ga and raw material As are supplied alternately, and the film quality is poor in spite of such efforts. The problem was that it was not improved.

[発明が解決しようとする課題] 本発明の目的は、Si基板上に簡易に形成可能であり、
クラックや欠陥の無い高品質のGaAs薄膜を提供する
ことにある。
[Problems to be Solved by the Invention] An object of the present invention is to easily form a silicon substrate on a Si substrate;
The objective is to provide a high quality GaAs thin film without cracks or defects.

[課題を解決するための手段] 本発明のGaAs薄膜は、二段階成長法によりSi基板
上に形成されたGaAs薄膜において、低温成長層の厚
さが3000Å以上であることを特徴とする。
[Means for Solving the Problems] The GaAs thin film of the present invention is formed on a Si substrate by a two-step growth method, and is characterized in that the thickness of the low-temperature growth layer is 3000 Å or more.

また、二段階成長法によりSi基板上に形成されたGa
As薄膜において、低温成長層の厚さが3000Å以上
であり、かつ高温成長層は高温成長において作製した歪
超格子層を含むことを特徴とする。
In addition, Ga formed on a Si substrate by a two-step growth method
The As thin film is characterized in that the low temperature growth layer has a thickness of 3000 Å or more, and the high temperature growth layer includes a strained superlattice layer produced by high temperature growth.

なお、低温成長層は350〜450℃で成長せしめた層
とし、高温成長層は650〜750℃で成長せしめた層
とすることが好ましい。
Note that the low temperature growth layer is preferably a layer grown at 350 to 450°C, and the high temperature growth layer is preferably a layer grown at 650 to 750°C.

[作用] 本発明においては、低温成長の膜厚を3000Å以上と
することにより、薫た低温成長層をこのように厚くする
と同時にI nGaAsとGaAsとの歪超格子を導入
することによりSi基板上のGaAs膜の高品質化を実
現するものである。
[Function] In the present invention, by setting the film thickness of low-temperature growth to 3000 Å or more, the fragrant low-temperature growth layer is thickened in this way, and at the same time, a strained superlattice of InGaAs and GaAs is introduced to form a layer on the Si substrate. This will realize high quality GaAs films.

[実施例] (実施例1) 減圧(70Torr)のM OCV D (metal
organic chemical vapor de
position :有機金属化学気相堆積)法により
GaAsの成長を行った。以下にその詳細を説明する。
[Example] (Example 1) M OCV D (metal
organic chemical vapor
GaAs was grown using a metal organic chemical vapor deposition method. The details will be explained below.

トリクロルエチレンおよびアセトンで単結晶Si基板を
脱脂した後、このSi基板をMOCVD装置にセットし
、真空引きをし約10””Torrとした。その後、S
i基板を成長室に移動し、水素雰囲気中で熱処理を行い
表面酸化物の除去を行フた。なお、この熱処理は約90
0℃で5分間行った。その後二段階成長の低温成長を行
うために400℃に冷却した。この過程で約600℃に
温度が下がった時点でAsH。
After degreasing the single crystal Si substrate with trichlorethylene and acetone, the Si substrate was set in an MOCVD apparatus and evacuated to approximately 10'' Torr. After that, S
The i-substrate was moved to a growth chamber and heat treated in a hydrogen atmosphere to remove surface oxide. Note that this heat treatment is approximately 90
The test was carried out at 0°C for 5 minutes. Thereafter, it was cooled to 400° C. to perform two-step low-temperature growth. During this process, when the temperature drops to about 600°C, AsH is formed.

を導入した。このAsH,の流量は低温成長の時に流す
量と同じとし、400t:に温度が安定するまで待った
後トリメチルガリウム(TMG)を流しはじめて成長を
開始した。低温成長層を成長した後700℃で約3ミク
ロンGaAsを成長した。第1図に低温成長層の膜厚と
X線半値幅との関・係を低温成長層を成長するときのV
族とIH族の流量比(以下V −III比と表す)をパ
ラメータとして示す。V −III比を小さくすると低
温成長層は厚さが大きくなフても鏡面状のGaAs膜が
得られ、それぞれのV −III比で、X1lA半値幅
が最小となる低温成長層の厚さが存在する。低温成長層
を5:1のV −III比で約0.7ミクロン成長した
時のエッチピット密度は5X10’/am2となリ、a
s−grown (例えば、後処理としてのアニールを
行なわない結晶成長のままの状態)ではこれまで報告さ
れている中でもっとも低い値となり、膜質の顕著な改善
が明らかとなった。
introduced. The flow rate of AsH was the same as the amount flowed during low-temperature growth, and after waiting until the temperature stabilized at 400 t, trimethyl gallium (TMG) was started flowing and growth started. After growing the low temperature growth layer, about 3 microns of GaAs was grown at 700°C. Figure 1 shows the relationship between the film thickness of the low-temperature growth layer and the X-ray half width when growing the low-temperature growth layer.
The flow ratio of the group and IH group (hereinafter referred to as V-III ratio) is shown as a parameter. When the V-III ratio is decreased, the thickness of the low-temperature grown layer becomes large, but a mirror-like GaAs film can be obtained.For each V-III ratio, the thickness of the low-temperature grown layer that minimizes the half-width of X1lA is exist. When the low temperature growth layer is grown to a thickness of approximately 0.7 microns at a V-III ratio of 5:1, the etch pit density is 5 x 10'/am2, a
In the case of s-grown (for example, a state in which crystal growth is maintained without post-treatment annealing), the value was the lowest reported so far, and a remarkable improvement in film quality was revealed.

これは400℃で成長した低温成長層の膜質が良いほど
700℃で成長する膜質が良くなることを示している。
This indicates that the better the film quality of the low temperature growth layer grown at 400°C, the better the film quality grown at 700°C.

400℃で成長した低温成長層は700℃に上昇する過
程でSt基板とGaAsとの熱膨張係数の違いにより圧
縮応力を受ける7この圧縮応力は低温成長層の膜質が良
いほど犬きくなる。この圧縮応力により、SiとG a
 A sとの界面で発生した、格子定数の差により発生
したミスフィツト転位の多くが消滅し転位密度が減少す
るものと考えられる。
The low-temperature growth layer grown at 400° C. is subjected to compressive stress due to the difference in thermal expansion coefficient between the St substrate and GaAs during the temperature rise to 700° C. 7 This compressive stress becomes more severe as the film quality of the low-temperature growth layer improves. This compressive stress causes Si and Ga
It is considered that many of the misfit dislocations generated at the interface with As due to the difference in lattice constant disappear, and the dislocation density decreases.

(実施例2) 実施例1で述べた5二1のV −III比で低温成長層
を0.7ミクロン成長し、700℃で1ミクロン成長し
た後、同じ温度でInGaASとGaAsの歪超格子を
相互に各10層(各層の厚さはそれぞれ0.1ミクロン
)導入しさらに、GaAs層を1ミクロン成長した。こ
うして得たGaAs層のX線半値幅は90秒、エッチビ
ット。
(Example 2) After growing a low-temperature growth layer of 0.7 microns with the V-III ratio of 521 described in Example 1 and growing it to 1 micron at 700°C, strained superlattices of InGaAS and GaAs were grown at the same temperature. 10 layers each (the thickness of each layer is 0.1 micron) were introduced into each other, and a GaAs layer of 1 micron was further grown. The X-ray half width of the GaAs layer thus obtained is 90 seconds, an etch bit.

密度は5 X 10’ / Cm”となり大幅に膜質が
改善された。
The density was 5 x 10'/Cm'', and the film quality was significantly improved.

[発明の効果] 本発明によれば、高品質のGaAs層腹を提供すること
ができる。
[Effects of the Invention] According to the present invention, a high quality GaAs layer can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本実施例で得られた結果を示すグラフであり、
縦軸はGaAsff膜(低温成長を行った後700℃で
約3ミクロン成長した)のX線半値幅、横軸は低温成長
層の厚ざである。
FIG. 1 is a graph showing the results obtained in this example,
The vertical axis is the X-ray half-width of the GaAsff film (grown to about 3 microns at 700° C. after low-temperature growth), and the horizontal axis is the thickness of the low-temperature grown layer.

Claims (2)

【特許請求の範囲】[Claims] (1)二段階成長法によりSi基板上に形成されたGa
As薄膜において、低温成長層の厚さが3000Å以上
であることを特徴とするGaAs薄膜。
(1) Ga formed on a Si substrate by a two-step growth method
A GaAs thin film characterized in that the thickness of the low-temperature growth layer is 3000 Å or more.
(2)二段階成長法によりSi基板上に形成されたGa
As薄膜において、低温成長層の厚さが3000Å以上
であり、かつ高温成長層は高温成長において作製した歪
超格子層を含むことを特徴とするGaAs薄膜。
(2) Ga formed on a Si substrate by a two-step growth method
A GaAs thin film characterized in that the low temperature growth layer has a thickness of 3000 Å or more, and the high temperature growth layer includes a strained superlattice layer produced by high temperature growth.
JP10929890A 1990-04-25 1990-04-25 Gaas thin film Pending JPH047819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10929890A JPH047819A (en) 1990-04-25 1990-04-25 Gaas thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10929890A JPH047819A (en) 1990-04-25 1990-04-25 Gaas thin film

Publications (1)

Publication Number Publication Date
JPH047819A true JPH047819A (en) 1992-01-13

Family

ID=14506638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10929890A Pending JPH047819A (en) 1990-04-25 1990-04-25 Gaas thin film

Country Status (1)

Country Link
JP (1) JPH047819A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5492860A (en) * 1992-04-17 1996-02-20 Fujitsu Limited Method for growing compound semiconductor layers
US9724251B2 (en) 2010-01-20 2017-08-08 The Procter & Gamble Company Refastenable absorbent article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5492860A (en) * 1992-04-17 1996-02-20 Fujitsu Limited Method for growing compound semiconductor layers
US9724251B2 (en) 2010-01-20 2017-08-08 The Procter & Gamble Company Refastenable absorbent article

Similar Documents

Publication Publication Date Title
US7732306B2 (en) Methods for producing improved epitaxial materials
JPH01225114A (en) Manufacture of semiconductor thin-film
JPH0856015A (en) Formation of semiconductor thin film
EP2602812B1 (en) High-quality gan high-voltage hfets on silicon
JPH07176485A (en) Method for depositing ge on substrate and preparation of semiconductor device
US4835116A (en) Annealing method for III-V deposition
JP2004111848A (en) Sapphire substrate, epitaxial substrate using it, and its manufacturing method
US6339014B1 (en) Method for growing nitride compound semiconductor
JP4213896B2 (en) Manufacturing method of semiconductor substrate
JPH04198095A (en) Method for growing thin film of compound semiconductor
JP3369304B2 (en) Method for growing compound semiconductor crystal layer
JPH047819A (en) Gaas thin film
JP3270945B2 (en) Heteroepitaxial growth method
JPH02221196A (en) Formation of thin film of iii-v compound semiconductor
JPS6012775B2 (en) Method for forming a single crystal semiconductor layer on a foreign substrate
JP2024042982A (en) Single crystal silicon substrate with nitride semiconductor layer and method for manufacturing single crystal silicon substrate with nitride semiconductor layer
JPH0645249A (en) Growth method of gaas layer
JPH01179788A (en) Method for growing iii-v compound semiconductor on si substrate
JP2668236B2 (en) Semiconductor element manufacturing method
JPH0214513A (en) Formation of compound semiconductor layer
JPH0536605A (en) Manufacture of compound semiconductor substrate
JP2023045163A (en) Method for manufacturing heteroepitaxial wafer
JPS62147722A (en) Epitaxial growth method
JP2810299B2 (en) Method for forming compound semiconductor layer
JPH04335519A (en) Manufacture of semiconductor crystal