JPH07235692A - Compound semiconductor device and forming method thereof - Google Patents

Compound semiconductor device and forming method thereof

Info

Publication number
JPH07235692A
JPH07235692A JP17360294A JP17360294A JPH07235692A JP H07235692 A JPH07235692 A JP H07235692A JP 17360294 A JP17360294 A JP 17360294A JP 17360294 A JP17360294 A JP 17360294A JP H07235692 A JPH07235692 A JP H07235692A
Authority
JP
Japan
Prior art keywords
layer
compound semiconductor
buffer layer
gas
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17360294A
Other languages
Japanese (ja)
Inventor
Junichi Sato
淳一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP17360294A priority Critical patent/JPH07235692A/en
Publication of JPH07235692A publication Critical patent/JPH07235692A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To form a compound semiconductor layer having excellent flatness and crystallinity on a base body without damaging inter-lattice matching to the base body by forming a plurality of layers of buffer layers between the base body and the compound semiconductor layer the composition of which is expressed by In1-x-yGaxAlyN (0<=x<=1, 0<=x+y<=1). CONSTITUTION:Two buffer layers 11, 12 are formed between a sapphire substrate 2 and a gallium nitride film 13, and lattic constants are changed approximately continuously, thus growing the gallium nitride film 13 having a crystallinity better than the gallium nitride film is formed directly on the sapphire substrate 2. Even when the lattice constants differ in some degree, the difference of the lattice constants is relaxed by an AlN layer forming the buffer layer 11 of a first layer, and the effect is weak. Even when the film thickness of the AlN layer forming the buffer layer 11 of the first layer is to some extent varied, a GaAlN film as the buffer layer 12 of a second layer is formed on the buffer layer 11 of the first layer, and possibility that crystallinity is affected by the fluctuation of film thickness is diminished.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【目次】以下の順序で本発明を説明する。 産業上の利用分野 従来の技術 発明が解決しようとする課題 課題を解決するための手段(図2) 作用 実施例(図1及び図2) (1)第1の実施例(図1及び図2) (2)第2の実施例 (3)第3の実施例 (4)第4の実施例(図3) (5)他の実施例 発明の効果[Table of Contents] The present invention will be described in the following order. Field of Industrial Application Conventional Technology Problem to be Solved by the Invention Means for Solving the Problem (FIG. 2) Action Example (FIGS. 1 and 2) (1) First Example (FIGS. 1 and 2) ) (2) Second embodiment (3) Third embodiment (4) Fourth embodiment (FIG. 3) (5) Other embodiment Effects of the invention

【0002】[0002]

【産業上の利用分野】本発明は化合物半導体装置及びそ
の形成方法に関し、例えばサフアイア基板上にガリウム
窒素系化合物半導体層を有する化合物半導体装置及びそ
の形成方法に適用して好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compound semiconductor device and a method for forming the same, and is suitable for application to, for example, a compound semiconductor device having a gallium nitrogen based compound semiconductor layer on a sapphire substrate and a method for forming the same.

【0003】[0003]

【従来の技術】今日、ガリウム窒素系半導体を用いた青
色発光デバイス(例えばGax Al1-x N(ただし1≦
X≦0)を用いた青色発光デバイス)の開発が盛んであ
る。この種の III族窒化物半導体は大面積でのバルク結
晶が成長できないため、従来はサフアイア基板上に、有
機金属化合物気相成長法(以下MOCVD(metal orga
nic chemical vapor deposition 法という)が多く用い
られている。
2. Description of the Related Art Today, blue light emitting devices (for example, Ga x Al 1-x N (where 1 ≦
A blue light emitting device using X ≦ 0) is actively developed. Since a bulk crystal in a large area cannot be grown in this type of group III nitride semiconductor, conventionally, a metal-organic compound vapor phase epitaxy method (hereinafter referred to as MOCVD (metal orga
nic chemical vapor deposition method) is often used.

【0004】この方法は簡単に述べれば、反応容器内に
載置された基板(例えばサフアイア基板)の表面に反応
ガス(有機金属化合物ガス)を導入し、約 900〜1000
〔℃〕に加熱された基板上に化合物半導体の結晶をエピ
タキシヤル成長させる方法である。例えば基板上にガリ
ウム窒素の結晶をエピタキシヤル成長させる場合、反応
ガスとして III族ガスのトリメチルガリウムとV族ガス
のアンモニアガスとが用いられる。
Briefly, this method introduces a reaction gas (organic metal compound gas) to the surface of a substrate (for example, a sapphire substrate) placed in a reaction vessel, and the reaction gas is heated to about 900 to 1000.
This is a method of epitaxially growing a compound semiconductor crystal on a substrate heated to [° C.]. For example, when a crystal of gallium nitrogen is epitaxially grown on a substrate, group III gas trimethylgallium and group V gas ammonia gas are used as reaction gases.

【0005】ところでサフアイア基板とこの種の III族
窒化物半導体との間には一般に11〜23〔%〕の格子不整
合と〜2×10-6〔deg-1 〕の熱膨張係数差がある。こ
のため不整合転位や熱歪が生じ易く、 III族窒化物半導
体の結晶性や電気的光学的な性質を向上させる上で障害
となつていた。
By the way, there is generally a lattice mismatch of 11 to 23% and a coefficient of thermal expansion difference of 2 × 10 -6 [deg -1] between the sapphire substrate and this type of group III nitride semiconductor. . Therefore, misfit dislocations and thermal strains tend to occur, which is an obstacle to improving the crystallinity and electro-optical properties of the group III nitride semiconductor.

【0006】またサフアイア基板とこれら III族窒化物
との間には化学的性質の違いがあるためこれら化合物半
導体を基板上に直接エピタキシヤル成長させると顕著な
三次元成長を起こし易い。このため成長層の表面を平坦
化させ、結晶性を向上させるのが難しいという問題があ
つた。これらの結果、サフアイア基板上に成長させた発
光素子の発光効率や素子寿命が悪いという問題があつ
た。
Further, since there is a difference in chemical property between the sapphire substrate and these group III nitrides, when these compound semiconductors are epitaxially grown directly on the substrate, remarkable three-dimensional growth is likely to occur. Therefore, it is difficult to flatten the surface of the growth layer and improve the crystallinity. As a result, there is a problem in that the light emitting device grown on the sapphire substrate has poor luminous efficiency and device life.

【0007】この課題を解決するため、特開平2-229476
号公報、特開平 5-41541号公報、及び文献(Appl.Phy
s. Lett.48,p.353,(1986))には III族化合物半導体の
結晶成長に先立つて、サフアイア基板上にアルミニウム
窒素(以下AlNと記す)をバツフア層として成長させ
ることが開示されている。このときの成膜条件は 400〜
900〔℃〕の温度条件下であり、バツフア層は10〜50〔n
m〕の膜厚に成長される。また特開平4-297023号公報に
は同じくバツフア層としてGax Al1-x N(以下、G
aAlNと記す)を用いることが開示されている。
In order to solve this problem, Japanese Patent Laid-Open No. 2-229476
Publication, Japanese Patent Laid-Open No. 4-41541, and literature (Appl. Phy
s. Lett. 48, p. 353, (1986)) discloses that aluminum nitrogen (hereinafter referred to as AlN) is grown as a buffer layer on a sapphire substrate prior to the crystal growth of a group III compound semiconductor. There is. The film forming conditions at this time are 400-
The temperature is 900 (° C) and the buffer layer is 10 to 50 (n
m]. Further, in Japanese Patent Laid-Open No. 4-297023, Ga x Al 1-x N (hereinafter referred to as G
The use of aAlN) is disclosed.

【0008】[0008]

【発明が解決しようとする課題】ところがこれら従来の
技術によつて形成された発光デバイスは結晶性が未だ十
分でなく、さらなる結晶性の改善が望まれている。例え
ばAlNをバツフア層として用いる場合、膜厚がかなり
薄いためバツフア層を基板上全面に均一に形成するのが
困難であるといつた問題があつた。またガリウム窒素
(以下GaNと記す)の融点である1100〔℃〕に比べる
とバツフア層を形成するAlNの融点は1700〔℃〕と高
い。このためGaNを結晶成長させるために温度を上げ
ている間におけるバツフア層の結晶成長は十分でなく、
その上に成長させたGaNの結晶性もまた同様に不十分
であつた。
However, the crystallinity of the light emitting device formed by these conventional techniques is not yet sufficient, and further improvement of crystallinity is desired. For example, when AlN is used as the buffer layer, there is a problem that it is difficult to uniformly form the buffer layer on the entire surface of the substrate because the film thickness is considerably thin. In addition, the melting point of AlN forming the buffer layer is as high as 1700 [° C] as compared with the melting point of gallium nitrogen (hereinafter referred to as GaN) of 1100 [° C]. Therefore, the crystal growth of the buffer layer is not sufficient while raising the temperature for crystal growth of GaN,
The crystallinity of GaN grown on it was likewise poor.

【0009】これに対してGaAlNをバツフア層とし
て用いる場合、下地基板となるサフアイア基板の格子定
数とGaAlNの格子定数が多少異なるため比較的厚い
バツフア層を形成しなければ結晶性の良好なGaNが得
られないという問題があつた。その上、バツフア層を厚
く形成するために工程時間が長くなるという問題があつ
た。
On the other hand, when GaAlN is used as the buffer layer, the lattice constant of the sapphire substrate, which is the base substrate, and the lattice constant of GaAlN are slightly different from each other. There was a problem that I could not get it. In addition, there is a problem that the process time becomes long because the buffer layer is thickly formed.

【0010】本発明は以上の点を考慮してなされたもの
で、バツフア層上に形成される化合物半導体の平坦性及
び結晶性を従来に比して一段と向上させることができる
化合物半導体装置及びこの形成方法を提案しようとする
ものである。
The present invention has been made in view of the above points, and a compound semiconductor device capable of further improving the flatness and crystallinity of a compound semiconductor formed on a buffer layer as compared with a conventional semiconductor device. It is intended to propose a forming method.

【0011】[0011]

【課題を解決するための手段】かかる課題を解決するた
め本発明においては、基体(2)上に一般式がIn
1-x-y Gax Aly N(0≦x≦1、0≦x+y≦1)
で表される化合物半導体層(13)を有する化合物半導
体装置において、基体(2)と化合物半導体層(13)
との間に複数層のバツフア層(11)、(12)を有す
るようにする。
In order to solve such a problem, in the present invention, the general formula is In on the substrate (2).
1-xy Ga x Al y N (0 ≦ x ≦ 1, 0 ≦ x + y ≦ 1)
In a compound semiconductor device having a compound semiconductor layer (13) represented by, a substrate (2) and a compound semiconductor layer (13)
And a plurality of buffer layers (11) and (12) between them.

【0012】また本発明においては、基体(2)上に一
般式がIn1-x-y Gax Aly N(0≦x≦1、0≦x
+y≦1)で表される化合物半導体層(13)を有する
化合物半導体装置において、基体表面に形成された窒化
層(15)と化合物半導体層(13)との間に複数層の
バツフア層(11)、(12)を有するようにする。
In the present invention, the general formula of In 1-xy Ga x Al y N (0≤x≤1, 0≤x is applied on the substrate (2).
In the compound semiconductor device having the compound semiconductor layer (13) represented by + y ≦ 1), a plurality of buffer layers (11) are formed between the nitride layer (15) and the compound semiconductor layer (13) formed on the substrate surface. ), (12).

【0013】基体(2)上に一般式がIn1-x-y Gax
Aly N(0≦x≦1、0≦x+y≦1)で表される化
合物半導体層(13)を有する化合物半導体装置の形成
方法において、基体表面に複数層のバツフア層(1
1)、(12)を形成した後、化合物半導体層(13)
を形成するようにする。
On the substrate (2) the general formula is In 1-xy Ga x
In Al y N (0 ≦ x ≦ 1,0 ≦ x + y ≦ 1) method for forming a compound semiconductor layer represented by (13) a compound semiconductor device having the buffer layer of the multiple layers on the substrate surface (1
After forming 1) and 12), the compound semiconductor layer (13)
To form.

【0014】[0014]

【作用】基体(2)と一般式がIn1-x-y Gax Aly
N(0≦x≦1、0≦x+y≦1)で表される化合物半
導体層(13)との間に複数層のバツフア層(11)、
(12)を設けることにより、基体(2)に対する格子
間整合性を損なうことなく化合物半導体層(13)を形
成することができる。これにより平坦性及び結晶性に優
れた化合物半導体層(13)を基体(12)上に形成す
ることができる。
FUNCTION The substrate (2) and the general formula are In 1-xy Ga x Al y
A plurality of buffer layers (11) between the compound semiconductor layer (13) represented by N (0 ≦ x ≦ 1, 0 ≦ x + y ≦ 1),
By providing (12), the compound semiconductor layer (13) can be formed without impairing the interstitial matching with the substrate (2). Thereby, the compound semiconductor layer (13) having excellent flatness and crystallinity can be formed on the base body (12).

【0015】また基体表面に窒化層(15)を形成して
から1層目のバツフア層(11)を形成するようにした
ことにより、1層目のバツフア層(11)の平坦性及び
結晶性を一段と向上させることができる。これにより2
層目のバツフア層についても平坦性及び結晶性が向上
し、最上層に形成される一般式がIn1-x-y Gax Al
y N(0≦x≦1、0≦x+y≦1)で表される化合物
半導体層(13)についても平坦性及び結晶性を一段と
向上させることができる。
Further, since the nitride layer (15) is formed on the surface of the substrate and then the first buffer layer (11) is formed, the flatness and crystallinity of the first buffer layer (11). Can be further improved. This makes 2
The flatness and crystallinity of the buffer layer of the first layer are also improved, and the general formula formed in the uppermost layer is In 1-xy Ga x Al.
The flatness and crystallinity of the compound semiconductor layer (13) represented by y N (0 ≦ x ≦ 1, 0 ≦ x + y ≦ 1) can be further improved.

【0016】[0016]

【実施例】以下図面について、本発明の一実施例を詳述
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings.

【0017】(1)第1の実施例 図1において、1は全体として化合物半導体の成膜に用
いられる反応装置を示している。反応装置1は次の手順
によつてサフアイア基板2上に化合物半導体を成長させ
る。まず十分に洗浄したサフアイア基板2を反応室3内
に設けられたサセプタ4上に載置する。
(1) First Embodiment In FIG. 1, reference numeral 1 generally indicates a reaction apparatus used for forming a compound semiconductor film. The reactor 1 grows a compound semiconductor on the sapphire substrate 2 by the following procedure. First, the sufficiently washed sapphire substrate 2 is placed on the susceptor 4 provided in the reaction chamber 3.

【0018】その後、反応室3内を十分排気し、内部を
水素ガスH2 で置換する。この工程時における図が図2
(A)である。続いて以下の条件で基板2を加熱し、基
板表面に形成されている酸化膜を除去する。これは常
圧、1050〔℃〕の条件下、水素ガスを1〔 litre/分〕
の割合で10〔分〕流すことにより行なわれる。
Then, the inside of the reaction chamber 3 is sufficiently evacuated, and the inside is replaced with hydrogen gas H 2 . The diagram during this process is shown in Figure 2.
(A). Then, the substrate 2 is heated under the following conditions to remove the oxide film formed on the substrate surface. This is hydrogen at 1 [litre / min] under normal pressure and 1050 [℃].
It is carried out by flowing 10 minutes at a rate of.

【0019】このとき水素ガスはガスノズル6及び7か
ら導入される。ガスノズル6はサフアイア基板2の表面
全体を覆うように配置されており、基板全面にガスを導
入するのに使用される。またガスノズル7は基板側方か
らサフアイア基板2の表面にガスを導入するのに使用さ
れる。因にサフアイア基板2を加熱する際にはヒータ5
が用いられる。
At this time, hydrogen gas is introduced from the gas nozzles 6 and 7. The gas nozzle 6 is arranged so as to cover the entire surface of the sapphire substrate 2, and is used to introduce gas over the entire surface of the substrate. The gas nozzle 7 is used to introduce gas from the side of the substrate to the surface of the sapphire substrate 2. When heating the sapphire substrate 2, a heater 5 is used.
Is used.

【0020】反応室3の排気には真空ポンプ8が使用さ
れる。但しガスを流している間は真空ポンプ8を停止
し、分岐した排気管9から反応ガスを排気する。またガ
スを流している間、サセプタ4をモータ10によつて回
転させるものとする。因に回転数は 5〜10〔ラジアン/
分〕とする。これらは他の工程の時も同じである。
A vacuum pump 8 is used to exhaust the reaction chamber 3. However, while the gas is flowing, the vacuum pump 8 is stopped and the reaction gas is exhausted from the branched exhaust pipe 9. Further, the susceptor 4 is rotated by the motor 10 while the gas is flowing. The rotation speed is 5-10 [radian /
Minutes]. These are the same in other steps.

【0021】この酸化膜の除去工程が終了すると、ガス
の導入を停止し、基板温度を 500〔℃〕まで下げる。続
いてガスノズル6から水素ガス及び窒素ガスをそれぞれ
10〔litre/分〕の流量で供給し、またガスノズル7か
らアンモニアガス及び水素ガスをそれぞれ 4〔 litre/
分〕及び 1〔 litre/分〕の流量で供給する。このとき
基板温度は 500〔℃〕に維持する。
When the oxide film removing step is completed, the introduction of gas is stopped and the substrate temperature is lowered to 500 [° C.]. Subsequently, hydrogen gas and nitrogen gas are respectively supplied from the gas nozzle 6.
It is supplied at a flow rate of 10 [litre / min], and ammonia gas and hydrogen gas are respectively supplied from the gas nozzle 7 at 4 [litre / min].
Min] and 1 [litre / min]. At this time, the substrate temperature is maintained at 500 ° C.

【0022】次に図2(B)に示すように、サフアイア
基板2上に1層目のバツフア層11となるアルミニウム
窒素(AlN)膜を以下の条件で形成する。このときの
圧力条件及び温度条件はそれぞれ常圧、 500〔℃〕に設
定される。またキヤリアガスである水素ガス及びアンモ
ニアガスはそれぞれ 1〔 litre/分〕で流入される。一
方、ソースガスであるトリメチルアルミニウムガス(以
下、TMAガスという)は 3.0×10-7〔 mol/分〕で流
入される。この処理に要する反応時間は約1〔分〕間で
ある。
Next, as shown in FIG. 2B, an aluminum nitrogen (AlN) film to be the first buffer layer 11 is formed on the sapphire substrate 2 under the following conditions. At this time, the pressure condition and the temperature condition are set to atmospheric pressure and 500 ° C, respectively. Hydrogen gas and ammonia gas, which are carrier gases, are introduced at 1 [litre / min]. On the other hand, the source gas trimethylaluminum gas (hereinafter referred to as TMA gas) is introduced at 3.0 × 10 −7 [mol / min]. The reaction time required for this treatment is about 1 minute.

【0023】ここでサフアイア基板2上に形成されるバ
ツフア層11の格子定数は下地となるサフアイア基板2
の格子定数とほぼ等しいため結晶性の良いバツフア層1
1がサフアイア基板2上に形成されることになる。
Here, the lattice constant of the buffer layer 11 formed on the sapphire substrate 2 is the underlying sapphire substrate 2.
Buffer layer with good crystallinity because it is almost equal to the lattice constant of
1 will be formed on the sapphire substrate 2.

【0024】このように1層目のバツフア層11が形成
されると、次は図2(C)に示すように2層目のバツフ
ア層12となるガリウムアルミニウム窒素(GaAl
N)膜を以下の条件で形成する。
When the first buffer layer 11 is formed in this way, next, as shown in FIG. 2C, gallium aluminum nitrogen (GaAl) which will become the second buffer layer 12 is formed.
N) A film is formed under the following conditions.

【0025】このときの圧力条件及び温度条件もやはり
常圧、 500〔℃〕である。またこの場合にもキヤリアガ
スである水素ガス及びアンモニアガスはそれぞれ 1〔 l
itre/分〕の割合で流入されている。一方、プロセスガ
スにはTMAガス及びトリメチルガリウムガス(以下、
TMGaガスという)が用いられ、それぞれ 3.0×10-7
〔 mol/分〕の割合で流入される。
The pressure condition and temperature condition at this time are also atmospheric pressure and 500 [° C.]. Also in this case, hydrogen gas and ammonia gas, which are carrier gases, are 1 [l
Itre / min]. On the other hand, the process gas includes TMA gas and trimethylgallium gas (hereinafter,
(TMGa gas) is used, and each is 3.0 × 10 -7
It is introduced at a rate of [mol / min].

【0026】因にこの処理に要する時間は約3〔分〕で
ある。この処理時間が経過すると、反応装置1はTMG
aガスの流入のみを停止し、他のガスは流したままサセ
プタ4の温度を1050〔℃〕に引き上げる。
Incidentally, the time required for this processing is about 3 minutes. When this processing time has elapsed, the reactor 1
Only the inflow of gas a is stopped, and the temperature of the susceptor 4 is raised to 1050 [° C.] while the other gases are allowed to flow.

【0027】このとき1層目のバツフア層11上に成長
される2層目のバツフア層12の格子定数は下地となる
1層目のバツフア層11の格子定数とほぼ等しい。これ
により1層目のバツフア層12上に結晶性の良いバツフ
ア層12を成長することができる。
At this time, the lattice constant of the second buffer layer 12 grown on the first buffer layer 11 is substantially equal to the lattice constant of the first buffer layer 11 as the base. As a result, the buffer layer 12 with good crystallinity can be grown on the first buffer layer 12.

【0028】このように2層のバツフア層11及び12
が順次積層されると、次は最終目的とするガリウム窒素
膜(GaN)13の形成処理に移る。この際、圧力条件
及び温度条件はそれぞれ常圧、1050〔℃〕に設定され
る。またキヤリアガスには前2工程の場合と同様、水素
ガス及びアンモニアガスが用いられ、それぞれ 1〔 lit
re/分〕で流入される。またソースガスとしてはTMG
aガスが 5.4×10-5〔 mol/分〕で流入される。この際
の反応時間は約60〔分〕である。
Thus, the two buffer layers 11 and 12 are formed.
Are sequentially stacked, the next step is to form the final target gallium nitrogen film (GaN) 13. At this time, the pressure condition and the temperature condition are set to normal pressure and 1050 [° C.], respectively. As in the case of the previous two steps, hydrogen gas and ammonia gas are used for the carrier gas, and 1 [lit
re / min]. Also, as the source gas, TMG
Gas a is introduced at 5.4 × 10 −5 [mol / min]. The reaction time at this time is about 60 minutes.

【0029】因にこの実施例の場合、これら一連の処理
工程の間中、水素ガス及び窒素ガスがガスノズル6から
常時流入されており、反応ガスによつて反応室内が汚染
されないようにされている。
Incidentally, in the case of this embodiment, hydrogen gas and nitrogen gas are constantly introduced from the gas nozzle 6 during the series of processing steps so that the reaction chamber is not contaminated by the reaction gas. .

【0030】これにより2層目のバツフア層12の表面
には 4〔μm〕の膜厚のガリウム窒素膜13が形成され
ることになる。ここで表面に形成されるガリウム窒素膜
13の格子定数は2層目のバツフア層12の格子定数に
対してほぼ等しい。従つてその上に形成されるガリウム
窒素膜13の結晶性も良い。
As a result, the gallium nitrogen film 13 having a thickness of 4 [μm] is formed on the surface of the second buffer layer 12. Here, the lattice constant of the gallium nitrogen film 13 formed on the surface is substantially equal to the lattice constant of the buffer layer 12 of the second layer. Therefore, the crystallinity of the gallium nitrogen film 13 formed thereon is also good.

【0031】以上の工程によれば、サフアイア基板4と
ガリウム窒素膜との間に2層のバツフア層11及び12
を形成して格子定数がほぼ連続的に変化するようにした
ことにより、サフアイア基板2に直にガリウム窒素膜を
形成する場合に比して結晶性の良いガリウム窒素膜を成
長させることができる。また格子定数が多少異なつてい
ても1層目のバツフア層11を形成するAlN層で緩和
されるため影響が少ない。
According to the above steps, two buffer layers 11 and 12 are provided between the sapphire substrate 4 and the gallium nitrogen film.
Thus, the gallium nitrogen film having better crystallinity can be grown as compared with the case where the gallium nitrogen film is formed directly on the sapphire substrate 2 by forming the film and forming the lattice constant substantially continuously. Further, even if the lattice constants are slightly different, they are alleviated by the AlN layer forming the first buffer layer 11, so that the influence is small.

【0032】さらに1層目のバツフア層11を形成する
AlN層の膜厚が多少ばらついても、1層目のバツフア
層11の上に2層目のバツフア層12となるGaAlN
膜が形成されているため膜厚の変動によつて結晶性が影
響されるおそれも低減される。これによりこの構造を有
する化合物半導体によつて発光デバイスを形成すれば、
歩留まりを一段と向上させることができる。
Further, even if the film thickness of the AlN layer forming the first buffer layer 11 varies to some extent, the GaAlN layer becomes the second buffer layer 12 on the first buffer layer 11.
Since the film is formed, the possibility that the crystallinity is affected by the fluctuation of the film thickness is reduced. As a result, if a light emitting device is formed from a compound semiconductor having this structure,
The yield can be further improved.

【0033】(2)第2の実施例 この実施例で用いる成膜条件は、前項の実施例で用いた
成膜条件のうち第2のバツフア層12の成膜条件を除い
て同様である。すなわち反応時間を 1〔分〕間に短縮す
ることを除いて同様である。従つて圧力条件及び温度条
件は常圧、 500〔℃〕である。またこの条件下導入され
るキヤリアガス、すなわち水素ガス及びアンモニアガス
もそれぞれ 1〔 litre/分〕の割合で流入される。また
プロセスガスであるTMAガス及びTMGaガスもそれ
ぞれ 3.0×10-7〔 mol/分〕の割合で流入される。
(2) Second Example The film forming conditions used in this example are the same as the film forming conditions used in the example of the previous section except the film forming condition of the second buffer layer 12. In other words, it is the same except that the reaction time is shortened to 1 [minute]. Therefore, the pressure and temperature conditions are atmospheric pressure and 500 ° C. Carrier gas introduced under these conditions, that is, hydrogen gas and ammonia gas, are also introduced at a rate of 1 [litre / min]. The process gases TMA gas and TMGa gas are also introduced at a rate of 3.0 × 10 −7 [mol / min].

【0034】このように反応時間を幾分短縮することに
より2層目のバツフア層12の膜厚は薄くなるが、2層
目のバツフア層12の下層には1層目のバツフア層11
があるため、バツフア層12上に成長されるガリウム窒
素膜13の膜質に実用上問題はない。このように結晶性
の良いガリウム窒素膜13を短時間で成膜することがで
きる。
Although the film thickness of the second buffer layer 12 is reduced by shortening the reaction time somewhat in this way, the first buffer layer 11 is below the second buffer layer 12.
Therefore, there is no practical problem in the film quality of the gallium nitrogen film 13 grown on the buffer layer 12. Thus, the gallium nitrogen film 13 having good crystallinity can be formed in a short time.

【0035】(3)第3の実施例 この実施例で用いる成膜条件は、前項の実施例で用いた
成膜条件のうち第2のバツフア層12の成膜条件を除い
て同様である。すなわち成膜温度を 800〔℃〕に上げる
ことを除いて同様である。従つて他の成膜条件は同じで
ある。すなわちキヤリアガスとして水素ガス及びアンモ
ニアガスはそれぞれ 1〔 litre/分〕の割合で流入され
る。また同時にプロセスガスとしてTMAガス及びTM
Gaガスがそれぞれ 3.0×10-7〔 mol/分〕にて流入さ
れる。そして反応時間は 1〔分〕間である。
(3) Third Example The film forming conditions used in this example are the same as the film forming conditions used in the example of the preceding section except for the film forming condition of the second buffer layer 12. That is, it is the same except that the film formation temperature is raised to 800 [° C]. Therefore, the other film forming conditions are the same. That is, hydrogen gas and ammonia gas are introduced as carrier gas at a rate of 1 [litre / min]. At the same time, TMA gas and TM are used as process gas.
Ga gas is introduced at 3.0 × 10 −7 [mol / min], respectively. And the reaction time is 1 [minute].

【0036】このように比較的高温によつて2層目のバ
ツフア層12が形成されるため、形成過程の間に1層目
のバツフア層11の結晶性が向上される。このように1
層目のバツフア層11の結晶性が向上することはその表
面に成長される2層目のバツフア層12についても結晶
性が向上されることになり、膜質の良好なガリウム窒素
膜13をバツフア層11及び12の上に形成することが
できる。
Since the second buffer layer 12 is formed at a relatively high temperature in this manner, the crystallinity of the first buffer layer 11 is improved during the formation process. 1 like this
The improvement of the crystallinity of the buffer layer 11 of the second layer also improves the crystallinity of the second buffer layer 12 grown on the surface thereof, and the gallium nitrogen film 13 having a good film quality is used as the buffer layer. It can be formed on 11 and 12.

【0037】以上の工程によれば、実用上十分な膜質の
ガリウム窒化膜13を比較的短時間によつて得ることが
できる。またバツフア層を2層とすることによりバツフ
ア層の膜厚を薄くでき、発光デバイスの歩留まりを一段
と向上させることができる。
According to the above steps, the gallium nitride film 13 of practically sufficient quality can be obtained in a relatively short time. Further, by forming the buffer layer into two layers, the thickness of the buffer layer can be reduced, and the yield of the light emitting device can be further improved.

【0038】(4)第4の実施例 前項までの実施例ではサフアイア基板上に複数のバツフ
ア層11、12を形成した後にガリウム窒化膜を形成す
る場合について述べたが、この項で説明する実施例では
バツフア層の形成前に予めサフアイア基板表面を窒化し
ておくことを特徴とする。この様子を図2との対応部分
に同一符号を付して示す図3を用いながら説明する。
(4) Fourth Embodiment In the embodiments up to the preceding paragraph, the case where the gallium nitride film is formed after forming the plurality of buffer layers 11 and 12 on the sapphire substrate has been described. The example is characterized in that the surface of the sapphire substrate is nitrided in advance before the formation of the buffer layer. This situation will be described with reference to FIG. 3, in which the same parts as those in FIG.

【0039】すなわちサフアイア基板2の表面から酸化
膜の除去が終了した時点で、H2 ガスに代えてNH3
スを導入する。このときNH3 ガスは少なくとも 0.5〜
20〔litter/分〕の割合で60分程度導入される。これに
よりサフアイア基板2の表面が窒化され、図3(A)に
示すように、表面部分に単結晶AlN層15が形成され
る。
That is, when the oxide film is removed from the surface of the sapphire substrate 2, NH 3 gas is introduced instead of H 2 gas. At this time, NH3 gas is at least 0.5
It is introduced for about 60 minutes at a rate of 20 [litter / minute]. As a result, the surface of the sapphire substrate 2 is nitrided, and the single crystal AlN layer 15 is formed on the surface portion as shown in FIG.

【0040】このようにサフアイア基板2の表面が予め
窒化されているため次の工程でTMAガスが導入されて
始めると同時にバツフア層11の堆積が開始される。こ
れにより図3(B)に示す1層目に形成されるバツフア
層11の平坦性は一段と向上され、また結晶性も向上さ
れる。同様にその上層に形成される2層目のバツフア層
12(図3(C))の膜質も安定する。この結果、図3
(D)に示すように最上層に形成されるガリウム窒素膜
(GaN)13の平坦性及び結晶性もさらに向上され
る。
Since the surface of the sapphire substrate 2 is prenitrided in this manner, the deposition of the buffer layer 11 is started at the same time when the TMA gas is introduced in the next step. As a result, the flatness of the buffer layer 11 formed in the first layer shown in FIG. 3B is further improved and the crystallinity is also improved. Similarly, the film quality of the second buffer layer 12 (FIG. 3C) formed on the upper layer is also stable. As a result,
As shown in (D), the flatness and crystallinity of the gallium nitrogen film (GaN) 13 formed in the uppermost layer are further improved.

【0041】以上の工程によれば、酸化膜除去後におけ
るサフアイア基板2の表面を窒化しておき、この状態で
格子定数がほぼ連続するように2層のバツフア層11及
び12を形成するようにしたことにより、最上層に形成
されるガリウム窒素膜13の平坦性及び結晶性を一段と
向上させることができる。これにより従来に比して一段
と高効率かつ長寿命の半導体発光素子を実現することが
できる。
According to the above steps, the surface of the sapphire substrate 2 after the oxide film is removed is nitrided, and in this state, the two buffer layers 11 and 12 are formed so that the lattice constants are substantially continuous. By doing so, the flatness and crystallinity of the gallium nitrogen film 13 formed on the uppermost layer can be further improved. As a result, it is possible to realize a semiconductor light emitting device having a much higher efficiency and a longer life than ever before.

【0042】(5)他の実施例 なお上述の実施例においては、1層目及び2層目のバツ
フア層11及び12の上にガリウム窒素膜13を形成す
る場合について述べたが、本発明はこれに限らず、一般
式がIn1-x-y Gax Aly N(0≦x≦1、0≦x+
y≦1)で表される化合物半導体層を成長させる場合に
広く適用し得る。
(5) Other Embodiments In the above-mentioned embodiments, the case where the gallium nitrogen film 13 is formed on the first and second buffer layers 11 and 12 has been described. is not limited to this, the general formula in 1-xy Ga x Al y N (0 ≦ x ≦ 1,0 ≦ x +
It can be widely applied when growing the compound semiconductor layer represented by y ≦ 1).

【0043】また上述の実施例においては、NH3 ガス
の雰囲気中で熱処理することによりサフアイア基板2の
表面を窒化する場合について述べたが、本発明はこれに
限らず、窒素ガスを含む雰囲気中でサフアイア基板2を
熱処理することによつてサフアイア基板2の表面を窒化
する場合に広く適用し得る。
Further, in the above-mentioned embodiment, the case where the surface of the sapphire substrate 2 is nitrided by the heat treatment in the atmosphere of NH3 gas has been described, but the present invention is not limited to this, and the atmosphere including nitrogen gas is described. It can be widely applied to the case where the surface of the sapphire substrate 2 is nitrided by heat-treating the sapphire substrate 2.

【0044】さらに上述の実施例においては、バツフア
層を下層から順にアルミニウム窒素(AlN)及びガリ
ウムアルミニウム窒素(GaAlN)によつて形成する
場合について述べたが、他の膜をバツフア層として用い
ても良い。このときバツフア層の格子定数はサフアイア
基板2とガリウム窒素膜13の中間のものを用いれば良
い。
Further, in the above-mentioned embodiments, the case where the buffer layer is formed by using aluminum nitrogen (AlN) and gallium aluminum nitrogen (GaAlN) in order from the lower layer has been described, but other films may be used as the buffer layer. good. At this time, the lattice constant of the buffer layer may be intermediate between the sapphire substrate 2 and the gallium nitrogen film 13.

【0045】さらに上述の実施例においては、バツフア
層を2層とする場合について述べたが、本発明はこれに
限らず、3層以上に分けて形成しても良い。この場合、
サフアイア基板2に近い側から表面の方向に順に積層さ
れるバツフア層の格子定数がほぼ一定の割合で変化する
ようにすれば良い。
Further, in the above-mentioned embodiment, the case where the buffer layer has two layers has been described, but the present invention is not limited to this, and it may be formed by dividing into three or more layers. in this case,
It suffices that the lattice constants of the buffer layers stacked in order from the side closer to the sapphire substrate 2 toward the surface change at a substantially constant rate.

【0046】さらに上述の実施例においては、バツフア
層をサフアイア基板2上に形成する場合について述べた
が、本発明はこれに限らず、他の材質の基板上に形成し
ても良い。さらに上述の実施例においては、成膜条件
(圧力、温度、キヤリアガス及びその流入速度、プロセ
スガス及びその流入速度、反応時間等)をそれぞれ特定
したが、本発明はこれに限らず、膜厚等に応じて適切な
条件に調整すれば良い。
Further, in the above-mentioned embodiment, the case where the buffer layer is formed on the sapphire substrate 2 has been described, but the present invention is not limited to this, and it may be formed on a substrate made of another material. Furthermore, in the above-mentioned embodiments, the film forming conditions (pressure, temperature, carrier gas and its inflow rate, process gas and its inflow rate, reaction time, etc.) are specified, but the present invention is not limited to this, and the film thickness, etc. It may be adjusted according to the appropriate conditions.

【0047】さらに上述の実施例においては、ガリウム
窒素系化合物半導体の結晶を利用して青色発光ダイオー
ドを形成する場合について述べたが、本発明はこれに限
らず、半導体レーザを形成する場合にも広く適用し得
る。
Further, in the above-mentioned embodiments, the case where the blue light emitting diode is formed by utilizing the crystal of gallium nitrogen-based compound semiconductor has been described, but the present invention is not limited to this, and is also applicable to the case where a semiconductor laser is formed. Widely applicable.

【0048】[0048]

【発明の効果】上述のように本発明によれば、基体と一
般式がIn1-x-y Gax Aly N(0≦x≦1、0≦x
+y≦1)で表される化合物半導体層との間に複数層の
バツフア層を設けることにより平坦性及び結晶性に優れ
た化合物半導体層を基体上に形成することができ、再現
性に優れた化合物半導体装置を実現することができる。
As described above, according to the present invention, the substrate and the general formula are In 1-xy Ga x Al y N (0 ≦ x ≦ 1, 0 ≦ x
By providing a plurality of buffer layers between the compound semiconductor layer represented by + y ≦ 1), a compound semiconductor layer having excellent flatness and crystallinity can be formed on the substrate, and reproducibility is excellent. A compound semiconductor device can be realized.

【0049】また基体表面に窒化層を形成してから順に
複数層のバツフア層を形成し、これらの上に一般式がI
1-x-y Gax Aly N(0≦x≦1、0≦x+y≦
1)で表される化合物半導体層を形成することにより一
段と平坦性及び結晶性に優れた化合物半導体層を有する
化合物半導体装置を実現することができる。
Further, a nitride layer is formed on the surface of the substrate, and then a plurality of buffer layers are sequentially formed.
n 1-xy Ga x Al y N (0 ≦ x ≦ 1,0 ≦ x + y ≦
By forming the compound semiconductor layer represented by 1), it is possible to realize a compound semiconductor device having a compound semiconductor layer having more excellent flatness and crystallinity.

【図面の簡単な説明】[Brief description of drawings]

【図1】化合物半導体製造装置を示す略線図である。FIG. 1 is a schematic diagram showing a compound semiconductor manufacturing apparatus.

【図2】本発明による化合物半導体装置の製造工程の説
明に供する工程図である。
FIG. 2 is a process drawing for explaining the manufacturing process of the compound semiconductor device according to the present invention.

【図3】本発明による化合物半導体装置の製造工程の説
明に供する工程図である。
FIG. 3 is a process drawing for explaining the manufacturing process of the compound semiconductor device according to the present invention.

【符号の説明】[Explanation of symbols]

1……反応装置、2……サフアイア基板、3……反応
室、4……サセプタ、5……ヒータ、6、7……ガスノ
ズル、8……真空ポンプ、9……排気管、10……モー
タ、11、12……バツフア層、13……ガリウム窒素
膜、15……表面窒化層。
1 ... Reactor, 2 ... Sapphire substrate, 3 ... Reaction chamber, 4 ... Susceptor, 5 ... Heater, 6, 7 ... Gas nozzle, 8 ... Vacuum pump, 9 ... Exhaust pipe, 10 ... Motor, 11, 12 ... Buffer layer, 13 ... Gallium nitrogen film, 15 ... Surface nitrided layer.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】基体上に一般式がIn1-x-y Gax Aly
N(0≦x≦1、0≦x+y≦1)で表される化合物半
導体層を有する化合物半導体装置において、 上記基体と上記化合物半導体層との間に複数層のバツフ
ア層を有することを特徴とする化合物半導体装置。
1. A general formula of In 1-xy Ga x Al y on a substrate.
A compound semiconductor device having a compound semiconductor layer represented by N (0 ≦ x ≦ 1, 0 ≦ x + y ≦ 1), characterized in that a plurality of buffer layers are provided between the base and the compound semiconductor layer. Compound semiconductor device.
【請求項2】基体上に一般式がIn1-x-y Gax Aly
N(0≦x≦1、0≦x+y≦1)で表される化合物半
導体層を有する化合物半導体装置において、 上記基体表面に形成された窒化層と上記化合物半導体層
との間に複数層のバツフア層を有することを特徴とする
化合物半導体装置。
2. A general formula of In 1-xy Ga x Al y on a substrate.
In a compound semiconductor device having a compound semiconductor layer represented by N (0 ≦ x ≦ 1, 0 ≦ x + y ≦ 1), a plurality of buffer layers are provided between the nitride layer formed on the substrate surface and the compound semiconductor layer. A compound semiconductor device having a layer.
【請求項3】上記複数のバツフア層は2層であり、下層
側のバツフア層は一般式がAlNで表される半導体層で
なり、かつ上層側のバツフア層は一般式がGax Al
1-x Nで表される半導体層でなることを特徴とする請求
項1又は請求項2に記載の化合物半導体装置。
3. The plurality of buffer layers are two layers, the lower buffer layer is a semiconductor layer represented by a general formula of AlN, and the upper buffer layer is a general formula of Ga x Al.
The compound semiconductor device according to claim 1, wherein the compound semiconductor device is formed of a semiconductor layer represented by 1-xN .
【請求項4】上記基体はサフアイア基板でなることを特
徴とする請求項1、請求項2又は請求項3に記載の化合
物半導体装置。
4. The compound semiconductor device according to claim 1, wherein the base is a sapphire substrate.
【請求項5】基体上に一般式がIn1-x-y Gax Aly
N(0≦x≦1、0≦x+y≦1)で表される化合物半
導体層を有する化合物半導体装置の形成方法において、 上記基体表面に複数層のバツフア層を形成した後、上記
化合物半導体層を形成することを特徴とする化合物半導
体装置形成方法。
5. A general formula of In 1-xy Ga x Al y on a substrate.
In a method for forming a compound semiconductor device having a compound semiconductor layer represented by N (0 ≦ x ≦ 1, 0 ≦ x + y ≦ 1), a plurality of buffer layers are formed on the surface of the base, and then the compound semiconductor layer is formed. A method for forming a compound semiconductor device, comprising: forming.
【請求項6】上記第1のバツフア層を上記基体表面に形
成する前に、予め上記基体表面を窒化して窒化層を形成
しておくことを特徴とする請求項5に記載の化合物半導
体装置形成方法。
6. The compound semiconductor device according to claim 5, wherein a nitride layer is formed by nitriding the surface of the substrate in advance before forming the first buffer layer on the surface of the substrate. Forming method.
【請求項7】上記窒化層は窒素ガスを含む雰囲気中にお
いて上記基体を熱処理することにより形成されることを
特徴とする請求項6に記載の化合物半導体装置形成方
法。
7. The method for forming a compound semiconductor device according to claim 6, wherein the nitride layer is formed by heat-treating the substrate in an atmosphere containing nitrogen gas.
JP17360294A 1993-12-30 1994-06-30 Compound semiconductor device and forming method thereof Pending JPH07235692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17360294A JPH07235692A (en) 1993-12-30 1994-06-30 Compound semiconductor device and forming method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-349825 1993-12-30
JP34982593 1993-12-30
JP17360294A JPH07235692A (en) 1993-12-30 1994-06-30 Compound semiconductor device and forming method thereof

Publications (1)

Publication Number Publication Date
JPH07235692A true JPH07235692A (en) 1995-09-05

Family

ID=26495517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17360294A Pending JPH07235692A (en) 1993-12-30 1994-06-30 Compound semiconductor device and forming method thereof

Country Status (1)

Country Link
JP (1) JPH07235692A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999059195A1 (en) * 1998-05-13 1999-11-18 National University Of Singapore Crystal growth method for group-iii nitride and related compound semiconductors
WO2000016378A3 (en) * 1998-09-15 2000-07-06 Univ Singapore Method of fabricating group-iii nitride-based semiconductor device
WO2001061766A1 (en) * 2000-02-21 2001-08-23 Sanken Electric Co., Ltd. Light-emitting semiconductor device and method of manufacture thereof
US6281522B1 (en) 1996-06-14 2001-08-28 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a semiconductor and a semiconductor light-emitting device
EP1160882A2 (en) * 2000-05-22 2001-12-05 Ngk Insulators, Ltd. A photonic device, a substrate for fabricating a photonic device, a method for fabricating the photonic device and a method for manufacturing the photonic device-fabricating substrate
EP1220333A2 (en) * 2000-12-20 2002-07-03 Matsushita Electric Industrial Co., Ltd. Method for fabricating semiconductor, method for fabricating semiconductor substrate, and semiconductor light emitting device
US6593016B1 (en) 1999-06-30 2003-07-15 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor device and producing method thereof
JP2004235646A (en) * 2003-01-29 2004-08-19 Lg Electron Inc Nitride semiconductor and method of crystal growth thereof
US7045223B2 (en) 2003-09-23 2006-05-16 Saint-Gobain Ceramics & Plastics, Inc. Spinel articles and methods for forming same
EP1235282A3 (en) * 2001-02-27 2006-08-30 Ngk Insulators, Ltd. Method for fabricating a nitride film
EP1323851A3 (en) * 2001-12-25 2006-09-06 Ngk Insulators, Ltd. Method for fabricating a III nitride film and products and elements obtained therefrom
JP2006310765A (en) * 2005-03-31 2006-11-09 Toyoda Gosei Co Ltd Method for forming low-temperature growing buffer layer, method for manufacturing light-emitting element, the light-emitting element and light-emitting device
US7176479B2 (en) 2001-07-06 2007-02-13 Kabushiki Kaisha Toshiba Nitride compound semiconductor element
US7326477B2 (en) 2003-09-23 2008-02-05 Saint-Gobain Ceramics & Plastics, Inc. Spinel boules, wafers, and methods for fabricating same
WO2008136504A1 (en) * 2007-05-02 2008-11-13 Showa Denko K.K. Method for manufacturing group iii nitride semiconductor light-emitting device
US7919815B1 (en) 2005-02-24 2011-04-05 Saint-Gobain Ceramics & Plastics, Inc. Spinel wafers and methods of preparation

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6281522B1 (en) 1996-06-14 2001-08-28 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a semiconductor and a semiconductor light-emitting device
WO1999059195A1 (en) * 1998-05-13 1999-11-18 National University Of Singapore Crystal growth method for group-iii nitride and related compound semiconductors
US6524932B1 (en) 1998-09-15 2003-02-25 National University Of Singapore Method of fabricating group-III nitride-based semiconductor device
WO2000016378A3 (en) * 1998-09-15 2000-07-06 Univ Singapore Method of fabricating group-iii nitride-based semiconductor device
US6918961B2 (en) 1999-06-30 2005-07-19 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor device and producing method therefor
US6593016B1 (en) 1999-06-30 2003-07-15 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor device and producing method thereof
WO2001061766A1 (en) * 2000-02-21 2001-08-23 Sanken Electric Co., Ltd. Light-emitting semiconductor device and method of manufacture thereof
KR20010107604A (en) * 2000-05-22 2001-12-07 시바타 마사하루 A photonic device, a substrate for fabricating a photonic device, a method for fabricating the photonic device and a method for manufacturing the photonic device-fabricating substrate
EP1160882A2 (en) * 2000-05-22 2001-12-05 Ngk Insulators, Ltd. A photonic device, a substrate for fabricating a photonic device, a method for fabricating the photonic device and a method for manufacturing the photonic device-fabricating substrate
EP1160882A3 (en) * 2000-05-22 2006-01-04 Ngk Insulators, Ltd. A photonic device, a substrate for fabricating a photonic device, a method for fabricating the photonic device and a method for manufacturing the photonic device-fabricating substrate
EP1220333A2 (en) * 2000-12-20 2002-07-03 Matsushita Electric Industrial Co., Ltd. Method for fabricating semiconductor, method for fabricating semiconductor substrate, and semiconductor light emitting device
EP1220333A3 (en) * 2000-12-20 2009-10-14 Panasonic Corporation Method for fabricating semiconductor, method for fabricating semiconductor substrate, and semiconductor light emitting device
EP1235282A3 (en) * 2001-02-27 2006-08-30 Ngk Insulators, Ltd. Method for fabricating a nitride film
US7176479B2 (en) 2001-07-06 2007-02-13 Kabushiki Kaisha Toshiba Nitride compound semiconductor element
EP1323851A3 (en) * 2001-12-25 2006-09-06 Ngk Insulators, Ltd. Method for fabricating a III nitride film and products and elements obtained therefrom
JP2004235646A (en) * 2003-01-29 2004-08-19 Lg Electron Inc Nitride semiconductor and method of crystal growth thereof
US7045223B2 (en) 2003-09-23 2006-05-16 Saint-Gobain Ceramics & Plastics, Inc. Spinel articles and methods for forming same
US7326477B2 (en) 2003-09-23 2008-02-05 Saint-Gobain Ceramics & Plastics, Inc. Spinel boules, wafers, and methods for fabricating same
US7919815B1 (en) 2005-02-24 2011-04-05 Saint-Gobain Ceramics & Plastics, Inc. Spinel wafers and methods of preparation
JP2006310765A (en) * 2005-03-31 2006-11-09 Toyoda Gosei Co Ltd Method for forming low-temperature growing buffer layer, method for manufacturing light-emitting element, the light-emitting element and light-emitting device
WO2008136504A1 (en) * 2007-05-02 2008-11-13 Showa Denko K.K. Method for manufacturing group iii nitride semiconductor light-emitting device
US7749785B2 (en) 2007-05-02 2010-07-06 Showa Denko K.K. Manufacturing method of group III nitride semiconductor light-emitting device

Similar Documents

Publication Publication Date Title
JP5378829B2 (en) Method for forming epitaxial wafer and method for manufacturing semiconductor device
JPH07235692A (en) Compound semiconductor device and forming method thereof
US8703561B2 (en) High quality GaN high-voltage HFETs on silicon
JP4150527B2 (en) Crystal production method
JP3147316B2 (en) Method for manufacturing semiconductor light emitting device
JPH09134878A (en) Manufacture of gallium nitride compound semiconductor
JP4331906B2 (en) Method for producing group III nitride film
KR100533636B1 (en) Fabrication method of nitride semiconductor and nitride semiconductor structure fabricated thereby
CN111527587B (en) Method for producing group III nitride semiconductor substrate
JP3673541B2 (en) Method for producing group 3-5 compound semiconductor crystal
JP2003332234A (en) Sapphire substrate having nitride layer and its manufacturing method
JPH08203834A (en) Semiconductor thin film and manufacture thereof
JPH09295890A (en) Apparatus for producing semiconductor and production of semiconductor
JP3174257B2 (en) Method for producing nitride-based compound semiconductor
JP3946805B2 (en) Crystal growth method of gallium nitride compound semiconductor
JP2005183524A (en) Epitaxial substrate and its manufacturing method, and method of reducing dislocation
JP2003037069A (en) Method for manufacturing iii nitride based compound semiconductor
JP4670206B2 (en) Manufacturing method of nitride semiconductor
KR102513206B1 (en) Manufacturing method of group III nitride semiconductor substrate
JPH08264455A (en) Semiconductor device and manufacture thereof
JPH0754806B2 (en) Method for growing compound semiconductor single crystal film
JP4065055B2 (en) Method for growing gallium nitride compound semiconductor single crystal
JPH10284425A (en) Manufacture of semiconductor device
JP3214349B2 (en) Semiconductor wafer having InGaN layer, method of manufacturing the same, and light emitting device having the same
JP4084539B2 (en) Method for producing crystal growth substrate of group III nitride compound semiconductor