JPH03167847A - Package for semiconductor-element - Google Patents

Package for semiconductor-element

Info

Publication number
JPH03167847A
JPH03167847A JP30860989A JP30860989A JPH03167847A JP H03167847 A JPH03167847 A JP H03167847A JP 30860989 A JP30860989 A JP 30860989A JP 30860989 A JP30860989 A JP 30860989A JP H03167847 A JPH03167847 A JP H03167847A
Authority
JP
Japan
Prior art keywords
external lead
glass
lead terminal
semiconductor element
constituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30860989A
Other languages
Japanese (ja)
Other versions
JP2747613B2 (en
Inventor
Hiroshi Matsumoto
弘 松本
Masaaki Iguchi
井口 公明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP1308609A priority Critical patent/JP2747613B2/en
Priority to US07/573,406 priority patent/US5057905A/en
Publication of JPH03167847A publication Critical patent/JPH03167847A/en
Application granted granted Critical
Publication of JP2747613B2 publication Critical patent/JP2747613B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Lead Frames For Integrated Circuits (AREA)

Abstract

PURPOSE:To operate a semiconductor element normally by a method wherein an insulating container is constituted of spinel or the like, an external lead terminal is constituted of a metal whose magnetic permeability, electric conductivity and coefficient of thermal expansion are specific % values or higher and a glass member is constituted of a glass composed of silica and oxides of Na and K at specific rates. CONSTITUTION:Recessed parts which form a space used to house a semiconductor element are formed in respective central parts of an insulating substrate 1 and a lid body 2; the semiconductor element 4 is fixed to the bottom of the recessed part of the substrate 1 via an adhesive such as a resin, a glass, a brazing agent or the like. The substrate 1 and the lid body 2 are formed of spinel or a steatite sintered substance; an insulating container 3 is formed. External lead terminals 5 are constituted of a metal whose magnetic permeability is 200 (CGS) or lower, whose coefficient of thermal expansion is 70 to 85X10<-7>/ deg.C and whose electric conductivity is 50% (IACS) or higher; glass members are constituted of a glass which is composed of the following: 55.0 to 75.0wt.% of silica; 10.0 to 20.0wt.% of at least one kind of oxides of Na and K; and 20.0 to 40.0wt.% of lead oxide.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体素子を収容する半導体素子収納用パッケ
ージの改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in a semiconductor element housing package that houses a semiconductor element.

(従来の技術) 従来、半導体素子を収容するためのパッケージ、特にガ
ラスの溶着によって封止するガラス封止型半導体素子収
納用パッケージは、絶縁基体と蓋体とから威り、内部に
半導体素子を収容する空所を有する絶縁容器と、該容器
内に収容される半導体素子を外部電気回路に電気的に接
続するための外部リード端子とから構威されており、絶
縁基体及び蓋体の相対向する主面に予め封止用のガラス
部材を被着形戒すると共に、絶縁基体主面に外部リード
端子を固定し、半導体素子の各電極と外部リード端子と
をワイヤボンド接続した後、絶縁基体及び蓋体のそれぞ
に被着させた封止用のガラス部材を溶融一体化させるこ
とによって内部に半導体素子を気密に封止している. (発明が解決しようとする課題) しかし乍ら、この従来のガラス封止型半導体素子収納用
パッケージは通常、外部リード端子がコバール(29 
WtχNi−16 WtX Co−55 WtXPe合
金)や42AIIoV(42 WtX Ni−58 W
tX Fe合金)の導電性材料から戒っており、該コバ
ールや42A11oy等は透磁率が高く、且つ導電率が
低いことから以下に述べる欠点を有する. 即ち、 ■コバールや42A l joyは鉄(Fe)、ニッケ
ル(Ni)、コバルト(CO)といった強磁性体金属の
みから成っており、その透磁率は250〜700 (C
GS)と高い。そのためこのコバールや42Alloy
等から或る外部リード端子に電流が流れると外部リード
端子中に透磁率に比例した大きな自己インダクタンスが
発生し、これが逆起電力を誘発してノイズとなると共に
、該ノイズが半導体素子に入力されて半導体素子に誤動
作を生じさせる、 ■コバールや42A11oyはその導電率が3.0〜3
.5z(IACS)と低い.そのためこのコバールや4
2A 1 1oy等から戒る外部リード端子に信号を伝
搬させた場合、信号の伝殿速度が極めて遅いものとなり
、高速駆動を行う半導体素子はその収容が不可となって
しまう、 ■半導体素子収納用バフケージの内部に収容する半導体
素子の高密度化、高集積化の進展に伴い、半導体素子の
電極数が大幅に増大しており、半導体素子の各電極を外
部電気回路に接続する外部リード端子の線幅も極めて細
くなってきている。そのため外部リード端子は上記■に
記載のコバールや42Al1oyの導電率が低いことと
相俊って電気抵抗が極めて大きなものになってきており
、外部リード端子に信号を伝搬させると、該外部リード
端子の電気抵抗に起因して信号が大きく減衰し、内部に
収容する半導体素子に信号を正確に入力することができ
ず、半導体素子に誤動作を生じさせてしまう、 等の欠点を有していた。
(Prior Art) Conventionally, packages for accommodating semiconductor devices, especially glass-sealed semiconductor device storage packages that are sealed by glass welding, are made up of an insulating base and a lid, and the semiconductor devices are not placed inside. It consists of an insulating container having a cavity for accommodating the semiconductor device, and an external lead terminal for electrically connecting the semiconductor device accommodated in the container to an external electric circuit. A glass member for sealing is preliminarily applied to the main surface of the insulating substrate, external lead terminals are fixed to the main surface of the insulating substrate, and each electrode of the semiconductor element and the external lead terminal are connected by wire bonding. The semiconductor element is hermetically sealed inside by melting and integrating the sealing glass members attached to each of the lid and lid. (Problem to be Solved by the Invention) However, in this conventional glass-sealed package for storing semiconductor elements, the external lead terminals are usually made of Kovar (29
WtχNi-16 WtX Co-55 WtXPe alloy) and 42AIIoV (42 WtX Ni-58 W
Kovar, 42A11oy, etc. have high magnetic permeability and low conductivity, so they have the disadvantages described below. That is, Kovar and 42A l joy are made only of ferromagnetic metals such as iron (Fe), nickel (Ni), and cobalt (CO), and their magnetic permeability is 250 to 700 (C
GS) and high. Therefore, this Kovar and 42Alloy
When a current flows through an external lead terminal, a large self-inductance proportional to the magnetic permeability is generated in the external lead terminal, which induces a back electromotive force and becomes noise, and the noise is input to the semiconductor element. ■The conductivity of Kovar and 42A11oy is 3.0 to 3.
.. As low as 5z (IACS). Therefore, this Kobar and 4
If a signal is propagated from a 2A 1 1oy etc. to an external lead terminal, the signal propagation speed will be extremely slow, making it impossible to accommodate semiconductor devices that drive at high speed. ■For semiconductor device storage With the progress of higher density and higher integration of semiconductor elements housed inside buff cages, the number of electrodes on semiconductor elements has increased significantly, and the number of external lead terminals that connect each electrode of semiconductor elements to an external electric circuit has increased significantly. The line width has also become extremely thin. Therefore, the electrical resistance of the external lead terminal has become extremely large due to the low conductivity of Kovar and 42Aloy described in (2) above, and when a signal is propagated to the external lead terminal, the external lead terminal The signal is greatly attenuated due to the electrical resistance of the device, making it impossible to accurately input the signal to the semiconductor device housed inside the device, resulting in malfunction of the semiconductor device.

(発明の目的) 本発明は上記欠点に鑑み案出されたもので、その目的は
外部リード端子で発生するノイズ及び外部リード端子に
おける信号の減衰を極小となし、内部に収容する半導体
素子への信号の入出力を確実に行うことを可能として半
導体素子を長期間にわたり正常、且つ安定に作動させる
ことができる半導体素子収納用パッケージを提供するこ
とにある。
(Object of the Invention) The present invention was devised in view of the above drawbacks, and its purpose is to minimize the noise generated at the external lead terminal and the attenuation of the signal at the external lead terminal, and to minimize the noise generated at the external lead terminal and the attenuation of the signal at the external lead terminal. It is an object of the present invention to provide a package for storing a semiconductor element, which enables reliable input and output of signals and allows the semiconductor element to operate normally and stably for a long period of time.

また本発明の他の目的は高速駆動を行う半導体素子を収
容することができる半導体素子収納用ノくッケージを提
供することにある. (課題を解決するための手段) 本発明は内部に半導体素子を収容するための空所を有す
るia容器に外部リード端子をガラス部材を介して取着
して戒る半導体素子収納用パ・ノケージにおいて、前記
絶縁容器をスビネルもしくはステアタイト質焼結体で、
外部リード端子を透磁率200 (CGS)以下、熱膨
張係数70乃至85X10−’ /”C、導電率50%
( IACS )以上の金属で、ガラス部材をシリカ5
5.0乃至75.OWt% ,ナトリウム、カリウムの
酸化物の少なくとも1種10.0乃至20.O WtX
、酸化鉛20.0乃至40.0Wt%から或るガラスで
形成したことを特徴とするものである。
Another object of the present invention is to provide a semiconductor device storage package capable of accommodating semiconductor devices that operate at high speed. (Means for Solving the Problems) The present invention provides a package for storing semiconductor elements in which external lead terminals are attached via a glass member to an IA container having a cavity for accommodating semiconductor elements therein. , the insulating container is made of Subinel or steatite sintered body,
The external lead terminal has a magnetic permeability of 200 (CGS) or less, a thermal expansion coefficient of 70 to 85X10-'/''C, and an electrical conductivity of 50%.
(IACS) or higher metal, and the glass member is made of silica 5
5.0 to 75. OWt%, at least one of sodium and potassium oxides 10.0 to 20. O WtX
It is characterized in that it is made of a certain glass containing 20.0 to 40.0 wt% of lead oxide.

(実施例) 次に本発明を添付図面に基づき詳細に説明する。(Example) Next, the present invention will be explained in detail based on the accompanying drawings.

第1図及び第2図は本発明の半導体素子収納用パッケー
ジの一実施例を示し、lは絶縁基体、2は蓋体である。
FIGS. 1 and 2 show an embodiment of the semiconductor element storage package of the present invention, where 1 is an insulating base and 2 is a lid.

この絶縁基体1と蓋体2とにより絶縁容器3が構成され
る。
The insulating base 1 and the lid 2 constitute an insulating container 3.

前記絶縁基体1及び蓋体2はそれぞれの中央部に半導体
素子を収容する空所を形或するための凹部が設けてあり
、絶縁基体lの凹部底面には半導体素子4が樹脂、ガラ
ス、ロウ剤等の接着剤を介し取着固定される。
The insulating base 1 and the lid 2 are each provided with a recess in the center to form a cavity for accommodating the semiconductor element, and the semiconductor element 4 is placed on the bottom of the recess of the insulating base 1 with resin, glass, or wax. It is attached and fixed using an adhesive such as an adhesive.

前記絶縁基体l及び蓋体2はスピネルもしくはステアタ
イト質焼結体から戒り、第1図に示すような絶縁基体I
及び蓋体2に対応した形状を有するプレス型内に、スビ
ネルの場合はマグネシア (MgO)、アルミナ(八1
203 )の原料粉末を、ステアタイト質焼結体の場合
はマグネシア(MgO) 、シリカ(SiOz)等の原
料粉末を充填させるとともに一定圧力を印加して戒形し
、しかる後、戒形品を約l200〜1700℃の温度で
焼戒することによって製作される。
The insulating base I and the lid 2 are made of spinel or steatite sintered body, and are made of an insulating base I as shown in FIG.
In the case of Subinel, magnesia (MgO) and alumina (81
In the case of a steatite sintered body, the raw material powder of 203) is filled with raw material powder such as magnesia (MgO) or silica (SiOz) and shaped by applying a constant pressure, and then the shaped product is shaped. It is produced by burning at a temperature of approximately 200 to 1,700 degrees Celsius.

尚、前記絶縁基体l及び蓋体2を形成するスピネル、ス
テアタイト質焼結体はその熱膨張係数が70乃至85X
10−’/ ’Cであり、後述する封止用ガラス部材の
熱膨張係数との関係において絶縁基体l及び蓋体2と封
止用ガラス部材間に大きな熱膨張の差が生じることはな
い。
The spinel and steatite sintered bodies forming the insulating base 1 and the lid 2 have a thermal expansion coefficient of 70 to 85X.
10-'/'C, and there is no large difference in thermal expansion between the insulating base 1 and the lid 2 and the sealing glass member in relation to the coefficient of thermal expansion of the sealing glass member, which will be described later.

また前記絶縁基体1及び蓋体2にはその相対向する主面
に封止用のガラス部材6が予め被着形成されており、該
絶縁基体l及び蓋体2の各々に被着されている封止用ガ
ラス部材6を加熱溶融させ一体化させることにより絶縁
容器3内の半導体素子4を気密に封止する。
Further, a sealing glass member 6 is formed in advance on the opposing main surfaces of the insulating base 1 and the lid 2, and is adhered to each of the insulating base 1 and the lid 2. The semiconductor element 4 inside the insulating container 3 is hermetically sealed by heating and melting the sealing glass member 6 to integrate it.

前記絶縁基体1及び蓋体2の相対向する主面に被着され
る封止用ガラス部材6は、シリカ55.0乃至75.0
Wt% ,ナトリウム、カリウムの酸化物の少なくとも
1種10.0乃至20.0Wt%,酸化鉛20.0乃至
40.OWtχより形成されるガラスから戒り、上記各
威分を所定の値となるように秤量混合すると共に、該混
合粉末を1300〜1400℃の温度で加熱溶融させる
ことによって製作される.このガラス部材6の熱膨張.
係数は85〜95X10−’/ tである.前記封止用
ガラス部材6は、その熱膨張係数が85乃至95X10
−’/ ℃であり、絶縁基体1及び蓋体?の各々の熱膨
張係数と近似することから絶縁基体l及び蓋体2の各々
に被着されている封止用ガラス部材6を加熱溶融串せ一
体化させることにより絶縁容器3内の半導体素子4を気
密に封止する際、絶縁基体1及び蓋体2と封止用ガラス
部材6との間には両者の熱膨張係数の相違に起因する熱
応力が発生することは殆どなく、絶縁基体1と蓋体2と
を封止用ガラス部材6を介し強固に接合することが可能
となる。
The sealing glass member 6 attached to the opposing main surfaces of the insulating base 1 and the lid 2 is made of silica 55.0 to 75.0.
Wt%, at least one of sodium and potassium oxides 10.0 to 20.0 Wt%, lead oxide 20.0 to 40. It is produced by weighing and mixing the above-mentioned components to a predetermined value, and heating and melting the mixed powder at a temperature of 1300 to 1400°C. Thermal expansion of this glass member 6.
The coefficient is 85~95X10-'/t. The sealing glass member 6 has a thermal expansion coefficient of 85 to 95X10.
-'/℃, insulating base 1 and lid? Since the coefficient of thermal expansion is similar to that of each of When airtightly sealing the insulating base 1 and lid 2, there is almost no thermal stress generated between the insulating base 1 and the lid 2 and the sealing glass member 6 due to the difference in coefficient of thermal expansion between the two. It becomes possible to firmly join the lid body 2 to the lid body 2 through the sealing glass member 6.

尚、前記封止用ガラス部材6はシリヵ(Si(h)が5
5.OWtχ未満であるとガラスの結晶化が進んで絶縁
容器3の気密封止が困難となり、また75.0Wt%を
越えるとガラスの熱膨張が小さくなって絶縁基体1と蓋
体2の熱膨張と合わなくなることからシリカ(SiO■
)は60.0乃至〜70.0Wt% (7)範囲に限定
される。
The sealing glass member 6 is made of silica (Si(h) is 5
5. If it is less than OWtχ, the crystallization of the glass will progress and it will be difficult to hermetically seal the insulating container 3, and if it exceeds 75.0 Wt%, the thermal expansion of the glass will be small and the thermal expansion of the insulating base 1 and the lid 2 will be reduced. Silica (SiO■
) is limited to a range of 60.0 to 70.0 Wt% (7).

またナトリウム、カリウムの酸化物がio.owtχ未
満であるとガラスを製作する際のガラスの溶融温度が大
幅に上がって作業性が著しく悪くなり、また20.OW
t!を越えるとガラスの耐薬品性が劣化して絶縁容器3
の気密封止の信頼性が大きく低下するためナトリウム、
カリウムの酸化物は10.0乃至20.OWtχの範囲
に限定される.また酸化鉛(PbO)が20.O Wt
χ未満であるとガラスの熱膨張が小さくなって絶縁基体
lと蓋体2の熱膨張と合わなくなり、また40.0Wt
%を越えるとガラスの耐薬品性が劣化して絶縁容器3の
気密封止の信頼性が大きく低下するため酸化鉛(PbO
)は20.0乃至40.0Wt%の範囲に限定される。
Also, sodium and potassium oxides are io. If it is less than owtχ, the melting temperature of the glass during glass production will rise significantly, resulting in significantly poor workability. OW
T! If the chemical resistance of the glass is exceeded, the chemical resistance of the glass will deteriorate and the insulation container 3
Sodium, as the reliability of hermetic sealing is greatly reduced.
Potassium oxide is 10.0 to 20. limited to the range of OWtχ. Also, lead oxide (PbO) is 20. O Wt
If it is less than χ, the thermal expansion of the glass becomes small and does not match the thermal expansion of the insulating base 1 and the lid 2, and 40.0 Wt.
%, the chemical resistance of the glass deteriorates and the reliability of hermetic sealing of the insulating container 3 is greatly reduced.
) is limited to a range of 20.0 to 40.0 Wt%.

前記封止用ガラス部材6は前述した成分から成るガラス
に適当な有機溶剤、溶媒を添加して得たガラスペースト
を従来周知の厚膜手法を採用することによって絶縁基体
l及び蓋体2の相対向する主面に被着形或される。
The sealing glass member 6 is made by applying a conventionally well-known thick film method to a glass paste obtained by adding a suitable organic solvent or solvent to the glass made of the above-mentioned components. The main surface facing the substrate is coated.

前記絶縁基体lと蓋体2との間には導電性材料から戒る
外部リード端子5が配されており、該外部リード端子5
は半導体素子4の各電極がワイヤ7を介し電気的に接続
され、外部リード端子5を外部電気回路に接続すること
によって半導体素子4が外部電気回路に接続されること
となる。
An external lead terminal 5 made of conductive material is disposed between the insulating base l and the lid 2.
Each electrode of the semiconductor element 4 is electrically connected via the wire 7, and the semiconductor element 4 is connected to the external electric circuit by connecting the external lead terminal 5 to the external electric circuit.

前記外部リード端子5は絶縁基体1と蓋体2の相対向す
る主面に被着させた封止用ガラス部材6を溶融一体化さ
せ、絶縁容器3を気密封止する際に同時に絶縁基体1と
蓋体2との間に取着される。
The external lead terminal 5 is formed by melting and integrating the sealing glass member 6 attached to the opposing main surfaces of the insulating base 1 and the lid 2, and simultaneously sealing the insulating base 1 when the insulating container 3 is hermetically sealed. and the lid body 2.

前記外部リード端子5は非磁性体金属である銅(Cu)
から成る芯体の外表面に銅(Cu) /コバール(Pe
−Ni−Co合金)/銅(Cu)の接合金属を被着させ
たもの、或いは板状のコバール(Pe−Ni−Co合金
〉もしくはインハー合金(36.5 WtX Ni−6
3.5 WtXFe合金)の上下面に非磁性体金属であ
るm(Cu)を接合させたもの等から戒り、その透磁率
は200 (CGS)以下、導電率は50χ(IACS
)以上、熱膨張係数は70〜85X10−’/ ’Cの
導電性材料から成る.前記外部リード端子5はその透磁
率が200 (CGS)以下であり、透磁率が低いこと
から外部リード端子5に電流が流れたとしても外部リー
ド端子5中には大きな自己インダクタンスが発生するこ
とはなく、その結果、前記自己インダクタンスにより誘
発される逆起電力に起因したノイズを極小となし、内部
に収容する半導体素子4を常に正常に作動させることが
できる。
The external lead terminal 5 is made of copper (Cu), which is a non-magnetic metal.
The outer surface of the core consists of copper (Cu)/Kovar (Pe).
-Ni-Co alloy) / copper (Cu) bonding metal coated, or plate-shaped Kovar (Pe-Ni-Co alloy) or Inhar alloy (36.5 WtX Ni-6
3.5 Wt
), it is made of a conductive material with a thermal expansion coefficient of 70 to 85X10-'/'C. The external lead terminal 5 has a magnetic permeability of 200 (CGS) or less, and since the magnetic permeability is low, even if a current flows through the external lead terminal 5, a large self-inductance will not occur in the external lead terminal 5. As a result, the noise caused by the back electromotive force induced by the self-inductance can be minimized, and the semiconductor element 4 housed inside can always operate normally.

また前記外部リード端子5はその導電率が502 (I
ACS)以上であり、電気を流し易いことから外部リー
ド端子5の信号伝搬速度を極めて速いものとなすことが
でき、絶縁容器3内に収容した半導体素子4を高速駆動
させたとしても半導体素子4と外部電気回路との間にお
ける信号の出し入れは常に安定、且つ確実となすことが
できる。
Further, the external lead terminal 5 has a conductivity of 502 (I
ACS), and since electricity can easily flow through the external lead terminal 5, the signal propagation speed of the external lead terminal 5 can be made extremely high, and even if the semiconductor element 4 housed in the insulating container 3 is driven at high speed, the semiconductor element 4 The input/output of signals between the external electric circuit and the external electric circuit can always be performed stably and reliably.

また同時に外部リード端子5の導電率が高いことから外
部リード端子5の線幅が細くなったとしても外部リード
端子5の電気抵抗を低く抑えることができ、その結果、
外部リード端子5における信号の減衰を極小として内部
に収容する半導体素子4に外部電気回路から供給される
電気信号を正確に入力することができる。
At the same time, since the conductivity of the external lead terminal 5 is high, even if the line width of the external lead terminal 5 becomes thin, the electrical resistance of the external lead terminal 5 can be kept low, and as a result,
By minimizing the attenuation of the signal at the external lead terminal 5, it is possible to accurately input the electrical signal supplied from the external electrical circuit to the semiconductor element 4 housed inside.

また更に前記外部リード端子5はその熱膨張係数が70
乃至85×10−’/ ℃であり、封止用ガラス部材6
の熱膨張係数と近似することから外部リード端子5を絶
縁基体1と蓋体2の間に封止用ガラス部材6を用いて固
定する際、外部リード端子5と封止用ガラス部材6との
間には両者の熱膨張係数の相違に起因する熱応力が発生
することはなく、外部リード端子5を封止用ガラス部材
6で強固に固定することも可能となる。
Furthermore, the external lead terminal 5 has a coefficient of thermal expansion of 70.
to 85×10-'/°C, and the sealing glass member 6
When the external lead terminal 5 is fixed between the insulating base 1 and the lid 2 using the sealing glass member 6, the thermal expansion coefficient of the external lead terminal 5 and the sealing glass member 6 is approximated by Thermal stress due to the difference in coefficient of thermal expansion between the two does not occur, and the external lead terminal 5 can be firmly fixed with the sealing glass member 6.

かくして、この半導体素子収納用パッケージによれば絶
縁基体1の凹部底面に半導体素子4を取着固定するとと
もに該半導体素子4の各電極をボンディングワイヤ7に
より外部リード端子5に接続させ、しかる後、絶縁基体
1と蓋体2とを該絶縁基体1及び蓋体2の相対向する主
面に予め被着させておいた封止用ガラス部材6を溶融一
体化させることによって接合させ、これによって最終製
品としての半導体装置が完成する。
Thus, according to this semiconductor element storage package, the semiconductor element 4 is attached and fixed to the bottom surface of the recess of the insulating substrate 1, and each electrode of the semiconductor element 4 is connected to the external lead terminal 5 by the bonding wire 7, and then, The insulating base 1 and the lid 2 are joined together by melting and integrating the sealing glass member 6 that has been previously applied to the opposing main surfaces of the insulating base 1 and the lid 2, and thereby the final The semiconductor device as a product is completed.

(発明の効果) 本発明の半導体素子収納用パッケージによれば、半導体
素子を収容するための絶縁容器をスピネルもしくはステ
アタイト質焼結体で、外部リード端子を透磁率が200
 (CGS)以下、導電率が5oz(IACS)以上、
熱膨張係数が70乃至85X10−’/ ℃の金属で、
ガラス部材をシリカ55.0乃至75.0Wt% 、ナ
トリウム、カリウムの酸化物の少なくとも1種10.0
乃至20.OWtχ、酸化鉛20.0乃至4o.owt
z カラ或るガラスで形成したことから外部リード端子
に電流を流したとしても該外部リード端子中に大きな自
己インダクタンスが発生することはなく、その結果、前
記自己インダクタンスにより誘発される逆起電力に起因
したノイズを極小となし、内部に収容する半導体素子を
常に正常に作動させることが可能となる。
(Effects of the Invention) According to the semiconductor device storage package of the present invention, the insulating container for accommodating the semiconductor device is made of spinel or steatite sintered body, and the external lead terminal has a magnetic permeability of 200.
(CGS) or less, conductivity is 5oz or more (IACS),
A metal with a thermal expansion coefficient of 70 to 85 x 10-'/°C,
The glass member contains 55.0 to 75.0 wt% of silica and 10.0% of at least one of sodium and potassium oxides.
to 20. OWtχ, lead oxide 20.0 to 4o. owt
Since it is made of a certain glass, even if a current is passed through the external lead terminal, a large self-inductance will not be generated in the external lead terminal, and as a result, the back electromotive force induced by the self-inductance will be reduced. It is possible to minimize the resulting noise and to always operate the semiconductor element housed inside normally.

また外部リード端子の信号伝搬速度を極めて速いものと
なす・ことができ、絶縁容器内に収容した半導体素子を
高速駆動させたとしても半導体素子と外部電気回路との
間における信号の出し入れを安定、且つ確実となすこと
が可能となる。
In addition, the signal propagation speed of the external lead terminal can be made extremely high, and even if the semiconductor device housed in the insulating container is driven at high speed, the signal can be stably transferred between the semiconductor device and the external electric circuit. Moreover, it becomes possible to do so reliably and reliably.

更に外部リード端子の線幅が細くなったとしても外部リ
ード端子の電気抵抗を低く抑えることができ、その結果
、外部リード端子における信号の減衰を極小として内部
に収容する半導体素子に外部電気回路から供給される電
気信号を正確に入力することができる。
Furthermore, even if the line width of the external lead terminal becomes thinner, the electrical resistance of the external lead terminal can be kept low, and as a result, the attenuation of the signal at the external lead terminal is minimized, and the external electrical circuit is connected to the semiconductor element housed inside. The supplied electrical signal can be input accurately.

また更に前記外部リード端子はその熱膨張係数が絶縁基
体、蓋体及び封止用ガラス部材の各々の熱膨張係数と近
似し、絶縁基体と蓋体との間に外部リード端子を挟み、
各々を封止用ガラス部材で取着接合したとしても絶縁基
体及び蓋体と封止用ガラス部材との間、外部リード端子
と封止用ガラス部材との間のいずれにも熱膨張係数の相
違に起因する熱応力は発生せず、すべてを強固に取着接
合することも可能となる。
Furthermore, the external lead terminal has a coefficient of thermal expansion that approximates each of the coefficients of thermal expansion of the insulating base, the lid, and the sealing glass member, and the external lead terminal is sandwiched between the insulating base and the lid,
Even if each is attached and bonded with a glass sealing member, there are differences in the coefficient of thermal expansion between the insulating base and lid and the glass sealing member, and between the external lead terminal and the glass sealing member. There is no thermal stress caused by this, and it is possible to firmly attach and join everything.

【図面の簡単な説明】 第1図は本発明の半導体素子収納用パッケージの一実施
例を示す断面図、第2図は第1図に示すパッケージの絶
縁基体上面より見た平面図である。 1 ・・絶縁基体  2・・蓋体 3 ・・絶縁容器 5 ・・外部リード端子 6 ・・封止用ガラス部材
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing an embodiment of a semiconductor element storage package of the present invention, and FIG. 2 is a plan view of the package shown in FIG. 1 as viewed from the top surface of an insulating base. 1...Insulating base 2...Lid 3...Insulating container 5...External lead terminal 6...Glass member for sealing

Claims (1)

【特許請求の範囲】[Claims]  内部に半導体素子を収容するための空所を有する絶縁
容器に外部リード端子をガラス部材を介して取着して成
る半導体素子収納用パッケージにおいて、前記絶縁容器
をスピネルもしくはステアタイト質焼結体で、外部リー
ド端子を透磁率200(CGS)以下、熱膨張係数70
乃至85×10^−^7/℃、導電率50%(IACS
)以上の金属で、ガラス部材をシリカ55.0乃至75
.0Wt%、ナトリウム、カリウムの酸化物の少なくと
も1種10.0乃至20.0Wt%、酸化鉛20.0乃
至40.0Wt%から成るガラスで形成したことを特徴
とする半導体素子収納用パッケージ。
In a semiconductor device storage package in which an external lead terminal is attached via a glass member to an insulating container having a cavity for accommodating a semiconductor device inside, the insulating container is made of spinel or steatite sintered body. , the external lead terminal has a magnetic permeability of 200 (CGS) or less and a thermal expansion coefficient of 70.
~85×10^-^7/℃, conductivity 50% (IACS
) or above, and the glass member is made of silica 55.0 to 75.
.. 1. A package for housing a semiconductor element, characterized in that it is formed of glass comprising 0 Wt%, 10.0 to 20.0 Wt% of at least one of the oxides of sodium and potassium, and 20.0 to 40.0 Wt% of lead oxide.
JP1308609A 1989-08-25 1989-11-27 Package for storing semiconductor elements Expired - Lifetime JP2747613B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1308609A JP2747613B2 (en) 1989-11-27 1989-11-27 Package for storing semiconductor elements
US07/573,406 US5057905A (en) 1989-08-25 1990-08-24 Container package for semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1308609A JP2747613B2 (en) 1989-11-27 1989-11-27 Package for storing semiconductor elements

Publications (2)

Publication Number Publication Date
JPH03167847A true JPH03167847A (en) 1991-07-19
JP2747613B2 JP2747613B2 (en) 1998-05-06

Family

ID=17983104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1308609A Expired - Lifetime JP2747613B2 (en) 1989-08-25 1989-11-27 Package for storing semiconductor elements

Country Status (1)

Country Link
JP (1) JP2747613B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711847A (en) * 1978-02-06 1982-01-21 Ibm Nonporous glass-ceramic body
JPS6265954A (en) * 1985-09-18 1987-03-25 Nippon Electric Glass Co Ltd Borosilicate glass for sealing alumina
JPS63291834A (en) * 1987-04-27 1988-11-29 コーニング グラス ワークス Glass ceramics for electronic packing, thermally crystalline glass and substrate therefrom

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711847A (en) * 1978-02-06 1982-01-21 Ibm Nonporous glass-ceramic body
JPS6265954A (en) * 1985-09-18 1987-03-25 Nippon Electric Glass Co Ltd Borosilicate glass for sealing alumina
JPS63291834A (en) * 1987-04-27 1988-11-29 コーニング グラス ワークス Glass ceramics for electronic packing, thermally crystalline glass and substrate therefrom

Also Published As

Publication number Publication date
JP2747613B2 (en) 1998-05-06

Similar Documents

Publication Publication Date Title
JPH03167847A (en) Package for semiconductor-element
JP2742617B2 (en) Package for storing semiconductor elements
JP2742616B2 (en) Package for storing semiconductor elements
JP2678509B2 (en) Package for storing semiconductor elements
JP2742618B2 (en) Package for storing semiconductor elements
JP2736455B2 (en) Package for storing semiconductor elements
JP2742613B2 (en) Package for storing semiconductor elements
JPH03218660A (en) Semiconductor element housing package
JP2691310B2 (en) Package for storing semiconductor elements
JP2736463B2 (en) Package for storing semiconductor elements
JP2691304B2 (en) Package for storing semiconductor elements
JP2742612B2 (en) Package for storing semiconductor elements
JP2736462B2 (en) Package for storing semiconductor elements
JP2742614B2 (en) Package for storing semiconductor elements
JP2691308B2 (en) Package for storing semiconductor elements
JP2736461B2 (en) Package for storing semiconductor elements
JP2691309B2 (en) Package for storing semiconductor elements
JP2742611B2 (en) Package for storing semiconductor elements
JP2736454B2 (en) Package for storing semiconductor elements
JP2736453B2 (en) Package for storing semiconductor elements
JPH03173156A (en) Package for housing semiconductor element
JPH03167845A (en) Package for semiconductor-element
JPH03167846A (en) Package for semiconductor-element
JPH03173164A (en) Package for housing semiconductor element
JPH03167850A (en) Package for semiconductor-element