JPH03134028A - Fiber-reinforced resin laminate - Google Patents

Fiber-reinforced resin laminate

Info

Publication number
JPH03134028A
JPH03134028A JP27331889A JP27331889A JPH03134028A JP H03134028 A JPH03134028 A JP H03134028A JP 27331889 A JP27331889 A JP 27331889A JP 27331889 A JP27331889 A JP 27331889A JP H03134028 A JPH03134028 A JP H03134028A
Authority
JP
Japan
Prior art keywords
meth
resin
acrylate
resin composition
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27331889A
Other languages
Japanese (ja)
Other versions
JPH0559126B2 (en
Inventor
Akio Kuno
久野 昭夫
Hiroyuki Kanezaki
金崎 裕之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP27331889A priority Critical patent/JPH03134028A/en
Publication of JPH03134028A publication Critical patent/JPH03134028A/en
Publication of JPH0559126B2 publication Critical patent/JPH0559126B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title laminate excellent in heat resistance, corrosion resistance and organic solvent resistance by impregnating a fibrous reinforcement with a resin composition comprising a specified polyfunctional (meth) acrylic ester and a novolac epoxy (meth) acrylate resin in a specified amount and curing the resin composition. CONSTITUTION:A fibrous reinforcement (e.g. glass surface mat) is impregnated with a resin composition comprising 100 pts. wt. polyfunctional (meth) acrylic ester (mixture) of the formula (wherein R<1> is H or CH3; R<2> is a 2-20 C bito hexa-hydric polyalcohol residue; m is 2-6; l is 4-0; and l+m=2-6), e.g. ethylene glycol dimethacrylate, 5-120 pts. wt. novolac epoxy (meth) acrylate resin (e.g. cresol novolac epoxy methacrylate) and optionally at most 50 pts. wt. monomer (mixture) having at least one copolymerizable double bond in the molecule (e.g. styrene), and the resin composition is cured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は耐熱性、耐食性の改善されたポリ (メタ)ア
クリレート系繊維強化樹脂積層体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a poly(meth)acrylate fiber reinforced resin laminate with improved heat resistance and corrosion resistance.

(従来技術と発明が解決しようとする課題)従来、ビニ
ルエステル樹脂は、優れた機械的特性、電気的特性、耐
熱性及び高接着性と良好な成形加工作業性を兼ね備え、
更に耐薬品性特に耐酸化性に優れているので、化学装置
材料特にガラス繊維等の繊維で強化された耐食繊維強化
プラスチック(耐食FRP)のマトリックス(母材)と
して広く利用され、例えば化学工場における薬液貯槽、
塔槽類、公害防止機器或いは配管等の材料にもかなり使
われている。
(Prior art and problems to be solved by the invention) Conventionally, vinyl ester resins have excellent mechanical properties, electrical properties, heat resistance, high adhesiveness, and good molding workability.
Furthermore, it has excellent chemical resistance, especially oxidation resistance, so it is widely used as a matrix (base material) for chemical equipment materials, especially corrosion-resistant fiber reinforced plastics (corrosion-resistant FRP) reinforced with fibers such as glass fiber. chemical storage tank,
It is also widely used as a material for towers and tanks, pollution prevention equipment, piping, etc.

しかしながらFI’2Pの用途拡大により、更に高度の
耐熱性、耐食性或いは耐有機溶剤性を備え、しかも室温
作業性を兼ね備えた樹脂が要求されるようになった。
However, as the uses of FI'2P have expanded, there has been a demand for resins that have even higher heat resistance, corrosion resistance, or organic solvent resistance, and are also operable at room temperature.

(課題を解決するための手段と作用) 本発明者らは上記の点に鑑み、ビニルエステル樹脂の優
れた緒特性、特に低温作業性を何ら損うことなく高度の
耐熱耐食性を有する樹脂を得る目的で鋭意検討した。そ
の結果多官能(メタ)アクリル酸エステルを特定量ノボ
ラック型エポキシ(メタ)アクリレート樹脂に配合した
樹脂組成物を繊維状強化材に含浸硬化させたものが上記
目的を充分達成し得ることを見出し、本発明を完成させ
るに至った。
(Means and Effects for Solving the Problems) In view of the above points, the present inventors have obtained a resin having a high degree of heat and corrosion resistance without impairing the excellent properties of vinyl ester resin, especially low-temperature workability. We carefully considered the purpose. As a result, we discovered that a resin composition in which a specific amount of polyfunctional (meth)acrylic acid ester was blended with a novolac type epoxy (meth)acrylate resin was impregnated into a fibrous reinforcing material and cured, which could sufficiently achieve the above objectives. The present invention has now been completed.

本発明は本出願人の出願に係わる高耐熱性ビニルエステ
ル樹脂組成物(特願昭63−95332)について耐熱
性を更に追求して得られたものであって、本発明のポリ
 (メタ)アクリレート系繊維強化樹脂積層体は250
℃以上の高い熱変形温度を有し、かつ従来の樹脂積層体
では使用不可能とされていた有機溶剤に対しても、高密
度に架橋した三次元構造を有するため優れた耐久性を有
するばかりでなく、その樹脂組成物は室温付近での良好
な作業性を兼ね備えたものである。
The present invention was obtained by further pursuing the heat resistance of the highly heat-resistant vinyl ester resin composition (Japanese Patent Application No. 63-95332) related to the application filed by the present applicant. The fiber reinforced resin laminate is 250
It has a high heat deformation temperature of ℃ or more and has excellent durability against organic solvents that are considered impossible to use with conventional resin laminates due to its densely crosslinked three-dimensional structure. Moreover, the resin composition has good workability at around room temperature.

従来、多官能(メタ)アクリル酸エステルを樹脂に少量
添加することによって耐食性や耐熱性を成る程度改善し
得ることは公知であった(例えば特開昭48−2504
6.特開昭51 76381、特開昭60−115608.特開昭62−
41210号公報参照)。
Conventionally, it has been known that corrosion resistance and heat resistance can be improved to a certain extent by adding a small amount of polyfunctional (meth)acrylic acid ester to resin (for example, Japanese Patent Laid-Open No. 48-2504).
6. JP-A-51-76381, JP-A-60-115608. Unexamined Japanese Patent Publication 1986-
(See Publication No. 41210).

しかしながら、多官能(メタ)アクリル酸エステルは一
般に高価であり、従来の樹脂とは異臭のため取扱いに慣
れる必要があること、低分子量であるため多量に添加す
ると粘度が著しく低下して作業性が悪化すること等のた
め多量に添加することは未だ試みられたことがながった
。また特に、多官能(メタ)アクリル酸ゴスチルの多量
添加によって、高溶解性のアセトンや含ハロゲン化炭化
水素系のジクロロメタン、クロロホルム、トリクロロエ
チレン等の有機溶剤に充分耐え得る樹脂が得られること
は従来予測できなかった顕著な効果であり、本発明にお
いて初めて明らかにされた成果である。
However, polyfunctional (meth)acrylic acid esters are generally expensive, have a different odor than conventional resins, so you need to get used to handling them, and because they have a low molecular weight, when added in large amounts, the viscosity decreases significantly and workability is reduced. No attempt has been made to add large amounts because of the risk of deterioration. In particular, it has been previously predicted that by adding a large amount of polyfunctional Gostyl (meth)acrylate, a resin that can withstand highly soluble acetone and halogenated hydrocarbon-based organic solvents such as dichloromethane, chloroform, and trichloroethylene can be obtained. This is a remarkable effect that could not be achieved previously, and is an achievement that has been revealed for the first time in the present invention.

すなわち、本発明は、 a)−形成(1)で表わされる多官能(メタ)アクリル
酸エステル又はこれらの混合物100重量部 (但し式中R′は水素原子又はメチル基を、R2は炭素
数2〜20で2〜6価の多価アルコール残基を表わす。
That is, the present invention provides 100 parts by weight of a polyfunctional (meth)acrylic acid ester or a mixture thereof represented by a)-formation (1) (wherein R' is a hydrogen atom or a methyl group, and R2 is a carbon number of 2 ~20 represents a di- to hexa-valent polyhydric alcohol residue.

また、mは2〜6の整数を、2は4〜0の整数を表わし
、z+m=2〜6である。)b)ノボラック型エポキシ
(メタ)アクリレート樹脂           5〜
120重量部C重量部内に1個以上の共重合可能な二重
結合を有する単量体又はこれらの混合物(但し前記a)
に属するものを除く。)   0〜50重量部上記a)
、b)及びC)を含有する樹脂組成物を繊維状強化材に
含有硬化させたことを特+aとする耐熱耐食性ポリ (
メタ)アクリレート系繊維強化樹脂積層体である。
Moreover, m represents an integer of 2 to 6, 2 represents an integer of 4 to 0, and z+m=2 to 6. ) b) Novolak type epoxy (meth)acrylate resin 5~
120 parts by weight C Monomers having one or more copolymerizable double bonds in the parts by weight (however, a) above)
Excluding those belonging to. ) 0 to 50 parts by weight a) above
, b) and C) is contained in a fibrous reinforcing material and cured.
This is a meth)acrylate fiber reinforced resin laminate.

本発明に用いる多官、能メタクリル酸若しくはアクリル
酸(以下(メタ)アクリル酸という。)エステルは前記
−形成(1)で表わされるものであって、(メタ)アク
リル酸と炭素数2〜20で2〜6価の多価アルコールと
のエステルであり、分子内にメタクリロイル基若しくは
アクリロイル基(以下(メタ)アクリロイル基という。
The polyfunctional methacrylic acid or acrylic acid (hereinafter referred to as (meth)acrylic acid) ester used in the present invention is represented by the above-mentioned -formation (1), and is composed of (meth)acrylic acid and carbon atoms of 2 to 20 carbon atoms. It is an ester with a di- to hexavalent polyhydric alcohol, and has a methacryloyl group or an acryloyl group (hereinafter referred to as a (meth)acryloyl group) in the molecule.

)を2〜6個有する飽和脂肪族系の多官能(メタ)アク
リル酸エステルである。その例として(以下メタクリレ
ート若しくはアクリレートを(メタ)アクリレートとい
う。)、エチレングリコールジ(メタ)アクリレート、
ジエチレングリコールジ(メタ)アクリレート、トリエ
チレングリコールジ(メタ)アクリレート、1,3−ブ
タンジオールジ(メタ)アクリレート、トリメチロール
プロパントリ (メタ)アクリレート ペンタエリスリ
トールトリ(メタ)アクリレート、ペンタエリスリトー
ルテトラ(メタ)アクリレート、ジペンタエリスリトー
ルジ(メタ)アクリレート ジベンタエリスリトールト
リ (メタ)アクリレート ジペンタエリスリトールテ
トラ(メタ)アクリレート、ジペンタエリスリトールペ
ンタ(メタ)アクリレート。
) is a saturated aliphatic polyfunctional (meth)acrylic ester having 2 to 6 esters. Examples include (hereinafter methacrylate or acrylate is referred to as (meth)acrylate), ethylene glycol di(meth)acrylate,
Diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, 1,3-butanediol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate Acrylate, dipentaerythritol di(meth)acrylate Diventaerythritol tri(meth)acrylate Dipentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate.

ジペンタエリスリトールヘキサ(メタ)アクリレート等
が挙げられ、これらは単独又は2種以上を混合して用い
る。
Examples include dipentaerythritol hexa(meth)acrylate, which may be used alone or in combination of two or more.

本発明に用いるノボラック型エポキシ(メタ)アクリレ
ート樹脂は分子内に2個以上のエポキシ基を有するノボ
ラック型エポキシ樹脂と(メタ)アクリル酸を従来公知
の方法で反応させて容易に製造することができるもので
ある。例えば、フェノール、ブロモフェノール又はクレ
ゾールのノボラック型エポキシ樹脂と等モル量の(メタ
)アクノル酸をトリエチルアミン等を触媒としてヒドロ
キノン等の重合禁止剤の存在下に反応させることにより
フェノールノボラック型エポキシ(メタ)アクリレート
樹脂、臭素化フェノールノポラ/り型エポキシ(メタ)
アクリレート樹脂或いはクレゾールノボラック型エポキ
シ(メタ)アクリレート樹脂が得られる。
The novolac type epoxy (meth)acrylate resin used in the present invention can be easily produced by reacting a novolac type epoxy resin having two or more epoxy groups in the molecule with (meth)acrylic acid by a conventionally known method. It is something. For example, by reacting an equimolar amount of (meth)acnolic acid with a novolak-type epoxy resin of phenol, bromophenol, or cresol in the presence of a polymerization inhibitor such as hydroquinone using triethylamine as a catalyst, phenol novolak-type epoxy (meth) Acrylate resin, brominated phenol nopora/re-type epoxy (meth)
An acrylate resin or a cresol novolac type epoxy (meth)acrylate resin is obtained.

上記のノボラック型エポキシ樹脂は一般に単一分子量の
化合物としてよりも数種の異なる分子量をもった化合物
の混合物として使用されているのが現状であり、本発明
においても分子量分布の程度により制限されるものでは
ない。
The above novolac type epoxy resin is generally used as a mixture of several compounds with different molecular weights rather than as a single molecular weight compound, and in the present invention, it is also limited by the degree of molecular weight distribution. It's not a thing.

本発明の樹脂積層体に用いる樹脂組成物は前記ノボラッ
ク型エポキシ(メタ)アクリレート樹脂を多官能(メタ
)アクリル酸エステルに添加混合することによって得ら
れる。
The resin composition used in the resin laminate of the present invention can be obtained by adding and mixing the novolac type epoxy (meth)acrylate resin to a polyfunctional (meth)acrylic acid ester.

ノボラック型エポキシ(メタ)アクリレート樹脂の含有
量は、多官能(メタ)アクリル酸エステル100重量部
に対して5〜120重量部である。
The content of the novolak type epoxy (meth)acrylate resin is 5 to 120 parts by weight based on 100 parts by weight of the polyfunctional (meth)acrylic acid ester.

5重量部未満では耐熱性、耐有機溶剤性の改善効果が充
分でなく、室温における粘度が1OQcP以下と低すぎ
て樹脂のハンドリングが困難となり、更に硬化後の樹脂
が脆(なるので好ましくない。
If it is less than 5 parts by weight, the effect of improving heat resistance and organic solvent resistance will not be sufficient, and the viscosity at room temperature will be too low at 1 OQcP or less, making handling of the resin difficult, and furthermore, the resin after curing will become brittle (unpreferable).

他方120重量部を超えると耐熱性及び耐有機溶剤性が
著しく低下する。
On the other hand, if it exceeds 120 parts by weight, heat resistance and organic solvent resistance will be significantly reduced.

本発明においてはノボラック型エポキシ樹脂の溶剤とし
て、或いはエポキシ(メタ)アクリレートの粘度調節剤
として、分子内に1個以上の共重合可能な二重結合を有
する雄量体(前記多官能(メタ)アクリル酸エステルに
属するものを除く。)を添加して樹脂組成物とすること
ができる。
In the present invention, a malemer having one or more copolymerizable double bonds in the molecule (the polyfunctional (meth) (excluding those belonging to acrylic esters) can be added to form a resin composition.

その例として、スチレン、ビニルトルエン、αメチルス
チレン、α−クロロスチレン、ジビニルベンゼン等のビ
ニル化合物、ジアリルエーテル。
Examples include vinyl compounds such as styrene, vinyltoluene, α-methylstyrene, α-chlorostyrene, divinylbenzene, and diallyl ether.

ジアリルフタレート等のアリルエーテル或いはアリルエ
ステル化合物、メチル(メタ)アクリレート、エチル(
メタ)アクリレート、ブチル(メタ)アクリレート等の
(メタ)アクリル酸エステル化合物等が挙げられ、これ
らは単独又は2種以上を混合して用いる。その添加量は
多官能(メタ)アクリル酸エステル100重量部に対し
てθ〜50重量部、好ましくは0〜40重量部である。
Allyl ether or allyl ester compounds such as diallyl phthalate, methyl (meth)acrylate, ethyl (
Examples include (meth)acrylic acid ester compounds such as meth)acrylate and butyl (meth)acrylate, which are used alone or in combination of two or more. The amount added is θ to 50 parts by weight, preferably 0 to 40 parts by weight, per 100 parts by weight of the polyfunctional (meth)acrylic acid ester.

50重量部を超えると耐熱性の改善効果が抑制されるの
で好ましくない。
If it exceeds 50 parts by weight, the effect of improving heat resistance will be suppressed, which is not preferable.

本発明に用いるノボラック型エポキシ(メタ)アクリレ
ートは従来耐熱性をイイするものの粘度が高くなり過ぎ
て作業性に劣るとされていたものであり、共重合性単量
体を添加することによってその粘度調整は可能であるが
、耐熱性の大幅低下が免れ得なかったものである。本発
明においては多官能(メタ)アクリル酸エステルを特定
■添加することにより高度の耐熱性耐食性或いは耐有機
溶剤性を付与することができるばかりでなく、樹脂組成
物の粘度を下げることにより、作業性の向上を図ること
が可能となったものである。
Although the novolac type epoxy (meth)acrylate used in the present invention has good heat resistance, it has been thought that the viscosity is too high and the workability is poor. Although adjustment is possible, a significant decrease in heat resistance cannot be avoided. In the present invention, by adding a specific polyfunctional (meth)acrylic ester, not only can high heat resistance, corrosion resistance or organic solvent resistance be imparted, but also workability can be achieved by lowering the viscosity of the resin composition. This made it possible to improve performance.

本発明の繊維強化樹脂積層体に用いる樹脂組成物にはビ
ニルエステル樹脂に従来一般に用いられているナフテン
酸銅等の貯蔵安定剤或いはワックス、シリコン等の添加
剤を添加して差支えない。
Storage stabilizers such as copper naphthenate, or additives such as wax and silicone, which are commonly used in vinyl ester resins, may be added to the resin composition used in the fiber-reinforced resin laminate of the present invention.

また使用に際しては硬化剤、充填剤、顔料、離型剤或い
は補強剤等必要に応じて配合することができる。
Further, during use, a curing agent, filler, pigment, mold release agent, reinforcing agent, etc. can be added as necessary.

本発明の樹脂積層体に用いる樹脂組成物は従来のビニル
エステル樹脂と同様の硬化系によって室温で容易に硬化
させることができる。即ち本発明に用いる樹脂組成物に
金属石けんを加え十分に撹拌して均一に分散させる。必
要の場合は硬化促進のためにアセト酢酸エステル及び/
又は有機アミン化合物を触媒量添加し十分撹拌混合して
分散させ、最後に有機過酸化物を添加し十分に撹拌して
均一に分散させ硬化させる。
The resin composition used in the resin laminate of the present invention can be easily cured at room temperature using the same curing system as conventional vinyl ester resins. That is, metal soap is added to the resin composition used in the present invention and thoroughly stirred to uniformly disperse it. If necessary, add acetoacetate and/or to accelerate curing.
Alternatively, a catalytic amount of an organic amine compound is added and sufficiently stirred and mixed to disperse it, and finally an organic peroxide is added and sufficiently stirred to be uniformly dispersed and cured.

硬化剤として用いられる有機過酸化物は室温にて通常使
用されているメチルエチルゲトンペルオキシド等のケト
ンペルオキシド、ベンゾイルペルオキシド等のジアシル
ペルオキシド或いはターンヤリ−ブチル過安息香酸等の
ペルオキシエステル等一般のビニルエステル樹脂に用い
られている硬化剤であればよく、特に制限されるもので
はない。
Organic peroxides used as curing agents include ketone peroxides such as methyl ethyl getone peroxide, diacyl peroxides such as benzoyl peroxide, or peroxy esters such as ternary butyl perbenzoic acid, which are commonly used at room temperature, and general vinyl ester resins. It is not particularly limited as long as it is a curing agent that is used for.

金属石けんは炭素数2〜18の有機酸コバルト塩が主に
用いられるが、中でもオクテン酸コバルト、ナフテン酸
コバルトが樹脂との相溶性の面から最も好ましく用いら
れる。
Cobalt salts of organic acids having 2 to 18 carbon atoms are mainly used in metal soaps, and cobalt octenoate and cobalt naphthenate are most preferably used from the viewpoint of compatibility with resins.

アセト酢酸エステルは炭素数1〜6の脂肪族若しくは脂
i式アルコールとアセ1−酢酸のエステルが用いられ、
通常はアセト酢酸エチルエステルが用いられる。
The acetoacetate is an ester of an aliphatic or aliphatic alcohol having 1 to 6 carbon atoms and ace1-acetic acid,
Usually acetoacetic acid ethyl ester is used.

有機アミン化合物はN、N−ジメチルアニリン。The organic amine compound is N,N-dimethylaniline.

NN−ジエチルアニリン、N、N−ジメチルトルイジン
、N、N−ジエチルトルイジン、  N、  N−ビス
(2−ヒドロキシエチル)アニリン2N、N−ビス(2
−ヒドロキシプロピル)トルイジン、1−メチル−2,
3,4−1リヒドロキノリン等の芳香族アミン類或いは
トリエチルアミン9トリブ千ルアミン、N−メチルモル
ホリン、Nメチルピペリジン、トリエチ[ノンジアミン
等の3級アルキルアミン類が用いられる。
NN-diethylaniline, N,N-dimethyltoluidine, N,N-diethyltoluidine, N,N-bis(2-hydroxyethyl)aniline 2N,N-bis(2
-hydroxypropyl)toluidine, 1-methyl-2,
Aromatic amines such as 3,4-1-lihydroquinoline or tertiary alkyl amines such as triethylamine, 9-tributhylamine, N-methylmorpholine, N-methylpiperidine, and triethy[nondiamine] are used.

また耐熱性の優れた低温硬化系としてアセト酢酸エステ
ルペルオキシド、有機コバルト塩及びアセト酢酸エステ
ルの組合せ(特公昭57−4、2084号参照)や精製
メチルエチルケトンペルオキシド、第3級アルキルペル
オキシエステル。
Also, as a low-temperature curing system with excellent heat resistance, a combination of acetoacetate peroxide, an organic cobalt salt, and acetoacetate (see Japanese Patent Publication No. 57-4, 2084), purified methyl ethyl ketone peroxide, and tertiary alkyl peroxy ester.

有機コバルト塩、アセト酢酸エステルの組合せ(特公昭
57−4285号参照)等が開示されておりこれらも用
いることができる。尚、従来ビニルエステル樹脂の低温
硬化後硬化をより完全にするためアフターキュアーが行
われているが、本発明の樹脂積層体に対しても80〜1
20℃の温度でアフターキュアーすることができる。
Combinations of organic cobalt salts and acetoacetic esters (see Japanese Patent Publication No. 57-4285) have been disclosed, and these can also be used. Although after-curing is conventionally performed to more completely cure vinyl ester resins after low-temperature curing, the resin laminate of the present invention is also cured at 80 to 1
It can be after-cured at a temperature of 20°C.

本発明の樹脂積層体には繊維状強化材として従来からF
RP用として一般に使用されているガラス、カーボン、
ボロン、アルミナ、炭化ケイ素等の無機系繊維やポリエ
ステル、ポリエチレン、ポリアミド等の有機繊維を夫々
単独又は併用することができる。またFRPの用途及び
成形方法に応じてストランド、チョツプドストランド、
チョップトスl−ランドマントサーフェスマット、ロー
ビング、ロービングクロス、クロステープ或いはスワー
ルマット等種々の形態で用いられる。
In the resin laminate of the present invention, F is conventionally used as a fibrous reinforcing material.
Glass, carbon, commonly used for RP,
Inorganic fibers such as boron, alumina, and silicon carbide, and organic fibers such as polyester, polyethylene, and polyamide can be used alone or in combination. In addition, depending on the use and molding method of FRP, strand, chopped strand,
Chop Toss l-land cloak is used in various forms such as surface mat, roving, roving cloth, cloth tape or swirl mat.

本発明の繊維強化樹脂積層体中の樹脂組成物と繊維状強
化材との割合は前者40〜90重量%に対し、強化材6
0〜10重量%の範囲が適当である。
The ratio of the resin composition and the fibrous reinforcing material in the fiber-reinforced resin laminate of the present invention is 40 to 90% by weight of the former, and 6% of the reinforcing material.
A range of 0 to 10% by weight is suitable.

樹脂組成物の量が40重量%より少ないと強化材との密
着性が充分でなく、耐熱性、耐食性に乏しくなる。
If the amount of the resin composition is less than 40% by weight, adhesion to the reinforcing material will be insufficient, resulting in poor heat resistance and corrosion resistance.

強化材が10重量%より少ないと、強化効果が小さくな
り、使用上充分な強度を有する積層体とならない。
If the amount of reinforcing material is less than 10% by weight, the reinforcing effect will be small and the laminate will not have sufficient strength for use.

成形方法は従来FRPの成形法として知られている方法
でよく、例えばハンドレイアップ法、スプレーアップ法
、フィラメントワインディング法。
The molding method may be a method conventionally known as a molding method for FRP, such as a hand lay-up method, a spray-up method, or a filament winding method.

遠心成形法、真空成形法或いはレジンインジェクション
法等いずれの方法でも用いられる。
Any method such as a centrifugal molding method, a vacuum molding method, or a resin injection method can be used.

通常FRP加工においてガラス繊維等の繊維に樹脂組成
物を含浸させ脱泡する等の作業工程に最適な樹脂粘度は
室温で200〜500センチボイズという比較的狭い範
囲にあって、この範囲を逸脱すると作業性が著しく…わ
れ、更にはFRPの所期の特性が1員われるのであるが
、本発明の樹脂組成物は作業性を損わない粘度範囲を維
持し且つ通常の加工作業、更には小さな曲率半径を有す
る成型作業も行うことができ、しかもその硬化物は耐熱
性を従来のものより数段向上させた優れたものが得られ
る。
Normally, in FRP processing, the optimal resin viscosity for work processes such as impregnating fibers such as glass fibers with a resin composition and defoaming is within a relatively narrow range of 200 to 500 centivoise at room temperature. However, the resin composition of the present invention maintains a viscosity range that does not impair workability, and can be used in normal processing operations, as well as with a small curvature. Molding work with a radius can also be performed, and the cured product has excellent heat resistance that is several orders of magnitude higher than that of conventional products.

〔発明の効果〕〔Effect of the invention〕

本発明の耐熱耐食性ポリ (メタ)アクリレート系礒維
強化樹脂積層体は次の如き特徴を有しておリ、産業上の
利用性に優れたものである。
The heat-resistant and corrosion-resistant poly(meth)acrylate fiber-reinforced resin laminate of the present invention has the following characteristics and is excellent in industrial applicability.

(11300℃前後という著しく高い熱変形温度を有す
る高耐熱性樹脂積層体である。
(It is a highly heat-resistant resin laminate with a significantly high heat distortion temperature of around 11,300°C.

(2)従来の不飽和ポリエステル樹脂やエポキシアクリ
レートでは使用不能とされている、溶解性が非常に高い
有機溶剤、例えばアセトンやジクロロメタン、クロロホ
ルム、トリクロロエチレン等含ハロゲン化炭化水素系溶
剤でも十分使用に耐える、高度の耐有機溶剤性樹脂積層
体である。特にメタノール、ジフェニルエーテル等の試
薬に対してはかなり高い温度条件下でも使用可能である
(2) Can withstand use in organic solvents with extremely high solubility, such as halogenated hydrocarbon solvents such as acetone, dichloromethane, chloroform, and trichloroethylene, which are considered unusable with conventional unsaturated polyester resins and epoxy acrylates. , a highly organic solvent resistant resin laminate. In particular, it can be used even under fairly high temperature conditions for reagents such as methanol and diphenyl ether.

(3)  無機系や有機系の繊維状強化材に対して含浸
性や脱泡性等の作業性を低下させることなしに、室温で
硬化させる従来の方法をそのまま利用することができる
(3) Conventional methods for curing inorganic or organic fibrous reinforcing materials at room temperature can be used as is without reducing workability such as impregnating properties and defoaming properties.

(4)本発明の樹脂組成物はFRP加工等に適切な粘度
範囲を有しており、通常の加工作業は勿論のこと、小さ
な曲率半径を有する成型作業も、耐熱性の低下なしに行
うことができる。
(4) The resin composition of the present invention has a viscosity range suitable for FRP processing, etc., and can be used not only for normal processing work but also for molding work with a small radius of curvature without deteriorating heat resistance. Can be done.

(5)硬化方法、特に耐熱性向上の手段としては、加熱
による高温硬化、のみならず、紫外線、可視光線或いは
電子線等照射による硬化成形も可能である。従って、硬
化方法の制限を受けることなしに耐熱性の高い工業材料
として適用範囲を大きく拡大することができる。
(5) As a curing method, particularly as a means for improving heat resistance, not only high-temperature curing by heating but also curing molding by irradiation with ultraviolet rays, visible light, electron beams, etc. is possible. Therefore, the range of application as a highly heat-resistant industrial material can be greatly expanded without being subject to restrictions on the curing method.

以下実施例により更に具体的に詳細説明する。A more specific detailed explanation will be given below with reference to Examples.

尚鋼中部は重N基準である。Shoko Chubu has heavy N standards.

〔実施例〕〔Example〕

実施例1 温度計、撹拌機、凝縮器及び空気導入管を備えた反応器
にタレゾールノボラック型エポキシ樹脂(「エポトート
YDCN−701部東部化成社製エポキシ当ff120
3)62部及びスチレンモノマー10部を仕込み、油浴
上80〜90°Cに加熱撹拌する。溶解後110℃まで
昇温させ、空気気流下にメタクリル酸26部、メトキシ
フェノール0.03部及びトリエチルアミン2.0部を
約1時間かけて滴下する。更に110℃で約1時間反応
を続け、酸価10になった時点で反応終了し、これにエ
チレングリコールジメタクリレート100部を添加して
、樹脂組成物を得た。この組成物は透明な褐色の液体で
あり、B型粘度計による粘度25゛Cにおいて100C
Pであった。
Example 1 A reactor equipped with a thermometer, a stirrer, a condenser, and an air inlet tube was charged with a Talesol novolac type epoxy resin ("Epototo YDCN-701 part epoxy resin manufactured by Tobu Kasei Co., Ltd. FF120").
3) Charge 62 parts and 10 parts of styrene monomer, and stir and heat on an oil bath to 80-90°C. After dissolution, the temperature is raised to 110°C, and 26 parts of methacrylic acid, 0.03 parts of methoxyphenol, and 2.0 parts of triethylamine are added dropwise over about 1 hour under a stream of air. The reaction was further continued at 110° C. for about 1 hour, and the reaction was completed when the acid value reached 10. 100 parts of ethylene glycol dimethacrylate was added thereto to obtain a resin composition. This composition is a clear brown liquid with a viscosity of 100C at 25°C measured by a B-type viscometer.
It was P.

この樹脂組成物を用いて下記方法により注型体及び積層
体を作成した。
A cast body and a laminate were produced using this resin composition by the following method.

2枚のガラス板(200XI50X厚さ3mm)の内面
に離型ワックス(ミラー・ブライ[・・ポリッシュ社製
)を塗布し、ガラス板の間にスペーサー(厚さlQmr
rhのシリコーンゴム枠)を置きクランプで固定した。
Apply mold release wax (Mirror Bly...manufactured by Polish Co., Ltd.) to the inner surfaces of two glass plates (200XI50X thickness 3mm), and place a spacer (thickness lQmr) between the glass plates.
rh silicone rubber frame) was placed and fixed with a clamp.

ガラス板の隙間に、上記樹脂組成物100部に対してナ
フテン酸コバルト(コバルト含有率6%)0.5部、ア
セト酢酸エチル0.1部及び精製メチルエチルケトンペ
ルオキシド(r328J化薬ヌーり社製)1.0部を夫
々添加し十分撹拌して均一に分散させた後注入し、室温
で約1時間保持して発熱硬化させた。放冷後取出して注
型体を得た。
In the gap between the glass plates, 0.5 part of cobalt naphthenate (cobalt content 6%), 0.1 part of ethyl acetoacetate, and purified methyl ethyl ketone peroxide (r328J manufactured by Kayaku Noori Co., Ltd.) were added to 100 parts of the resin composition. 1.0 part of each was added, sufficiently stirred to uniformly disperse, and then poured, and kept at room temperature for about 1 hour to heat-cure. After cooling, it was taken out to obtain a cast body.

この注型体をlOOoCで2時間アフターキュアー後熱
変形温度(東洋精機社製r)(DT&VSPTTest
erJを使用、JISK6919卓拠)を測定した結果
を表2に示した。
After curing this cast body for 2 hours at lOOoC, the heat deformation temperature (r manufactured by Toyo Seiki Co., Ltd.) (DT & VSPTTest)
Table 2 shows the results of measurement using JIS K6919 erJ.

また上記と同様に樹脂組成物100部に対してナフテン
酸コバルト0.5部、アセト酢酸エチル0、1部及び上
記と同じl−328,Jl、0部を夫々添加し十分撹拌
した樹脂を用いて、ガラスサーフェスマット(日東紡績
社製rMF30WJ)I−/’ライ、ガラスチョツプド
ストランドマット(日本硝子懺維社製rREM450j
)3プライ及びガラスサーフェスマット1ブライの構成
で積層し、発熱硬化させた後100°Cで1〜2時間ア
フターキュアーして1oOX130x厚さ3〜4mmの
積層体を作成した(樹脂組成物含量65重量%)。
Further, in the same manner as above, 0.5 part of cobalt naphthenate, 0.1 part of ethyl acetoacetate, and 0 parts of 1-328, Jl as above were added to 100 parts of the resin composition, and the resin was thoroughly stirred. Glass surface mat (rMF30WJ manufactured by Nitto Boseki Co., Ltd.)
) Laminated with 3 plies and 1 glass surface mat, heat-cured and after-cured at 100°C for 1 to 2 hours to create a laminate of 100 x 130 x 3 to 4 mm thick (resin composition content: 65 weight%).

この積層体を25℃のジクロロメタン中に浸漬し、その
外観、目視r&察及び曲げ強度の変化を測定した結果を
表2に示した。
This laminate was immersed in dichloromethane at 25° C., and the appearance, visual inspection, and change in bending strength were measured, and the results are shown in Table 2.

実施例2〜5.比較例1〜4 表1の配合1硬化条件によった以外は実施例1と同様に
試験した結果を表2に示した。
Examples 2-5. Comparative Examples 1 to 4 Table 2 shows the results of testing in the same manner as in Example 1, except that the curing conditions for Formulation 1 in Table 1 were used.

(註)使用したペースエポキシ樹脂(エポキシ当量)及
び硬化剤は次の通りである。
(Note) The pace epoxy resin (epoxy equivalent) and curing agent used are as follows.

*1 [エボトートYDCN−701J東部化成社製(
203) *2 rBREN−3J日本化薬社製(279)*3 
「エボトートYDPN−638J東部化成社製(177
) *4 「エピクロンN−730J大日本インギ化学社製
(176) *5 [エボトー1−YD−127JJ東部化成社製(
184)
*1 [Evotote YDCN-701J manufactured by Tobu Kasei Co., Ltd. (
203) *2 rBREN-3J manufactured by Nippon Kayaku Co., Ltd. (279) *3
"Evotote YDPN-638J Tobu Kasei Co., Ltd. (177
) *4 "Epicron N-730J manufactured by Dainippon Ingi Chemical Co., Ltd. (176) *5 [Evoto 1-YD-127JJ manufactured by Tobu Kasei Co., Ltd. (
184)

Claims (1)

【特許請求の範囲】 a)一般式( I )で表わされる多官能(メタ)アクリ
ル酸エステル又はこれらの混合物 100重量部 ▲数式、化学式、表等があります▼( I ) (但し式中R^1は水素原子又はメチル基を、R^2は
炭素数2〜20で2〜6価の多価アルコール残基を表わ
す。また、mは2〜6の整数を、lは4〜0の整数を表
わし、l+m=2〜6である。) b)ノボラック型エポキシ(メタ)アクリレート樹脂5
〜120重量部 c)分子内に1個以上の共重合可能な二重結合を有する
単量体又はこれらの混合物(但し前記a)に属するもの
を除く。)0〜50重量部上記a)、b)及びc)を含
有する樹脂組成物を繊維状強化材に含有硬化させたこと
を特徴とする耐熱耐食性ポリ(メタ)アクリレート系繊
維強化樹脂積層体。
[Claims] a) 100 parts by weight of a polyfunctional (meth)acrylic acid ester represented by the general formula (I) or a mixture thereof▲There are numerical formulas, chemical formulas, tables, etc.▼(I) (However, R^ in the formula 1 represents a hydrogen atom or a methyl group, R^2 represents a divalent to hexavalent polyhydric alcohol residue with 2 to 20 carbon atoms, m is an integer of 2 to 6, and l is an integer of 4 to 0. and l + m = 2 to 6.) b) Novolac type epoxy (meth)acrylate resin 5
~120 parts by weight c) Monomers having one or more copolymerizable double bonds in the molecule or mixtures thereof (excluding those belonging to a) above. ) A heat-resistant and corrosion-resistant poly(meth)acrylate-based fiber-reinforced resin laminate, characterized in that it contains and cures a resin composition containing 0 to 50 parts by weight of a), b), and c) above in a fibrous reinforcing material.
JP27331889A 1989-10-19 1989-10-19 Fiber-reinforced resin laminate Granted JPH03134028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27331889A JPH03134028A (en) 1989-10-19 1989-10-19 Fiber-reinforced resin laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27331889A JPH03134028A (en) 1989-10-19 1989-10-19 Fiber-reinforced resin laminate

Publications (2)

Publication Number Publication Date
JPH03134028A true JPH03134028A (en) 1991-06-07
JPH0559126B2 JPH0559126B2 (en) 1993-08-30

Family

ID=17526213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27331889A Granted JPH03134028A (en) 1989-10-19 1989-10-19 Fiber-reinforced resin laminate

Country Status (1)

Country Link
JP (1) JPH03134028A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097290A (en) * 2000-09-20 2002-04-02 Nippon Shokubai Co Ltd Waterproof material
WO2009147953A1 (en) * 2008-06-03 2009-12-10 昭和高分子株式会社 Low‑temperature curable resin composition, coating film forming method using same, resin mortar and fiber reinforced resin
WO2012015857A3 (en) * 2010-07-29 2012-05-24 3M Innovative Properties Company Crosslinked epoxy vinyl ester particles and methods for making and using the same
US9102868B2 (en) 2010-07-29 2015-08-11 3M Innovative Properties Company Elastomer-modified crosslinked epoxy vinyl ester particles and methods for making and using the same
JP2017094666A (en) * 2015-11-27 2017-06-01 株式会社クラレ Composite sheet, processed composite sheet and method for producing resin sheet for nailing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097290A (en) * 2000-09-20 2002-04-02 Nippon Shokubai Co Ltd Waterproof material
WO2009147953A1 (en) * 2008-06-03 2009-12-10 昭和高分子株式会社 Low‑temperature curable resin composition, coating film forming method using same, resin mortar and fiber reinforced resin
JP2009292890A (en) * 2008-06-03 2009-12-17 Showa Highpolymer Co Ltd Low-temperature curable resin composition, coating film forming method using the same, resin mortar and fiber-reinforced resin
WO2012015857A3 (en) * 2010-07-29 2012-05-24 3M Innovative Properties Company Crosslinked epoxy vinyl ester particles and methods for making and using the same
US9102868B2 (en) 2010-07-29 2015-08-11 3M Innovative Properties Company Elastomer-modified crosslinked epoxy vinyl ester particles and methods for making and using the same
EA023569B1 (en) * 2010-07-29 2016-06-30 3М Инновейтив Пропертиз Компани Crosslinked epoxy vinyl ester particles and methods for making and using the same
JP2017094666A (en) * 2015-11-27 2017-06-01 株式会社クラレ Composite sheet, processed composite sheet and method for producing resin sheet for nailing

Also Published As

Publication number Publication date
JPH0559126B2 (en) 1993-08-30

Similar Documents

Publication Publication Date Title
US4798761A (en) Epoxy resin compositions for use in low temperature curing applications
JP2005247879A (en) Composition for fiber-reinforced composite material and its molding material
WO1983000341A1 (en) Anaerobic adhesive composition
US4874833A (en) Composition containing epoxy resin and alkyl hindered polyaromatic diamine and monoaromatic amine curing agents
JPH03134028A (en) Fiber-reinforced resin laminate
JP2539873B2 (en) Heat resistant resin composition
AU595422B2 (en) Improved resin for marine applications
JPH05301934A (en) Resin composition and laminate product and composite product using the same
JP3906122B2 (en) Vinyl ester resin composition for artificial marble with excellent storage stability
JP2851414B2 (en) Heat resistant vinyl ester resin composition
JP5161415B2 (en) Resin composition for artificial marble and molded article of artificial marble
JPH11106452A (en) Resin composition for pultrusion and pultrusion product
JP2003089709A (en) Thermosetting resin composition
JP2023053692A (en) Resin composition and reinforcement fiber resin material using the resin composition
JPH0632920A (en) Thermosetting resin prepreg
JPS5828454B2 (en) Automotive FRP leaf springs with excellent fatigue resistance
JP2023055303A (en) Resin composition, and fiber-reinforced resin material made of the resin composition
JPH0220648B2 (en)
JPH01297423A (en) Resin composition
KR950000991B1 (en) Resin composition
JPH01266120A (en) Heat-resistant vinyl ester resin composition
WO2023017855A1 (en) Resin composition and method for producing same, and composite material
JPH11335544A (en) Resin composition for molding material
FI86646C (en) VAERMEHAERDANDE, FRIRADIKALHAERDBAR OMAETTAD POLYMERHARTSKOMPOSITION OCH FOERFARANDE FOER MINSKNING AV GASUTVECKLINGEN VID HAERDNING AV VAERMEHAERDANDE, FRIRADIKALHAERDBARA OMAETTADE POLYMERKOMPOSITION.
AU610959B2 (en) Epoxy resin compositions for use in low temperature curing applications