JPH03124005A - Superstructure nitride alloy film - Google Patents

Superstructure nitride alloy film

Info

Publication number
JPH03124005A
JPH03124005A JP26239989A JP26239989A JPH03124005A JP H03124005 A JPH03124005 A JP H03124005A JP 26239989 A JP26239989 A JP 26239989A JP 26239989 A JP26239989 A JP 26239989A JP H03124005 A JPH03124005 A JP H03124005A
Authority
JP
Japan
Prior art keywords
film
magnetic
nitride
alloy film
nitride alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26239989A
Other languages
Japanese (ja)
Inventor
Hiroshi Sakakima
博 榊間
Koichi Osano
浩一 小佐野
Keita Ihara
井原 慶太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26239989A priority Critical patent/JPH03124005A/en
Publication of JPH03124005A publication Critical patent/JPH03124005A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To acquire a magnetic head soft magnetic alloy film of high wear resistance, anticorrosion and film formation efficiency having high saturation magnetization by laminating a specific magnetic alloy nitride film and a specific non-magnetic nitride film. CONSTITUTION:A magnetic nitride alloy film 1 shown by an expression and a non-magnetic nitride film 2 of any of SiN, BN, Al-N are laminated on a substrate 5 alternately to form a superstructure alloy nitride film; thereby, a magnetic head soft magnetic alloy film of good producibility is formed, which has high saturation magnetization, high wear resistance and high corrosion resistance and whose film formation efficiency is improved because of a fast film formation speed. In the expression, T is one or more selected from a group consisting of Fe, Co, Ni; M is one or more selected from a group consisting of Nb, Zr, Ti, Ta, Hf, Cr, Mo, W, Mn; X is a semimetal/semiconductor of one or more selected from a group consisting of B, Si, C, Al; and atomic % (a) to (d): 60<=a<=93, 2<=b<=20, 0<=c<=15, 2<=d<=30, 5<=b+c, a+b+c+d=100;.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はVTR等の磁気ヘッド用軟磁性合金膜に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a soft magnetic alloy film for a magnetic head such as a VTR.

従来の技術 本発明者らは磁気ヘッド用磁性膜に適した第2図に示し
たような窒化層3と非窒化層4より成る組成変調窒化合
金膜を開発した(例えば、特願昭61−54054号、
特願昭61−199631号、特願昭62−89402
号、および特願昭62−100400号)。これらの組
成変調窒化合金膜とも呼ばれ、これを用いた磁気ヘッド
は従来にない優れた特性を示すことが確認されている。
BACKGROUND OF THE INVENTION The present inventors have developed a compositionally modulated nitride alloy film consisting of a nitrided layer 3 and a non-nitrided layer 4, as shown in FIG. No. 54054,
Patent Application No. 1986-199631, Patent Application No. 1989-89402
No. 62-100400). These are also called composition-modulated nitride alloy films, and it has been confirmed that magnetic heads using them exhibit superior characteristics never seen before.

発明が解決しようとする課題 しかしながら上記のような窒化層と非窒化層より成る超
構造窒化合金膜はターゲットが1個しかないスパッタ装
置を用いる場合は有利であるが、反応スパッタ蒸着法で
作製するには蒸着中に適当な待時間を設けて窒素ガスを
周期的に蒸着室に導入する必要があり、この窒素ガス切
り替えの待ち時間が必要なため複数ターゲットを有し基
板を回転させて成膜する量産装置を用いる場合等の装置
の機種によっては成膜効率が悪くなる欠点があった。
Problems to be Solved by the Invention However, although the superstructured nitride alloy film consisting of a nitrided layer and a non-nitrided layer as described above is advantageous when using a sputtering device with only one target, it cannot be produced by a reactive sputter deposition method. To do this, it is necessary to set up an appropriate waiting time during deposition and periodically introduce nitrogen gas into the deposition chamber. Because this waiting time is required to switch the nitrogen gas, it is necessary to have multiple targets and rotate the substrate to form a film. Depending on the model of the device, such as when a mass production device is used, there is a drawback that the film forming efficiency becomes poor.

課題を解決するための手段 上記課題を解決するべく本発明の超構造窒化合金膜は第
2図に示したような磁性窒化層3と磁性非窒化層4より
成るのではなく、第1図に示したような磁性窒化N1と
非磁性窒化層2より成る超構造窒化膜とし、膜形成は常
に窒素ガスを蒸着室に導入して行い、成膜効率の良い超
構造窒化合金膜としたものである。第1図において本発
明超構造窒化合金膜の磁性窒化層には次式でしめされた
組成を有する合金膜 T、、M、XcN、、     ・=・(1)を用いる
。ただしTはFe、 Co、 Niより成る群から選択
された少なくとも1種の金属、MはNb、 Zr。
Means for Solving the Problems In order to solve the above problems, the superstructured nitride alloy film of the present invention does not consist of a magnetic nitride layer 3 and a magnetic non-nitride layer 4 as shown in FIG. A superstructured nitride film consisting of a magnetic nitride layer 1 and a nonmagnetic nitride layer 2 as shown was used, and the film was formed by constantly introducing nitrogen gas into the deposition chamber, resulting in a superstructured nitride alloy film with high film formation efficiency. be. In FIG. 1, the magnetic nitride layer of the superstructured nitride alloy film of the present invention is an alloy film T, , M, XcN, . . . = (1) having a composition expressed by the following formula. However, T is at least one metal selected from the group consisting of Fe, Co, and Ni, and M is Nb and Zr.

Ti、 Ta、 t(f、 Cr、 Mo、 H,Mn
より成る群から選択された少なくとも1種の金属、Xは
B、 St、 C,Alより成る群より選択された少な
くとも1種の半金属・半導体、NはN(窒素)であって
、a、  b。
Ti, Ta, t(f, Cr, Mo, H, Mn
at least one metal selected from the group consisting of; X is at least one metalloid/semiconductor selected from the group consisting of B, St, C, and Al; N is N (nitrogen); b.

c、dは原子パーセントを表わし、それぞれ60≦a≦
93          ・・・(2)2≦b≦20 
         ・・・(3)O≦c≦15    
      ・・・(4)2≦d≦30       
   ・・・(5)5≦b+c          ・
・・(6)a+b+c+d= 100    −(7)
である。又第1図において本発明超構造窒化合金膜の非
磁性窒化層には5i−N、 B−N、 AI−N等の上
記磁性窒化層に拡散しにくい窒化物を用いる。
c and d represent atomic percent, each 60≦a≦
93...(2) 2≦b≦20
...(3) O≦c≦15
...(4) 2≦d≦30
... (5) 5≦b+c ・
...(6) a+b+c+d=100-(7)
It is. Further, in FIG. 1, the non-magnetic nitride layer of the superstructured nitride alloy film of the present invention is made of a nitride, such as 5i-N, BN, AI-N, which is difficult to diffuse into the magnetic nitride layer.

作用 このような構成から成る本発明超構造窒化合金膜は高飽
和磁化で軟磁気特性、耐摩耗性、耐蝕性に優れ、従来に
比べてガス導入に際して待ち時間が不要なために量産性
の向上を可能とするものである。
Effect The superstructured nitride alloy film of the present invention having such a configuration has high saturation magnetization, excellent soft magnetic properties, wear resistance, and corrosion resistance, and improves mass productivity because it does not require waiting time when introducing gas compared to conventional films. This makes it possible to

実施例 以下本発明の一実施例を図面を参照しながら説明するが
、それに先立って組成の限定条件についての説明をする
EXAMPLE An example of the present invention will be described below with reference to the drawings, but prior to that, the limiting conditions of the composition will be explained.

(1)弐において合金膜が軟磁性を示すにはa≦93.
5≦b + c     ・”(8)である事が必要で
あり、合金膜が高飽和磁化を有するには 60≦a、  b≦20.0≦20  ・(9)である
事が望ましく、又耐摩耗、耐蝕性に優れた特性を有する
には 2≦b、   2≦d、   c≦15  ・(10)
である事が必要である事がわかった。更に合金膜の内部
応力を抑えて膜が基板より剥離しないためには d≦30                ・・・01
)である事が望ましい。なお(1)式でX元素は必ずし
も含む必要はないが熱処理後も積層構造が明確な超構造
窒化合金膜を得ようとする場合X元素の添加が有効であ
る。以上(8) −(I+)式より(2) −(7)式
の条件式が得られた。なお膜作製中にガス配管や真空槽
壁よりの出ガスより不可避的に酸素が混入することがあ
るが、膜中の酸素含有両が3%以内であれば特性の劣化
はないが5%以上となると特性劣化が生じるので注意す
る必要がある。
(1) In order for the alloy film to exhibit soft magnetism, a≦93.
It is necessary that 5≦b + c ・”(8), and in order for the alloy film to have high saturation magnetization, it is desirable that 60≦a, b≦20.0≦20 ・(9), and To have excellent wear resistance and corrosion resistance, 2≦b, 2≦d, c≦15 (10)
I found out that it is necessary. Furthermore, in order to suppress the internal stress of the alloy film and prevent the film from peeling off from the substrate, d≦30...01
) is desirable. Although it is not necessary to necessarily include element X in formula (1), addition of element X is effective when attempting to obtain a superstructured nitride alloy film with a clear layered structure even after heat treatment. The conditional expressions (2)-(7) were obtained from the above equations (8)-(I+). Note that during film fabrication, oxygen may be unavoidably mixed in from gas emitted from gas piping or the walls of the vacuum chamber, but if the oxygen content in the film is within 3%, there will be no deterioration in properties, but if the oxygen content is 5% or more. If this happens, characteristics will deteriorate, so care must be taken.

この窒化膜の軟磁気特性を更に改善するには、少なくと
も作製時において膜厚方向即ち成膜方向に組成変調され
た超構造窒化合金膜とすることが必要である。この場合
従来は(1)式の窒化層と(1)式で窒素を含まない非
窒化層を積層して超構造窒化合金膜としていたが、本発
明では(1)式の磁性窒化膜と5i−N、 B−N、 
AI−N等の非磁性窒化膜を積層することにより超構造
窒化合金膜として軟磁性を改善している。これらの非磁
性窒素膜は(1)式の磁性窒化膜との界面での拡散が生
じにくく、高温熱処理後もこの積層構造を安定化させ軟
磁気特性の安定性に寄与する効果がある。この場合(1
)弐の磁性窒化合金膜の膜厚をLl、I、非磁性窒化膜
の膜厚をtNとするとき ts、 t N <1000人       ・・・(
12)とすると膜は優れた軟磁性を示すことがわかった
In order to further improve the soft magnetic properties of this nitride film, it is necessary to create a superstructured nitride alloy film whose composition is modulated at least in the film thickness direction, that is, in the film formation direction. In this case, conventionally, a superstructure nitride alloy film was obtained by laminating a nitride layer of formula (1) and a non-nitride layer containing no nitrogen according to formula (1), but in the present invention, a magnetic nitride film of formula (1) and a 5i -N, B-N,
By laminating non-magnetic nitride films such as AI-N, soft magnetism is improved as a superstructure nitride alloy film. These non-magnetic nitrogen films are less likely to cause diffusion at the interface with the magnetic nitride film of formula (1), and have the effect of stabilizing this laminated structure even after high-temperature heat treatment and contributing to the stability of soft magnetic properties. In this case (1
) When the film thickness of the second magnetic nitride alloy film is Ll, I, and the film thickness of the non-magnetic nitride film is tN, ts, t N <1000 people...(
12), the film showed excellent soft magnetism.

又膜全体として高飽和磁化を有するには1.5100人
      ・・・面 とすることが必要である。
In order for the film as a whole to have high saturation magnetization, it is necessary to have a surface of 1.5100 .

つぎに従来例と対比しながら本発明の詳細な説明を行な
う。
Next, the present invention will be explained in detail in comparison with a conventional example.

実施例1 ターゲットにCo5JbloZr4及びFetllNb
J+ s合金板を用い、スパッタ中にArガス中にN2
ガスを周期的に混合することによりGo−Nb−Zr/
Co−Nb−Zr−N及びFe−Nb−B/Fe−Nb
−B−Nなる非窒化層と窒化層より成る総厚8μm、 
 1層の層厚が前者は200人、後者は100人の超構
造窒化合金膜を単結晶Mn−Znフェライト基板上に作
製した。この時窒素ガス切り替えの待ち時間tを10秒
と20秒の2種類の場合について行なった。次に同上の
ターゲットとStジターットの2個のターゲットを用い
、スパッタ中に基板を2個のターゲット上に交互に移動
しArガス中にN2ガスを常に混合して(即ちガス切り
替えの待ち時間1=0で)スパッタすることによりCo
−Nb−Zr−N/5i−N、 Fe−Nb−B−N/
5i−Nなる総厚8μm、1層の層厚が前者は磁性層2
00人、非磁性層50人、後者は磁性層100人、非磁
性層20人の超構造窒化合金膜を作製した。以上の実験
では導入N2ガスの混合分圧比は10%とした。第1表
にこれらの膜作製に要した時間T、及び得られた各種超
構造窒化合金膜の550°C熱処理後の保磁力l(cを
示した。
Example 1 Co5JbloZr4 and FellNb as targets
Using a J+s alloy plate, N2 was added to Ar gas during sputtering.
By periodically mixing gases, Go-Nb-Zr/
Co-Nb-Zr-N and Fe-Nb-B/Fe-Nb
- A total thickness of 8 μm consisting of a non-nitrided layer and a nitrided layer of B-N,
A superstructured nitride alloy film having a layer thickness of 200 layers for the former and 100 layers for the latter was fabricated on a single-crystal Mn--Zn ferrite substrate. At this time, two cases were conducted in which the waiting time t for nitrogen gas switching was 10 seconds and 20 seconds. Next, using two targets, the same target and the St target, the substrate is alternately moved onto the two targets during sputtering, and N2 gas is constantly mixed in Ar gas (i.e., the waiting time for gas switching is 1). = 0) by sputtering Co
-Nb-Zr-N/5i-N, Fe-Nb-B-N/
The total thickness of 5i-N is 8 μm, and the thickness of one layer is the magnetic layer 2.
A superstructured nitride alloy film was fabricated with 00 layers, a non-magnetic layer with 50 layers, and the latter with a magnetic layer of 100 layers and a non-magnetic layer of 20 layers. In the above experiment, the mixed partial pressure ratio of the introduced N2 gas was set to 10%. Table 1 shows the time T required to prepare these films and the coercive force l(c) of the obtained various superstructure nitride alloy films after heat treatment at 550°C.

表に従来例と対比して示したように本発明超構造窒化合
金膜は従来の超構造窒化合金膜と同等の軟磁性を示し、
作製に要する時間Tが従来の超構造窒化合金膜に比べて
大幅に短縮されることがわかる。
As shown in the table in comparison with the conventional example, the superstructured nitride alloy film of the present invention exhibits soft magnetism equivalent to that of the conventional superstructured nitride alloy film,
It can be seen that the time T required for fabrication is significantly shortened compared to the conventional superstructured nitride alloy film.

以下余白 第1表 ガラス基板上に形成した。総膜厚はすべて8μmとし、
各層厚はスパッタ時間を変化することにより、又窒素含
有量はN2ガスの混合分圧比を変化することにより制御
し、膜中の含有量はRBS(Rutherford B
ack Scattering)により定量した。得ら
れた膜の550°C熱処理後の緒特性を第2表に示した
The following margins were formed on the first front glass substrate. The total film thickness is all 8μm,
The thickness of each layer is controlled by changing the sputtering time, the nitrogen content is controlled by changing the mixture partial pressure ratio of N2 gas, and the content in the film is controlled by RBS (Rutherford B
ack scattering). Table 2 shows the properties of the obtained film after heat treatment at 550°C.

第2表 実施例2 一方のターゲットにFe5Jb+z+ FeqJb+z
Sia+FeeoNiJJb+oA1z、 COq+N
bbHf:++ CO57TiITaJa、 C。
Table 2 Example 2 Fe5Jb+z+ FeqJb+z on one target
Sia+FeeoNiJJb+oA1z, COq+N
bbHf:++ CO57TiITaJa, C.

8゜Mo6CrzZrIoより1種を用い、もう一方の
ターゲットに5i−N、 B−N、 Al−Nより1種
を用いて実施例1と同様の方法で磁性窒化層と非磁性層
より成る超構造窒化合金膜を反応スパッタ法により感光
性第2表の実験結果よりわかるように得られた膜は高飽
和磁化で軟磁性を示す。
A superstructure consisting of a magnetic nitride layer and a nonmagnetic layer was prepared in the same manner as in Example 1 using one type of 8゜Mo6CrzZrIo and one type of 5i-N, BN, and Al-N for the other target. Photosensitivity As can be seen from the experimental results in Table 2, the film obtained by reactive sputtering of the nitride alloy film exhibits soft magnetism with high saturation magnetization.

実施例3 実施例1.実施例2の第1表、第2表に示した超構造窒
化合金膜を純水に48時間浸して変色具合いを調べたと
ころすべての膜はなんら変色することなく優れた耐蝕性
を示すことがわかった。又これらの膜と通常のスパッタ
法で作製したPe−5i−AI(センダスト)合金膜と
をダミーへラドチップ形状に加工し市販のVTRデツキ
とテープを用いて摩耗試験を行い、本発明の超構造窒化
合金膜がセンダスト合金膜の1.5倍〜3倍の耐摩耗性
を示すことがわかった。
Example 3 Example 1. When the superstructured nitride alloy films shown in Tables 1 and 2 of Example 2 were immersed in pure water for 48 hours and the degree of discoloration was examined, all films showed excellent corrosion resistance without any discoloration. Understood. Furthermore, these films and a Pe-5i-AI (Sendust) alloy film prepared by a conventional sputtering method were processed into a dummy Radchip shape and subjected to an abrasion test using a commercially available VTR deck and tape. It was found that the nitride alloy film exhibits wear resistance 1.5 to 3 times that of the Sendust alloy film.

発明の効果 以上実施例等により述べたように本発明は高飽和磁化を
有し耐摩耗性・耐蝕性と量産性に優れた磁気ヘッド用軟
磁性合金膜を高い製膜速度で得る事を可能にするもので
ある。
Effects of the Invention As described above with examples, the present invention makes it possible to obtain a soft magnetic alloy film for magnetic heads with high saturation magnetization, excellent wear resistance, corrosion resistance, and mass productivity at a high film forming rate. It is something to do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の磁性窒化層と非磁性窒化層より成る超
構造窒化合金膜の構成図、第2図は従来の窒化磁性層と
非窒化磁性層より成る超構造窒化合金膜の構成図である
。 1・・・・・・磁性窒化層(T−M−(X)−N) 、
2・・・・・・非磁性窒化層、3・・・・・・窒化磁性
層、4・・・・・・非窒化磁性層、5・・・・・・基板
Fig. 1 is a block diagram of a superstructured nitride alloy film consisting of a magnetic nitride layer and a non-magnetic nitride layer according to the present invention, and Fig. 2 is a block diagram of a conventional superstructure nitride alloy film composed of a nitrided magnetic layer and a non-nitrided magnetic layer. It is. 1...Magnetic nitride layer (T-M-(X)-N),
2...Nonmagnetic nitrided layer, 3...Nitrided magnetic layer, 4...Nonnitrided magnetic layer, 5...Substrate.

Claims (2)

【特許請求の範囲】[Claims] (1)次式で表わされる磁性窒化合金膜 T_aM_bX_cN_d とSi−N,B−N,Al−Nとの何れかの非磁性窒化
膜とを積層して成る事を特徴とする超構造窒化合金膜。 (ただしTはFe,Co,Niより成る群から選択され
た少なくとも1種の金属、MはNb,Zr,Ti,Ta
,Hf,Cr,Mo,W,Mnより成る群から選択され
た少なくとも1種の金属、XはB,Si,C,Alより
成る群より選択された少なくとも1種の半金属・半導体
、NはN(窒素)であって、a,b,c,dは原子パー
セントを表わし、それぞれ60≦a≦93,2≦b≦2
0,0≦c≦15,2≦d≦30,5≦b+c,a+b
+c+d=100である。)
(1) A superstructured nitride alloy film characterized by laminating a magnetic nitride alloy film T_aM_bX_cN_d expressed by the following formula and a nonmagnetic nitride film of Si-N, B-N, or Al-N. . (However, T is at least one metal selected from the group consisting of Fe, Co, and Ni, and M is Nb, Zr, Ti, Ta.
, Hf, Cr, Mo, W, and Mn, X is at least one metalloid/semiconductor selected from the group consisting of B, Si, C, and Al, and N is N (nitrogen), a, b, c, d represent atomic percent, 60≦a≦93, 2≦b≦2, respectively
0, 0≦c≦15, 2≦d≦30, 5≦b+c, a+b
+c+d=100. )
(2)特に磁性窒化合金膜の膜厚をtM、非磁性窒化膜
の膜厚をtNとするとき、tM≦1000Å,t_N≦
100Åであることを特徴とする請求項(1)記載の超
構造窒化合金膜。
(2) In particular, when the film thickness of the magnetic nitride alloy film is tM and the film thickness of the non-magnetic nitride film is tN, tM≦1000Å, t_N≦
The superstructured nitride alloy film according to claim 1, wherein the film has a thickness of 100 Å.
JP26239989A 1989-10-06 1989-10-06 Superstructure nitride alloy film Pending JPH03124005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26239989A JPH03124005A (en) 1989-10-06 1989-10-06 Superstructure nitride alloy film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26239989A JPH03124005A (en) 1989-10-06 1989-10-06 Superstructure nitride alloy film

Publications (1)

Publication Number Publication Date
JPH03124005A true JPH03124005A (en) 1991-05-27

Family

ID=17375233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26239989A Pending JPH03124005A (en) 1989-10-06 1989-10-06 Superstructure nitride alloy film

Country Status (1)

Country Link
JP (1) JPH03124005A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620835A (en) * 1991-11-28 1994-01-28 Amorphous Denshi Device Kenkyusho:Kk Amorphous magnetic thin film
US5589221A (en) * 1994-05-16 1996-12-31 Matsushita Electric Industrial Co., Ltd. Magnetic thin film, and method of manufacturing the same, and magnetic head
CN1305215C (en) * 2005-06-20 2007-03-14 清华大学 High-frequency sound surface wave device emtal alloy film with electromigration-resistance
JP2008039080A (en) * 2006-08-07 2008-02-21 Nok Corp Sealing system
CN103643085A (en) * 2013-11-13 2014-03-19 中国科学院深圳先进技术研究院 Embedded film resistor material and its preparation method
CN110117738A (en) * 2019-05-09 2019-08-13 西北工业大学 DO can be precipitated22The Ni-Cr-W-Nb high temperature alloy of type Superlattice Phase

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620835A (en) * 1991-11-28 1994-01-28 Amorphous Denshi Device Kenkyusho:Kk Amorphous magnetic thin film
JPH07114165B2 (en) * 1991-11-28 1995-12-06 株式会社アモルファス・電子デバイス研究所 Amorphous magnetic thin film
US5589221A (en) * 1994-05-16 1996-12-31 Matsushita Electric Industrial Co., Ltd. Magnetic thin film, and method of manufacturing the same, and magnetic head
US5849400A (en) * 1994-05-16 1998-12-15 Matsushita Electric Industrial Co., Ltd. Magnetic thin film, and method of manufacturing the same, and magnetic head
CN1305215C (en) * 2005-06-20 2007-03-14 清华大学 High-frequency sound surface wave device emtal alloy film with electromigration-resistance
JP2008039080A (en) * 2006-08-07 2008-02-21 Nok Corp Sealing system
CN103643085A (en) * 2013-11-13 2014-03-19 中国科学院深圳先进技术研究院 Embedded film resistor material and its preparation method
CN103643085B (en) * 2013-11-13 2015-09-30 中国科学院深圳先进技术研究院 Embed type film resistor material and preparation method thereof
CN110117738A (en) * 2019-05-09 2019-08-13 西北工业大学 DO can be precipitated22The Ni-Cr-W-Nb high temperature alloy of type Superlattice Phase

Similar Documents

Publication Publication Date Title
EP0288316B1 (en) Compositionally modulated, nitrided alloy films and method for making the same
JPS63299219A (en) Magnetically soft thin film
JP2789806B2 (en) Fabrication method of soft magnetic nitride alloy film
JPH0573242B2 (en)
JPH03124005A (en) Superstructure nitride alloy film
JPH06168822A (en) Vertical magnetized film, multilayer film for vertical magnetizing and manufacture of vertical magnetizing film
JP2529274B2 (en) Heat treatment method for nitrided alloy film
JPS6357758A (en) Nitriding magnetic alloy film
JPH02263416A (en) Manufacture of soft magnetic alloy film
JPH02208811A (en) Magnetic head and its production
JPH02290004A (en) Soft magnetic alloy film and its manufacture
JPH03265105A (en) Soft magnetic laminate film
JPH0350808A (en) Preparation of superstructural nitriding alloy film
JP2707560B2 (en) Artificial lattice magneto-optical recording medium
JPH01217723A (en) Magnetic recording medium
JP2551008B2 (en) Soft magnetic thin film
JPH03116910A (en) Magnetic alloy film
JPH04285153A (en) Multi-layer magnetic film and its formation
JPH01125910A (en) Magnetic alloy film containing nitrogen
JPH03232206A (en) Soft magnetic thin film
Nakagawa et al. Improvement of soft magnetic properties of ferromagnetic Fe-Co-Ta: N/M films multilayered with paramagnetic Ti, Co/sub 67/Cr/sub 33/and Fe/sub 82/Co/sub 9/Ta/sub 9: N interlayers
JPH05198455A (en) Manufacture of fe-co-n-based soft magnetic thin-film
JPS6394611A (en) Manufacture of co amorphous magnetic film
JPS63126208A (en) Texture-modulated magnetically-soft laminated film
JPH04359501A (en) Multilayer ferromagnetic substance