JPH0573242B2 - - Google Patents

Info

Publication number
JPH0573242B2
JPH0573242B2 JP61054054A JP5405486A JPH0573242B2 JP H0573242 B2 JPH0573242 B2 JP H0573242B2 JP 61054054 A JP61054054 A JP 61054054A JP 5405486 A JP5405486 A JP 5405486A JP H0573242 B2 JPH0573242 B2 JP H0573242B2
Authority
JP
Japan
Prior art keywords
film
magnetic alloy
group
metal selected
alloy film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61054054A
Other languages
Japanese (ja)
Other versions
JPS62210607A (en
Inventor
Hiroshi Sakakima
Koichi Kugimya
Juji Komata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5405486A priority Critical patent/JPS62210607A/en
Priority to DE19873707522 priority patent/DE3707522A1/en
Priority to US07/024,141 priority patent/US4836865A/en
Publication of JPS62210607A publication Critical patent/JPS62210607A/en
Priority to US07/445,105 priority patent/US5049209A/en
Publication of JPH0573242B2 publication Critical patent/JPH0573242B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、磁気ヘツド等に適した軟磁性合金膜
及びその形成法に関する。 従来の技術 従来よりArガス中にN2ガスを混入させたスパ
ツター法や、窒化物をターゲツトに用いたスパツ
ター法により、窒素を含む磁性合金膜の作成が試
みられて来た。これらのものには、Fe、Co、Ni
とガラス化元素B、Si、Al、P、C等より成る
合金の窒化膜(特開昭54−94428号公報、及び同
60−152651号公報)や、Feの窒化物の研究があ
る(ジヤーナル オブ アプライドフイジツクス
(J.Appl Phys.)53(11)P8332〜34(1982))。前者に
おいては、たとえばFe−B系を窒化したFe−B
−Nにおいては垂直磁気異方性が増加したりし
て、Fe−B系合金の有する軟磁性がそこなわれ、
抗磁力Hcの大きな磁性膜になるほか、飽和磁化
4πMSもN含有量と伴に低下する事が知られてい
る。後者においては微量のNを含む場合4πMS
むしろFeのそれより微かに増加するが、このFe
−N系合金膜のHcはやはり大きく軟磁性を示さ
ないことが知られている。 発明が解決しようとする問題点 本発明は上述の問題点を解決し、窒化物特有の
耐摩耗性と金属合金よりも高い比抵抗を有し、か
つ軟磁性をさほどそこなう事なく高い4πMSを維
持する事を可能とするものである。 問題点を解決するための手段 本発明による軟磁性合金膜は、次の組成式で表
わされるメタルーメタル系合金の窒化物から構成
される。 TxMyNz ……(1) ただし TはFe又はCoを主成分としFe、Co、Mnより
なる群から選ばれた少なくとも1種の金属、Mは
Nb、Zr、Ti、Ta、Wより成る群から選ばれた
少くとも1種の金属、 Nは窒素 であり、x、y、zは各々原子パーセントを表
し、 75≦x<94 6≦y<25 0.1≦z≦20 x+y+z=100 ……(2) である。 作 用 (1)式で示した組成の(スパツター)合金膜は窒
化物でありながら z≦20 ……(3) である時、(1)式においてz=0である窒化してい
ない合金膜に比べて飽和磁化4πMSの減少が少な
く、又この範囲内で窒素を適当量含有する時増加
する。さらに窒化しても窒化する前の合金膜の軟
磁性が従来知られているような窒化膜と異なつ
て、(3)式の範囲内であまりそこなわれない。なお
窒化した事による耐摩性向上の効果が現われるに
は 0.1≦z ……(4) である事が必要である。 又磁気特性として優れた軟磁性を得る為には 6≦y ……(5) (即ちx<94) である事が必要であり、磁気ヘツド用等への応用
を考えた場合4πMS≧5000Gaussである為には 75≦x ……(6) (即ちy<25)である事が必要である。 又この合金膜と、窒化されていない、極めて優
れた軟磁性を示すメタル−メタル系合金膜 TxMy ……(7) (x+y=100のほか定義は(2)式に同じ) を交互に積層して多層膜化する事により全体とし
て耐摩性がよくかつ軟磁性をも有する多層膜が得
られ、1層の厚さをtとする時、 t≦1000Å でその多層膜化の効果が著しく、TxMyNz部とTx
My部との間の偏摩耗もほとんどなく、かつTxMy
Nz膜部の軟磁性の改善度も大で全体として優れ
た軟磁性をも合せ持つ。 すなわち、窒化する事により多少そこなわれる
軟磁気特性も(7)式で表わされ(5)、(6)の組成範囲
の、優れた軟磁気特性を有する事が知られている
メタル−メタル系合金膜(USP−4437912)と交
互に重ねて多層膜化する事により改善され得る。 実施例 実施例 1 Co85Nb10Zr5なる組成のターゲツトを用い、Ar
中にN2を0.1〜50%混合したガスを用いて反応ス
パツター法により厚さ1μmの窒化膜を作成した。
比較の為、Fe、Fe80B20なる組成のターゲツトを
同じ条件でスパツターしこれらの窒化膜を作成
し、特性の比較を行なつた結果を第1図に示す。
同図のデータよりわかるように、本発明合金Co
−Nb−Zr−Nは窒化によつてもその軟磁性が比
較的劣化しにくく、かつ4πMSは窒化によつて減
少しないばかりか、むしろx=10%で極大を示
し、微かながらこの付近で増大を示す事がわかつ
た。 第2図に示した分析結果とこのデータとの比較
により、膜幅にNを約20%以下含むものはHcも
比較的小さく又4πMSも減少せず、磁気ヘツド用
軟磁性合金として有望であることがわかる。 これに反し、メタル−メタロイド系のものは第
1図に示したFe−B−Nのデータからもわかる
ように、窒化により4πMSが比較的早く減少する
ほか、本発明のCo−Nb−Zr−Nの場合と比較し
て窒化によるHcの増大も大きい。又Feの窒化膜
Fe−Nはある窒素含有量に対しFe膜よりもむし
ろ4πMSが増加するものの、Hcが極めて大きく軟
磁性体としては実用的でない。 実施例 2 実施例1と同じターゲツトを用い、スパツター
中に1定時間間隔をおいてArガス中にN2ガスを
10%混合する事により、Co−Nb−ZrとCo−Nb
−Zr−Nの多層膜を作成した。このN2ガスを混
合してスパツターする時間を変化させる事によ
り、Co−Nb−Zr−N膜の膜厚tを変化させた、
又N2混合スパツター時間と非混合スパツター時
間を等しくする事により、Co−Nb−Zr膜の膜厚
t′はほぼtと等しくなるようにした(厳密にはわ
ずかながらt′>tである)。得られた多層膜の総
厚は約12μmとなるようにして、作成した多層膜
は以下の通りである。 試料1:t9500Å、t′10500Å、層数n=12 試料2:t2800Å、t′3200Å、n=40 試料3:t1000Å、t′1000Å、n=120 試料4:t300Å、t′300Å、n=400 試料5:t100Å、t′100Å、n=1200 これらの多層膜をもう1枚の基板でサンドイツ
チして接着し、多層膜側面がテープ摺動面となる
ように磁気ヘツドチツプ形状に加工し市販の
VTRデツキに取付け、テープを100時間走行させ
た後のテープ摺動面の偏摩耗を調べた。窒化膜部
は窒化されていない膜部よりも耐摩耗性がある
為、第3図に示したような偏摩耗Δlが生ずる。
このΔlを多層膜の1層の膜厚tの関数として第
3図に示した。又作成した多層膜のHcもtの関
数として同図に示した。実験結果よりもtの減少
とともにΔl、Hcとも減少しt≦1000Åでその効
果が著しい事がわかつた。 実施例 3 各種合金ターゲツトを用い、種々の(Ar+
N2)混合ガスでスパツターし合金膜を作成し、
それらの膜の諸特性を比較した。なお合金膜は熱
膨張係数αが約120の水冷したガラス基板上にrf2
極スパツター装置を用い投入電力350W、ガス圧
10×10-2Torrで形成した。結果を以下の表に示
す。N2分圧0.1%でも硬度は上昇する事がわかつ
た。
INDUSTRIAL APPLICATION FIELD The present invention relates to a soft magnetic alloy film suitable for magnetic heads and the like, and a method for forming the same. Prior Art Conventionally, attempts have been made to create a magnetic alloy film containing nitrogen using a sputtering method in which N 2 gas is mixed into Ar gas or a sputtering method using nitride as a target. These include Fe, Co, Ni
Nitride film of an alloy consisting of vitrification element B, Si, Al, P, C, etc.
60-152651) and research on Fe nitrides (J.Appl Phys. 53(11) P8332-34 (1982)). In the former case, for example, Fe-B nitrided Fe-B system is used.
In -N, the perpendicular magnetic anisotropy increases and the soft magnetism of the Fe-B alloy is impaired.
In addition to being a magnetic film with a large coercive force Hc, saturation magnetization
It is known that 4πM S also decreases with increasing N content. In the latter case, when a small amount of N is included, 4πM S increases slightly more than that of Fe, but this Fe
It is known that the -N alloy film has a large Hc and does not exhibit soft magnetism. Problems to be Solved by the Invention The present invention solves the above-mentioned problems, and has the unique wear resistance of nitrides and higher resistivity than metal alloys, and high 4πM S without significantly impairing soft magnetism. It is possible to maintain it. Means for Solving the Problems The soft magnetic alloy film according to the present invention is composed of a nitride of a metal-metal alloy represented by the following compositional formula. T x M y N z ...(1) However, T is Fe or Co as the main component and at least one metal selected from the group consisting of Fe, Co, and Mn, and M is
At least one metal selected from the group consisting of Nb, Zr, Ti, Ta, and W, N is nitrogen, x, y, and z each represent atomic percent, 75≦x<94 6≦y< 25 0.1≦z≦20 x+y+z=100...(2). Effect Although the (sputter) alloy film with the composition shown in equation (1) is a nitride, when z≦20...(3), the non-nitrided alloy film where z=0 in equation (1) The saturation magnetization 4πM S decreases less than that of 4πM S, and increases when an appropriate amount of nitrogen is contained within this range. Furthermore, even when nitrided, the soft magnetic properties of the alloy film before nitridation are not significantly impaired within the range of equation (3), unlike conventionally known nitride films. In order for the effect of improving wear resistance due to nitriding to appear, it is necessary that 0.1≦z...(4). In addition, in order to obtain excellent soft magnetism as a magnetic property, it is necessary that 6≦y...(5) (that is, x<94), and when considering application to magnetic heads, etc., 4πM S ≧5000 Gauss. In order to do so, it is necessary that 75≦x...(6) (that is, y<25). In addition, this alloy film and a metal-metal alloy film that is not nitrided and exhibits extremely excellent soft magnetism T x M y ...(7) (definitions are the same as equation (2) except x + y = 100) are alternately used. By laminating them to form a multilayer film, a multilayer film with good wear resistance as a whole and soft magnetism can be obtained.When the thickness of one layer is t, the effect of the multilayer film is 1000Å. Remarkably, T x M y N z part and T x
There is almost no uneven wear between the M y part and T x M y
The degree of improvement in the soft magnetism of the Nz film part is also large, and it also has excellent soft magnetism as a whole. In other words, the soft magnetic properties that are somewhat impaired by nitriding are expressed by equation (7), and metal-metals that are known to have excellent soft magnetic properties within the composition range of (5) and (6). This can be improved by forming a multilayer film by alternately stacking the alloy film (USP-4437912). Examples Example 1 Using a target with a composition of Co 85 Nb 10 Zr 5 , Ar
A nitride film with a thickness of 1 μm was formed by a reaction sputtering method using a gas containing 0.1 to 50% N 2 in the mixture.
For comparison, targets with compositions of Fe and Fe 80 B 20 were sputtered under the same conditions to form nitride films, and their properties were compared. The results are shown in Figure 1.
As can be seen from the data in the same figure, the present invention alloy Co
-Nb-Zr-N's soft magnetism is relatively hard to deteriorate even by nitriding, and 4πM S not only does not decrease by nitriding, but in fact shows a maximum at x = 10%, and is slightly It was found that it shows an increase. Comparison of this data with the analysis results shown in Figure 2 shows that the Hc is relatively small and the 4πM S does not decrease when the film width contains about 20% or less of N, making it a promising soft magnetic alloy for magnetic heads. I understand that there is something. On the other hand, as can be seen from the Fe-B-N data shown in Figure 1, metal-metalloid-based 4πM S decreases relatively quickly due to nitriding, and the Co-Nb-Zr of the present invention The increase in Hc due to nitriding is also large compared to the case of -N. Also, Fe nitride film
Although Fe-N increases 4πM S more than Fe film for a certain nitrogen content, Hc is extremely large and it is not practical as a soft magnetic material. Example 2 Using the same target as in Example 1, N2 gas was added to Ar gas at regular intervals during sputtering.
By mixing 10%, Co-Nb-Zr and Co-Nb
A multilayer film of -Zr-N was created. The thickness t of the Co-Nb-Zr-N film was changed by changing the sputtering time of mixing this N 2 gas.
Also, by making the N2 mixed sputtering time and non-mixing sputtering time equal, the thickness of the Co-Nb-Zr film can be reduced.
t' was made to be approximately equal to t (strictly speaking, t'> t, albeit slightly). The total thickness of the obtained multilayer film was about 12 μm, and the multilayer film was created as follows. Sample 1: t9500Å, t'10500Å, number of layers n=12 Sample 2: t2800Å, t'3200Å, n=40 Sample 3: t1000Å, t'1000Å, n=120 Sample 4: t300Å, t'300Å, n=400 Sample 5: t 100 Å, t' 100 Å, n = 1200 These multilayer films were bonded together with another substrate by sandwiching, and processed into a magnetic head chip shape with the side surface of the multilayer film serving as the tape sliding surface.
We installed the tape on a VTR deck and ran the tape for 100 hours, and then examined uneven wear on the tape sliding surface. Since the nitride film portion has more wear resistance than the non-nitrided film portion, uneven wear Δl as shown in FIG. 3 occurs.
This Δl is shown in FIG. 3 as a function of the thickness t of one layer of the multilayer film. The figure also shows Hc of the produced multilayer film as a function of t. From the experimental results, it was found that as t decreases, both Δl and Hc decrease, and the effect is significant when t≦1000 Å. Example 3 Using various alloy targets, various (Ar+
N2 ) Create an alloy film by sputtering with mixed gas,
The properties of those films were compared. The alloy film is placed on a water-cooled glass substrate with a thermal expansion coefficient α of approximately 120.
Input power 350W and gas pressure using pole sputter device
It was formed at 10×10 -2 Torr. The results are shown in the table below. It was found that the hardness increased even with N2 partial pressure of 0.1%.

【表】【table】

【表】 実施例 4 本発明多層合金膜をAr中のN2混合比が0と10
%の間で一定時間間隔で変化させ1層の膜厚約
300Åのものを400層重ねて総厚12μmとし実施例
2と同様の実験を行なつた。結果を以下に示す。
[Table] Example 4 The multilayer alloy film of the present invention was prepared with N2 mixing ratio in Ar of 0 and 10.
The film thickness of one layer is changed between % at regular intervals.
The same experiment as in Example 2 was conducted by stacking 400 layers of 300 Å to give a total thickness of 12 μm. The results are shown below.

【表】 ただし表中において単層膜とは、比較のため
N2ガス混合比を0%と10%に固定して作成した
膜厚12μmの単層膜であり、摩耗量lは、100時
間走行後の総摩耗量であり、偏摩耗は多層膜の窒
化膜部と非窒化膜部との間に生ずるものである。
多層膜化により窒化膜よりもHcが小さく、又摩
耗量は単層の非窒化膜より少なくなつており特性
が改善されている事がわかる。 発明の効果 本発明の軟磁性合金膜は、高い電気抵抗と高硬
度を有し、かつ窒化物でありながら窒化による飽
和磁化の劣化が少なく、逆に増加する場合もあり
磁気ヘツド等の応用に適した軟磁性合金膜であ
る。
[Table] However, in the table, single layer film is used for comparison.
This is a single layer film with a thickness of 12 μm created by fixing the N2 gas mixture ratio at 0% and 10%. The amount of wear l is the total amount of wear after running for 100 hours. This occurs between the film portion and the non-nitride film portion.
It can be seen that due to the multilayer film, Hc is smaller than that of the nitride film, and the amount of wear is less than that of a single-layer non-nitride film, indicating that the properties are improved. Effects of the Invention The soft magnetic alloy film of the present invention has high electrical resistance and high hardness, and although it is a nitride, there is little deterioration in saturation magnetization due to nitriding, and on the contrary, it may increase, making it suitable for applications such as magnetic heads. This is a suitable soft magnetic alloy film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明合金Co−Nb−Zr−Nと従来例
であるFe−N、Fe−B−N合金の飽和磁化と抗
磁力のプラズマ中のN2ガス混合比依存性を示す
グラフ、第2図はN2ガス混合比とスパツター法
で作成した膜中のNの原子%との相関を示すグラ
フ、第3図は(Co−Nb−Zr/Co−Nb−Zr−N)
n多層膜の偏摩耗量Δlと抗磁力Hcの1層の膜厚依
存性を示すグラフである。
FIG. 1 is a graph showing the dependence of the saturation magnetization and coercive force of the present alloy Co-Nb-Zr-N and conventional examples Fe-N and Fe-B-N alloys on the N2 gas mixture ratio in the plasma. Figure 2 is a graph showing the correlation between the N2 gas mixture ratio and the atomic % of N in the film created by the sputtering method, and Figure 3 is (Co-Nb-Zr/Co-Nb-Zr-N).
It is a graph showing the dependence of the uneven wear amount Δl and the coercive force Hc on the thickness of one layer of the n multilayer film.

Claims (1)

【特許請求の範囲】 1 組成の一般式がTxMyNzで示され、TはFe、
Coを主成分としFe、Co、Mn、Niより成る群か
ら選択された少なくとも1種の金属、MはNb、
Zr、Ti、Ta、W、Cr、Hfより成る群から選択さ
れた少なくとも1種の金属、NはN(窒素)であ
つて、原子パーセントを表すx、y、zがそれぞ
れ 75≦x<94、 6≦y<25、 0.1≦z≦20、 x+y+z=100 である組成から成る軟磁性合金膜。 2 TxMyNzで示される組成より成る磁性合金膜
と、TxMyで示される組成よりなる磁性合金膜と
を交互に重ねた多層膜から成り、TはFe、Coを
主成分としFe、Co、Mn、Niより成る群から選
択された少なくとも1種の金属、MはNb、Zr、
Ti、Ta、W、Cr、Hfより成る群から選択された
少なくとも1種金属、NはN(窒素)であつて、
x、y、zは原子パーセントを表すx、y、zが
それぞれ 75≦x<94、 6≦y<25、 0.1≦z≦20、 x+y+z=100 である組成から成る軟磁性合金膜。 3 多層膜の1層の膜厚をtとする時 t≦1000Å である特許請求の範囲第2項記載の軟磁性合金
膜。 4 Tx′My′で示される組成より成る合金ターゲ
ツトを用いてスパツター法により磁性合金膜を形
成する際、Arスパツターガス中にN2ガスを周期
的に混合することによりTxMyNzで示される組成
の層とTx′My′で示される組成の層とを交互に積
み重ねて多層とし、かつ前記合金ターゲツトおよ
び前記両層のそれぞれの組成がTはFe、Coを主
成分としてFe、Co、Mn、Niより成る群から選
択された少なくとも1種の金属、MはNb、Zr、
Ti、Ta、W、Cr、Hfより成る群から選択された
少なくとも1種の金属、NはN(窒素)であつて、
x、y、zおよびx′、y′は原子パーセントを表す
x、y、z、x′およびy′がそれぞれ75≦x<94、
6≦y<25、0.1≦z≦20、x+y+z=100、75
≦x′<94、6≦y′<25、x′+y′=100である軟磁性
合金膜の形成法。 5 1層の層厚が1000Å以下となるようにN2
スの混合周期を設定する特許請求の範囲第4項記
載の軟磁性合金膜の形成法。
[Claims] 1. The general formula of the composition is T x M y N z , where T is Fe,
Co as the main component, at least one metal selected from the group consisting of Fe, Co, Mn, and Ni; M is Nb;
At least one metal selected from the group consisting of Zr, Ti, Ta, W, Cr, and Hf, N is N (nitrogen), and x, y, and z representing atomic percent are each 75≦x<94 , 6≦y<25, 0.1≦z≦20, x+y+z=100. 2 Consists of a multilayer film in which magnetic alloy films with the composition shown by T x M y N z and magnetic alloy films with the composition shown by T x M y are alternately stacked, where T is mainly composed of Fe and Co. and at least one metal selected from the group consisting of Fe, Co, Mn, and Ni; M is Nb, Zr,
at least one metal selected from the group consisting of Ti, Ta, W, Cr, and Hf; N is N (nitrogen);
x, y, and z represent atomic percent. A soft magnetic alloy film having a composition in which x, y, and z are respectively 75≦x<94, 6≦y<25, 0.1≦z≦20, and x+y+z=100. 3. The soft magnetic alloy film according to claim 2, wherein t≦1000 Å, where t is the thickness of one layer of the multilayer film. 4 When forming a magnetic alloy film by sputtering using an alloy target having the composition shown by T x ′M y ′, T x M y N z is obtained by periodically mixing N 2 gas into Ar sputter gas. A layer having a composition represented by T x ′M y ′ and a layer having a composition represented by T At least one metal selected from the group consisting of Fe, Co, Mn, and Ni; M is Nb, Zr,
at least one metal selected from the group consisting of Ti, Ta, W, Cr, and Hf; N is N (nitrogen);
x, y, z and x', y' represent atomic percent, respectively, where x, y, z, x' and y' are 75≦x<94,
6≦y<25, 0.1≦z≦20, x+y+z=100, 75
A method for forming a soft magnetic alloy film in which ≦x′<94, 6≦y′<25, and x′+y′=100. 5. The method of forming a soft magnetic alloy film according to claim 4, wherein the mixing period of N 2 gas is set so that the thickness of one layer is 1000 Å or less.
JP5405486A 1986-03-12 1986-03-12 Magnetic alloy film Granted JPS62210607A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5405486A JPS62210607A (en) 1986-03-12 1986-03-12 Magnetic alloy film
DE19873707522 DE3707522A1 (en) 1986-03-12 1987-03-09 MAGNETIC NITRIDE FILM
US07/024,141 US4836865A (en) 1986-03-12 1987-03-10 Magnetic nitride film
US07/445,105 US5049209A (en) 1986-03-12 1989-12-07 Magnetic nitride film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5405486A JPS62210607A (en) 1986-03-12 1986-03-12 Magnetic alloy film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP13460997A Division JP2856725B2 (en) 1997-05-26 1997-05-26 Method of forming soft magnetic alloy film

Publications (2)

Publication Number Publication Date
JPS62210607A JPS62210607A (en) 1987-09-16
JPH0573242B2 true JPH0573242B2 (en) 1993-10-14

Family

ID=12959899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5405486A Granted JPS62210607A (en) 1986-03-12 1986-03-12 Magnetic alloy film

Country Status (1)

Country Link
JP (1) JPS62210607A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2533860B2 (en) * 1986-09-24 1996-09-11 株式会社日立製作所 Magnetic superlattice film and magnetic head using the same
JP2790451B2 (en) * 1987-04-10 1998-08-27 松下電器産業株式会社 Soft magnetic alloy film containing nitrogen
JP2690904B2 (en) * 1987-08-10 1997-12-17 株式会社日立製作所 Heat resistant magnetic film
JPH07100835B2 (en) * 1987-11-11 1995-11-01 東北特殊鋼株式会社 Magnetic thin film and manufacturing method thereof
JPH0827897B2 (en) * 1988-03-09 1996-03-21 松下電器産業株式会社 Magnetic head
US4969962A (en) * 1988-08-20 1990-11-13 Victor Company Of Japan, Ltd. Magnetic alloys for magnetic head
JPH0744123B2 (en) * 1989-02-08 1995-05-15 富士写真フイルム株式会社 Method for manufacturing soft magnetic thin film
JPH0744108B2 (en) * 1989-01-26 1995-05-15 富士写真フイルム株式会社 Soft magnetic thin film
JP2839554B2 (en) * 1989-06-14 1998-12-16 株式会社日立製作所 Magnetic film and magnetic head using the same
EP0466159B1 (en) * 1990-07-13 1996-02-28 Fuji Photo Film Co., Ltd. Composite magnetic head
JP2698864B2 (en) * 1990-07-26 1998-01-19 富士写真フイルム株式会社 Method for manufacturing soft magnetic thin film
US5262915A (en) * 1990-08-23 1993-11-16 Tdk Corporation Magnetic head comprising a soft magnetic thin film of FeNiZrN having enhanced (100) orientation
US5589221A (en) * 1994-05-16 1996-12-31 Matsushita Electric Industrial Co., Ltd. Magnetic thin film, and method of manufacturing the same, and magnetic head

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949803A (en) * 1972-09-18 1974-05-15
JPS5494428A (en) * 1977-12-30 1979-07-26 Ibm Amorphous metal layer
JPS5533093A (en) * 1978-08-28 1980-03-08 Ibm Thin film magnetic material and method of manufacturing same
JPS5633453A (en) * 1979-08-27 1981-04-03 Takeshi Masumoto Iron-base amorphous alloy having high magnetic flux density and small magnetostriction
JPS5827941A (en) * 1981-08-11 1983-02-18 Hitachi Ltd Manufacture of amorphous thin film
JPS58147538A (en) * 1982-02-25 1983-09-02 Hiroyasu Fujimori Sputtered amorphous magnetic material and its manufacture
JPS60220913A (en) * 1984-04-18 1985-11-05 Sony Corp Magnetic thin film
US5049209A (en) * 1986-03-12 1991-09-17 Matsushita Electric Industrial Co., Ltd. Magnetic nitride film
JPH0456110A (en) * 1990-06-22 1992-02-24 Toshiba Corp External cooling device for transformer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949803A (en) * 1972-09-18 1974-05-15
JPS5494428A (en) * 1977-12-30 1979-07-26 Ibm Amorphous metal layer
JPS5533093A (en) * 1978-08-28 1980-03-08 Ibm Thin film magnetic material and method of manufacturing same
JPS5633453A (en) * 1979-08-27 1981-04-03 Takeshi Masumoto Iron-base amorphous alloy having high magnetic flux density and small magnetostriction
JPS5827941A (en) * 1981-08-11 1983-02-18 Hitachi Ltd Manufacture of amorphous thin film
JPS58147538A (en) * 1982-02-25 1983-09-02 Hiroyasu Fujimori Sputtered amorphous magnetic material and its manufacture
JPS60220913A (en) * 1984-04-18 1985-11-05 Sony Corp Magnetic thin film
US5049209A (en) * 1986-03-12 1991-09-17 Matsushita Electric Industrial Co., Ltd. Magnetic nitride film
JPH0456110A (en) * 1990-06-22 1992-02-24 Toshiba Corp External cooling device for transformer

Also Published As

Publication number Publication date
JPS62210607A (en) 1987-09-16

Similar Documents

Publication Publication Date Title
US5049209A (en) Magnetic nitride film
EP0288316B1 (en) Compositionally modulated, nitrided alloy films and method for making the same
EP0297776B1 (en) Soft magnetic thin films
JP2790451B2 (en) Soft magnetic alloy film containing nitrogen
JPH0573242B2 (en)
EP0382195B1 (en) Magnetic head and method of manufacturing the same
US5262248A (en) Soft magnetic alloy films
JP2763165B2 (en) Manufacturing method of magnetic recording medium
JP2856725B2 (en) Method of forming soft magnetic alloy film
JP2508489B2 (en) Soft magnetic thin film
JPH03124005A (en) Superstructure nitride alloy film
JP2529274B2 (en) Heat treatment method for nitrided alloy film
JPH0456110B2 (en)
JPH0786035A (en) Uniaxial magnetic anisotropy thin film
JPH02263409A (en) Mild magnetic alloy film and manufacture thereof
EP0430504A2 (en) Soft magnetic alloy films
JPH0547551A (en) Soft magnetic thin film
JP3028564B2 (en) Soft magnetic alloy film
JP3056401B2 (en) Soft magnetic alloy film
JPH07192920A (en) Soft magnetic thin-film
JPH04139707A (en) Soft magnetic thin film having high saturation magnetic flux density
Ono et al. Thermal Stability of Fe-Zr/Fe-Zr-N Soft Magnetic Multilayered Films
JP3233538B2 (en) Soft magnetic alloys, soft magnetic thin films and multilayer films
JPS63113908A (en) Magnetic alloy film
JPH01143312A (en) Amorphous soft magnetic laminated film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term