JPH0260052A - Battery - Google Patents

Battery

Info

Publication number
JPH0260052A
JPH0260052A JP63211023A JP21102388A JPH0260052A JP H0260052 A JPH0260052 A JP H0260052A JP 63211023 A JP63211023 A JP 63211023A JP 21102388 A JP21102388 A JP 21102388A JP H0260052 A JPH0260052 A JP H0260052A
Authority
JP
Japan
Prior art keywords
battery
oxygen
composite membrane
membrane
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63211023A
Other languages
Japanese (ja)
Other versions
JP2757383B2 (en
Inventor
Masaaki Yoshino
芳野 公明
Hiroshi Fukuda
浩 福田
Kanji Takada
寛治 高田
Nobuyuki Yanagihara
伸行 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63211023A priority Critical patent/JP2757383B2/en
Publication of JPH0260052A publication Critical patent/JPH0260052A/en
Application granted granted Critical
Publication of JP2757383B2 publication Critical patent/JP2757383B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To satisfy its heavy-loaded discharge performance and also satisfy its discharge performance over a long period in a lowly humid atmosphere or at high temperatures, by interposing a specific oxygen-selecting permeable composite film between the air intake side of a gas diffusion electrode for activating oxygen, and the inner face of a battery container. CONSTITUTION:A container is comprised of a positive electrode container 10 which has an air intake 3, and a negative electrode container 8 which is disposed apart from the container 10 via an insulating gasket 9. A negative electrode 7 made mainly of zinc powder forms a diffusion electrode via separators 5, 6, the diffusion electrode made of an oxygen electrode 1 and adapted to activated oxygen. A this film 11 of poly-(2.2'-dimethyl phenylene oxide), and composite film selectively permeating oxygen formed of a micro porous film of polypropylene, polyethylene and the like and used for supporting the film 11 are interposed between the diffusion electrode and a positive electrode 10. And the transmission rate of oxygen is set sufficiently high, and also the transmission of steam and carbonate is prevented so that the button type air zing battery is remarkably improved in its performance.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、酸素を活物質に用いるガス拡散電極と、アル
カリ水溶液等の電解液と、亜鉛、マグネシウム、アルミ
ニウム等の金属、もしくはアルコール、ヒドラジン、水
素等の負極活物質とを備えた電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a gas diffusion electrode using oxygen as an active material, an electrolyte such as an alkaline aqueous solution, and a metal such as zinc, magnesium, or aluminum, or alcohol, hydrazine, or hydrogen. The present invention relates to a battery equipped with a negative electrode active material such as.

従来の技術 ガス拡散電黴を備え、酸素を活物質とする電池としては
、空気電池、燃料電池等がある。特にアルカリ水溶液、
中性水溶液に電解質として使用する電池においては、ガ
ス拡散電極(酸素極)から内部の蒸気圧に応じて水蒸気
の出入りがあり、電池内電解液の濃度変化2体積変化が
起こり、これが電池諾特性に影響を与えていた。ボタン
型空気電池を例にとシ、第3図を用いてその状況を説明
する。図中、1は酸素極(空気極)、2はガス拡散性は
あるが液体は阻止するポリテトラフルオロエチレン(P
TFE)よシなる酸素極を支持する多孔膜である。3は
外部からの空気取入れ孔、4は空気の拡散を行う多孔体
、5.6はセパレータ、7は水酸化カリウム水溶液と水
化亜鉛粉末との混合体から成る負極である。一般にアル
カリ電解液は水酸化カリウム水浴液を使用し、その濃度
は30〜36%である。このため相対湿度が47〜59
%よフ高いと外部の湿気を取り込み電解液濃度の低下と
体積膨張とが起こシ、放電性能の低下。
BACKGROUND OF THE INVENTION BACKGROUND OF THE INVENTION BACKGROUND OF THE INVENTION Batteries equipped with a gas diffusion electrolyte and using oxygen as an active material include air cells, fuel cells, and the like. Especially alkaline aqueous solution,
In a battery that uses a neutral aqueous solution as an electrolyte, water vapor flows in and out from the gas diffusion electrode (oxygen electrode) depending on the internal vapor pressure, resulting in changes in the concentration and volume of the electrolyte in the battery, and this changes the battery's performance characteristics. was influencing. Taking a button-type air battery as an example, the situation will be explained using FIG. 3. In the figure, 1 is an oxygen electrode (air electrode), 2 is polytetrafluoroethylene (P), which has gas diffusivity but blocks liquids.
TFE) is a porous membrane that supports an oxygen electrode. 3 is an air intake hole from the outside, 4 is a porous body for air diffusion, 5.6 is a separator, and 7 is a negative electrode made of a mixture of an aqueous potassium hydroxide solution and zinc hydride powder. Generally, a potassium hydroxide water bath solution is used as the alkaline electrolyte, and its concentration is 30 to 36%. Therefore, the relative humidity is 47-59
If the temperature is higher than %, external moisture will be taken in, causing a decrease in electrolyte concentration and volumetric expansion, resulting in a decrease in discharge performance.

電解液の漏液を生じていた。一方、相対湿度が前記以下
の場合には電解液の蒸発が起こり、内部抵抗の増大や放
電性能の低下をもたらしていた。従って、環境雰囲気に
よって著しい影響を受は易いため長期間保符後の特性に
問題があシ、空気電池や燃料電池はある特定の分野用に
設計されるにとどまり、汎用化を図る上で大きな課題を
有していた。なお、図中8は負極容器、9は絶縁ガスケ
ット、1oは正罹容器である。
Electrolyte leakage had occurred. On the other hand, when the relative humidity is below the above range, evaporation of the electrolytic solution occurs, resulting in an increase in internal resistance and a decrease in discharge performance. Therefore, since they are easily affected by the environmental atmosphere, there are problems with their properties after long-term storage. Air cells and fuel cells are only designed for use in a specific field, and it is difficult to make them more general-purpose. I had an issue. In the figure, 8 is a negative electrode container, 9 is an insulating gasket, and 1o is a positive container.

これらの課題を改善するため、従来より種々の対策が検
討されてきた。例えば、空気孔周辺の一部に電解液と反
応する物質を挿入し、電池外部への電解液漏出を防止す
る。あるいは紙または高分子材料よシ成る不織布等の電
解液吸収材を設けて、電池外部への電解液漏出を防止す
る。さらには空気孔を極端に小さくして酸素の供給量を
制限してまでも、水蒸気や炭酸ガスの電池内部への侵入
を防止する等の提案がなされているが、いずれの方法も
漏液防止や放電性能、特に長期間放電での性能に大きな
課題を残していた。これらの主要原因は空気中の水蒸気
の電池内への侵入による電解液の希釈と体積膨張、及び
炭酸ガスの侵入による炭酸塩の生成に基づく放電反応の
阻害と空気流通経路の閉塞によるもので、外気が低湿の
場合には逆に電解液中の水分の逸散が性能低下の原因と
なっていた。この原因を取り除くため、近年では、水蒸
気や炭酸ガスの透過を抑制し、選択的に酸素を優先して
透過する膜を介して空気を酸素極に供給する方法、例え
ばポリオルガノシロキサン系の無孔性の均一な薄膜や金
属酸化物、あるいは金金属原子を含有する有機化合物の
薄膜と適宜な多孔性膜とを一体化させた膜を用いる方法
が提案されていた。
In order to improve these problems, various countermeasures have been considered in the past. For example, a substance that reacts with the electrolyte is inserted into a portion around the air hole to prevent the electrolyte from leaking to the outside of the battery. Alternatively, an electrolyte absorbing material such as a nonwoven fabric made of paper or a polymeric material is provided to prevent leakage of the electrolyte to the outside of the battery. Furthermore, proposals have been made to prevent water vapor and carbon dioxide from entering the battery by making the air holes extremely small and limiting the amount of oxygen supplied, but neither method prevents leakage. However, there remained major issues regarding discharge performance, especially performance during long-term discharge. The main causes of these are the dilution and volumetric expansion of the electrolytic solution due to the intrusion of water vapor from the air into the battery, and the inhibition of the discharge reaction due to the formation of carbonates due to the intrusion of carbon dioxide gas and the blockage of the air circulation path. Conversely, when the outside air is low-humidity, the loss of moisture in the electrolyte causes a decline in performance. In order to eliminate this cause, in recent years, methods have been developed to supply air to the oxygen electrode through a membrane that suppresses the permeation of water vapor and carbon dioxide gas and selectively allows oxygen to permeate, for example, non-porous polyorganosiloxane membranes. A method has been proposed that uses a film in which a thin film with uniform properties, a thin film of a metal oxide, or a thin film of an organic compound containing gold metal atoms is integrated with a suitable porous film.

発明が解決しようとする課題 しかしながら、現在までのところ、充分に有効な酸素ガ
ス選択透過性が得られないことや水蒸気。
Problems to be Solved by the Invention However, to date, it has not been possible to obtain sufficiently effective selective permeability for oxygen gas or water vapor.

炭酸ガスの透過阻止能が充分でないことからなどから、
満足な放電性能が得られず、長期の使用や貯蔵に耐えな
いという技術課題をもっていたので、実用化に至ってい
ない。
Due to insufficient ability to prevent carbon dioxide from permeating, etc.
It has not been put into practical use because it has had technical issues such as not being able to obtain satisfactory discharge performance and not being able to withstand long-term use or storage.

そこで本発明は上記の電池の貯蔵性、長期使用における
性能を改善するとともに軽負荷から重負荷に至る放電条
件で満足な放電性能を得るために、大気中の酸素ガスを
選択的に充分な速度で電池内に取り入れ、大気中の水蒸
気及び炭酸ガスの電池内への侵入を長期にわたり防止す
る有効な手段を提供することを目的とするものである。
Therefore, the present invention aims to improve the storability and long-term use performance of the above-mentioned battery, as well as to obtain satisfactory discharge performance under discharge conditions ranging from light loads to heavy loads. The purpose of this invention is to provide an effective means for preventing atmospheric water vapor and carbon dioxide from entering the battery over a long period of time.

課題を解決するための手段 本発明は酸素を活物質とするガス拡散電極と、外気に通
じる空気取入れ孔を有する電池容器を備えた電池のガス
拡散電極の空気取入れ側と電池容器の内面との間に、ボ
!J (2、2Lジメチルフエニレンオキシド)の薄膜
とこの薄膜を支持する微多孔膜とから形成される酸素選
択透過性複合膜を介在させたものである。
Means for Solving the Problems The present invention provides a battery that includes a gas diffusion electrode containing oxygen as an active material and a battery container having an air intake hole communicating with the outside air, in which the air intake side of the gas diffusion electrode and the inner surface of the battery container are connected to each other. In between, Bo! An oxygen selectively permeable composite membrane formed from a thin film of J (2,2L dimethylphenylene oxide) and a microporous membrane supporting this thin film is interposed.

上記のポリ(2、2′−ジメチルフェニレンオキシド)
は のような構造式で示され、その薄膜は無孔性の均質な薄
膜で酸素の選択透過性を有し、充分な酸素透過速度と水
蒸気、炭酸ガスの透過阻止能を得るには1、通常、1.
0μm以下、好ましくは0.2〜0.5μmの厚さが適
している。この薄膜を支持する微多孔膜は気体が容易に
透過し、なおかつ、その表面は上記の薄膜を均一に無孔
状態で支持するに適した平滑性と孔径を備えた微多孔膜
が好ましく、前記微多孔膜表面の平均孔径が3〜0.0
1μmであることが好ましい。
The above poly(2,2'-dimethylphenylene oxide)
The thin film is a non-porous, homogeneous thin film with selective permeability for oxygen. Usually 1.
A thickness of 0 μm or less, preferably 0.2 to 0.5 μm is suitable. The microporous membrane supporting this thin film is preferably a microporous membrane through which gas can easily permeate, and whose surface has smoothness and pore size suitable for supporting the above-mentioned thin film in a uniform and non-porous state. The average pore diameter of the microporous membrane surface is 3 to 0.0
Preferably, the thickness is 1 μm.

本発明は、選択性酸素透過能の優れた薄膜としてポリ(
2、2’−ジメチルフェニレンオキシド)の均質薄膜の
特性に着目し、さらに、この薄膜を支持する微多孔膜に
は耐アルカリ性に優れたポリプロピレン、ポリエチレン
等のポリオレフィン。
The present invention uses poly(
We focused on the characteristics of a homogeneous thin film of 2,2'-dimethylphenylene oxide), and also used polyolefins such as polypropylene and polyethylene, which have excellent alkali resistance, for the microporous membrane that supports this thin film.

フッ素樹脂、ポリスルフォン等を選んで完成させた。な
お、微多孔膜は単層であっても良いが、取シ扱いや製造
時、あるいは使用時の7強度を確保するために、必要に
応じて耐アルカリ性不織布をさらに一体化した二層以上
の構成としても良い。
It was completed by selecting materials such as fluororesin and polysulfone. The microporous membrane may be a single layer, but in order to ensure strength during handling, manufacturing, or use, it may be made of two or more layers further integrated with an alkali-resistant nonwoven fabric as necessary. It may also be used as a configuration.

上記のポ!J (2、2’−ジメチルフェニルオキシド
)の薄膜を微多孔膜で支持した複合膜は、医療における
呼気用などの用途で実用化されているだけで、主として
酸素富化を目的とし、酸素と窒素の分離係数や酸素透過
速度のみを評価の対象にしている。これらの膜を重負荷
での放電条件でも満足な放電性能を得られる電池用とし
て適用するためには、酸素透過速度が充分大きいことと
水蒸気及び炭酸ガスの透過阻止能が優れていることが重
要な要件であるが、従来、これらの特性は未知な係が多
い。電池への適用を検討された例は少なく、例えば特開
昭59−75582号公報で開示されているように、ポ
リジメチルシロキサン、ポリジメチルシロキサン−ポリ
ヒドロキシスチレン架橋型共重合体などの膜の適用が提
案されているが、酸素透過速度が充分でなく重負荷での
放電において満足な性能が得られない。
The above po! Composite membranes in which a thin film of J (2,2'-dimethylphenyl oxide) is supported by a microporous membrane have only been put to practical use in medical applications such as exhalation, and are mainly used for oxygen enrichment. Only the nitrogen separation coefficient and oxygen permeation rate are evaluated. In order to apply these membranes to batteries that can obtain satisfactory discharge performance even under heavy load discharge conditions, it is important that the oxygen permeation rate be sufficiently high and that the permeation blocking ability of water vapor and carbon dioxide gas be excellent. However, until now, many of these characteristics have been unknown. There are few examples where application to batteries has been considered; for example, as disclosed in JP-A-59-75582, the application of membranes made of polydimethylsiloxane, polydimethylsiloxane-polyhydroxystyrene crosslinked copolymers, etc. has been proposed, but the oxygen permeation rate is insufficient and satisfactory performance cannot be obtained in discharge under heavy loads.

本発明は、種々の酸素透過膜を電池用として鋭意検討の
結果、ポリ(2、2’−ジメチルフェニレンオキシド)
の薄膜を微多孔膜と一体化した複合膜が電池用としての
上述の諸物性を総合的に満たし、これを適用した電池の
性能がきわめて優れていることを見い出し、完成したも
のである。
As a result of extensive research into various oxygen permeable membranes for batteries, the present invention has developed a poly(2,2'-dimethylphenylene oxide) membrane.
It was discovered that a composite membrane made by integrating the thin film of the above with a microporous membrane comprehensively satisfies the above-mentioned physical properties for batteries, and that the performance of batteries to which this membrane is applied is extremely excellent.

作   用 この構成により上述の複合膜は後述の実施例における電
池試験の結果からも明らかなように、電池用としての酸
素透過速度と同時に、水蒸気や炭酸ガスを大気から遮断
する効果も共に満足すべき状態であることにより、実用
的な電池に要求される重負荷放電性能と、高温や低湿の
雰囲気下で長時間放電した場合の性能も共に満足するこ
ととなる。
Function: With this configuration, the above-mentioned composite membrane satisfies both the oxygen permeation rate for batteries and the effect of blocking water vapor and carbon dioxide from the atmosphere, as is clear from the results of battery tests in Examples described later. Due to this condition, both the heavy load discharge performance required for a practical battery and the performance when discharged for a long time in a high temperature and low humidity atmosphere are satisfied.

実施例 本発明の一実施例としてポ!J (2、2’−ジメチル
フェニレンオキシド)を用いた複合膜を使用した電池、
比較例としてポリジメチルシロキサン単独膜を使用した
電池、および上記複合膜を使用しない電池を試作評価し
て検討した。まず、上記複合膜を使用してない比較例の
場合は第3図と全く同一に構成した。複合膜を使用した
実施例及び比較例も第3図とほぼ同様であり、第1図に
示すようにPTFEの多孔膜2と酸素の拡散を行う多孔
体4との間に実施例の複合膜あるいは比較例の単独膜が
介在し、複合膜は、ポ!J (2、2’−ジメチルフェ
ニレンオキシド)の薄膜の側が空気取入れ孔3の側に対
向するよう配置した点が第3図と異なるのみである。
Example As an example of the present invention, Po! A battery using a composite membrane using J (2,2'-dimethylphenylene oxide),
As a comparative example, a battery using a single polydimethylsiloxane membrane and a battery not using the above composite membrane were prototyped and evaluated. First, in the case of a comparative example in which the above-mentioned composite membrane was not used, the structure was exactly the same as that shown in FIG. 3. Examples and comparative examples using composite membranes are almost the same as those shown in FIG. 3, and as shown in FIG. Alternatively, the single membrane of the comparative example is interposed, and the composite membrane is po! The only difference from FIG. 3 is that the thin film of J (2,2'-dimethylphenylene oxide) is arranged so as to face the air intake hole 3 side.

供試したポリ(2、2’−ジメチルフエニレンオキシド
)複合膜は、ポリ(2、2’−ジメチルフェニレンオキ
シド)を支持膜である微多孔膜上に塗布したものである
。また、比較例として供試したポリジメチルシロキサン
薄膜はトルエンに溶解した溶液をガラス板に薄く塗布し
て乾燥する方法で作製した。実施例の支持体膜はいずれ
も微多孔膜(孔径;約0.1〜○、osμm、厚さ;約
30μm )の単層、またはこれと不織布(厚さ1約1
50μm)を−磁化した複合層を用い、微多孔膜側に薄
膜層を形成させた。
The poly(2,2'-dimethylphenylene oxide) composite membrane tested was one in which poly(2,2'-dimethylphenylene oxide) was coated on a microporous membrane serving as a support membrane. The polydimethylsiloxane thin film used as a comparative example was prepared by applying a thin layer of a solution dissolved in toluene onto a glass plate and drying it. The support membranes of the Examples are all a single layer of a microporous membrane (pore size: approximately 0.1 to ○, os μm, thickness: approximately 30 μm), or a single layer of this and a nonwoven fabric (thickness: approximately 1 to 1 μm).
A thin film layer was formed on the microporous membrane side using a composite layer magnetized with 50 μm).

試作した電池の形状は直径11.6ff、総高6,4龍
であり、比較的重負荷(75Ω)で20℃、常湿(eo
%RH)での連続放電により電池内への空気中の酸素の
取り込み速度の充足性を評価し、比較的軽負荷(skΩ
)で20℃、高湿(90%RH)、及び凹湿(20%R
H)での長期間連続放電により、長期の放電期間中の、
雰囲気中の水蒸気の取り込みや電池内の水分の逸散、及
び炭酸ガスの取り込みなど電池性能への影響度を評価し
た。
The shape of the prototype battery is 11.6ff in diameter and 6.4mm in total height, and it can be used under a relatively heavy load (75Ω) at 20℃ and normal humidity (eo
The sufficiency of the oxygen uptake rate from the air into the battery was evaluated by continuous discharge at a relatively light load (skΩ
) at 20°C, high humidity (90% RH), and concave humidity (20% R
During the long-term discharge period, due to the long-term continuous discharge in H),
We evaluated the degree of influence on battery performance, including the uptake of water vapor in the atmosphere, the dissipation of moisture within the battery, and the uptake of carbon dioxide gas.

試作した電池の内訳は第1表に示す通りである。The details of the prototype battery are shown in Table 1.

また第2表に試作電池の性能試験結果を示す。Table 2 also shows the performance test results of the prototype batteries.

第1表:試作電池の内訳 第2表:試作電池の性能試験結果 第2表において放電終止電圧はいずれも0.9Vであり
、重量変化は放電試験前後の増減を示しており、主とし
て放電中の水分の取り込み、あるいは逸散の多少を示唆
する数値である。
Table 1: Breakdown of prototype batteries Table 2: Performance test results of prototype batteries In Table 2, the end-of-discharge voltage is 0.9V in all cases, and the weight change shows the increase and decrease before and after the discharge test, mainly during discharge. This value indicates the amount of moisture taken in or lost.

実施例の1〜5はピンホールがない均一性薄膜が得られ
る範囲の膜厚のうち、比較的薄い均一性の薄膜を形成し
たもので、実施例の6〜9は均一性の薄膜を若干厚く形
成している。前者は酸素の透過速度を大きくすることを
第一義に考え、後者は水蒸気や炭酸ガスの透過を阻止す
ることを第一義に考え電池を構成している。これらの場
合、複合膜の支持体は耐アルカリ性の材料で構成されて
いる。これらの電池の特性を複合膜を使用していない比
較例3と対比すると、最も端的に本発明の詳細な説明で
きる。まず20℃、常湿での重負荷試験では放電期間が
短く、水分の取り込みや逸散の影響や炭酸ガスの影響が
少ないので、電池の性能は酸素の供給速度が充分であれ
ば水分や炭酸ガスの透過阻止はあまり考慮する必要がな
い。従って、このような条件では比較例3でも優れた特
性が得られる。これに対し、前述の実施例のうち、1〜
5は比較例3と同等の放電特性が得られており、娶合膜
を酸素が透過する速度が放電反応で酸素が消費される速
度に充分追従していることを示している。実施例6〜9
の場合は若干放電電圧、持続時間とも劣っているがあま
り遜色のない良好な特性を示し、はぼ酸素の供給が満足
な状態で行われている。一方、軽負荷放電の場合は放電
期間が長く、しかも外気が高湿あるいは低湿の場合には
酸素の供給速度よりも水分や炭酸ガス、特に水分の透過
防止が優れた性能を得るために重要となり、水分や炭酸
ガスの透過阻止機構をもたない比較例3の電池は水分の
枯渇、あるいは逆に水分の過剰取入れによる漏液による
空気孔の閉塞などにより、放電の途中で電圧が低下し、
重負荷試験で得られた放電容量の一部分に相当する容量
が得られるにすぎない。また、放電途中での漏液は実用
面で致命的な問題であることはいうまでもない。
In Examples 1 to 5, relatively thin uniform thin films were formed within the range in which a uniform thin film without pinholes could be obtained, and in Examples 6 to 9, uniform thin films were formed with a slightly higher uniformity. It is formed thickly. The former is designed primarily to increase the permeation rate of oxygen, while the latter is designed primarily to block the permeation of water vapor and carbon dioxide. In these cases, the support of the composite membrane is composed of an alkali-resistant material. The present invention can be most clearly explained in detail by comparing the characteristics of these batteries with Comparative Example 3 in which no composite membrane was used. First, in a heavy load test at 20°C and normal humidity, the discharge period is short, and the effects of moisture uptake and dissipation, as well as the effects of carbon dioxide gas, are small. There is no need to give much consideration to gas permeation prevention. Therefore, under such conditions, excellent characteristics can be obtained even in Comparative Example 3. On the other hand, among the above-mentioned embodiments, 1 to 1
In Example 5, discharge characteristics equivalent to those of Comparative Example 3 were obtained, indicating that the rate at which oxygen permeates through the composite film sufficiently follows the rate at which oxygen is consumed in the discharge reaction. Examples 6-9
In the case of , the discharge voltage and duration are slightly inferior, but the characteristics are comparable and good, and the supply of oxygen is being carried out satisfactorily. On the other hand, in the case of light load discharge, the discharge period is long, and when the outside air is high or low humidity, preventing the permeation of moisture and carbon dioxide gas, especially moisture, becomes more important than the oxygen supply rate in order to obtain excellent performance. In the battery of Comparative Example 3, which does not have a mechanism for preventing the permeation of moisture and carbon dioxide gas, the voltage decreases during discharge due to depletion of moisture or, conversely, blockage of air holes due to leakage due to excessive intake of moisture.
A capacity equivalent to only a portion of the discharge capacity obtained in the heavy load test is obtained. Furthermore, it goes without saying that liquid leakage during discharge is a fatal problem from a practical standpoint.

これに対し実施例はきわめて優れた性能を示し、これら
は重負荷試験の放電容量とほぼ等しい容量が得られ、中
でも均一薄膜層が比較的厚い実施例6〜9がより優れて
いる。これらの端面は試験雰囲気が高湿、低湿、いずれ
の場合とも同様である。
On the other hand, the Examples showed extremely excellent performance, with a capacity almost equal to the discharge capacity in the heavy load test being obtained, and among them, Examples 6 to 9, in which the uniform thin film layer was relatively thick, were more excellent. These end faces are the same whether the test atmosphere is high humidity or low humidity.

このことは、実施例の場合、複合膜の水分や炭酸ガスの
透過阻止効果が充分に発揮されていることを示している
。また、比較例1.2は膜厚が厚いために均一薄膜の水
蒸気及び炭酸ガス透過阻止能は充分であるが、酸素透過
速度が充分ではないために軽負荷の場合の放電特性は実
施例と対比してあまり遜色ないが、重負荷特性は実施例
より著しく劣る3゜ 以上を総合して、ポ!J (2、2’−ジメチルフ・エ
ニレンオキシド)の均一性薄膜と微多孔膜との複合膜を
用いた試作電池は重負荷特性、軽負荷特性ともに優れ、
外部雰囲気の変化への対応も良好であり、特にポリ(2
、2’−ジメチルフェニレンオキシド)の均一性薄膜の
厚さを0.2〜1.0μmとし、耐アルカリ性の多孔質
膜を支持体に用いた場合に優れた電池を提供できること
が結論できる。
This shows that, in the case of the example, the composite membrane sufficiently exhibits the permeation blocking effect of moisture and carbon dioxide gas. In addition, in Comparative Example 1.2, the film thickness is thick, so the water vapor and carbon dioxide permeation blocking ability of the uniform thin film is sufficient, but the oxygen permeation rate is not sufficient, so the discharge characteristics under light load are not as good as the examples. It is comparable in comparison, but the heavy load characteristics are significantly inferior to those of the example, with a total of 3° or more. A prototype battery using a composite film of a homogeneous thin film of J (2,2'-dimethylphenylene oxide) and a microporous film has excellent both heavy load characteristics and light load characteristics.
It also responds well to changes in the external atmosphere, especially for poly(2)
, 2'-dimethylphenylene oxide) with a uniform thickness of 0.2 to 1.0 μm and an alkali-resistant porous membrane used as the support, it can be concluded that an excellent battery can be provided.

また、上記の実施例ではポリ(2、2’−ジメチルフェ
ニレン)の薄膜を微多孔性の支持膜あるいは微多孔膜と
不織布を一体化した支持膜の片面につけた複合膜を用い
た場合について説明したが、本発明は薄膜を支持膜の両
面に形成させた複合膜の場合でも、ポリ(2、2’−ジ
メチルフェニレン)の膜厚が総計で0.2〜1.0μm
であれば上記と同様に優れた電池性能が得られる。さら
に実施例に示したポリ(2、2’−ジメチルフェニレン
)膜を支持する微多孔膜は、他の耐アルカリ性を有する
微多孔膜、例えばナイロン製微多孔膜でも同様の効果が
得られる。また、実施例では支持体が微多孔膜とポリプ
ロピレン製の不織布と一体化した複合層とした場合を説
明したが、前記不織布がポリエチレン、ナイロン等の他
の耐アルカリ性のあるものであれば、同様の効果が得ら
れる。
In addition, the above example describes the case where a composite membrane is used in which a thin film of poly(2,2'-dimethylphenylene) is attached to one side of a microporous support film or a support film that integrates a microporous film and a nonwoven fabric. However, in the present invention, even in the case of a composite film in which thin films are formed on both sides of a support film, the total film thickness of poly(2,2'-dimethylphenylene) is 0.2 to 1.0 μm.
In this case, excellent battery performance can be obtained in the same way as above. Furthermore, the microporous membrane supporting the poly(2,2'-dimethylphenylene) membrane shown in the examples can be used with other alkali-resistant microporous membranes, such as microporous nylon membranes, to achieve similar effects. Furthermore, in the examples, a case where the support is a composite layer in which a microporous membrane and a nonwoven fabric made of polypropylene are integrated is explained, but if the nonwoven fabric is made of other alkali-resistant material such as polyethylene or nylon, the same method can be used. The effect of this can be obtained.

なお、実施例では複合膜の薄膜側が空気取入れ孔側に当
接された場合について示したが、逆にガス拡散電極側に
当接させた場合でもほぼ同一の結果となることを確認し
ている。
In addition, although the example shows the case where the thin film side of the composite membrane is brought into contact with the air intake hole side, it has been confirmed that almost the same result will be obtained even if the thin film side of the composite membrane is brought into contact with the gas diffusion electrode side. .

また、本発明の複合膜を上記実施例では電池容器との間
に空気拡散用の多孔体を介して設置したが、本発明の複
合膜は微多孔膜、場合によってはさらに不織布を一体化
した支持体よ多構成されており、前記空気拡散用の多孔
体を除いても電池特性の差異はない。但し、複合膜の強
度が充分でなく空気取入れ孔側に変形するような場合に
は、多孔体を設置することにより複合膜が安定形状を保
つ。さらに、上記実施例では本発明の複合膜を酸素極と
の間に酸素極を支持する多孔膜を介して設置したが、酸
素極の強度が充分であれば前記多孔膜は不要であり、除
いても電池特性は変わらない。
In addition, in the above embodiments, the composite membrane of the present invention was installed between the battery container and the porous body for air diffusion, but the composite membrane of the present invention is a microporous membrane, and in some cases, a nonwoven fabric is further integrated into the composite membrane of the present invention. There is no difference in battery characteristics even if the porous body for air diffusion is removed. However, if the composite membrane does not have sufficient strength and deforms toward the air intake hole, the composite membrane can maintain a stable shape by installing a porous body. Furthermore, in the above example, the composite membrane of the present invention was installed between the oxygen electrode and the porous membrane supporting the oxygen electrode, but if the strength of the oxygen electrode is sufficient, the porous membrane is unnecessary and can be removed. However, the battery characteristics remain unchanged.

また、塩化アンモニウム、塩化亜鉛などの中性塩の水溶
液を電解液に用いた空気電池に対しても、実施例で示し
たアルカリ性の電解液に用いた電池と同様の効果がある
ことも確認しており、実施例と同様の理由で本発明の詳
細な説明できる。
We also confirmed that an air battery using an aqueous solution of neutral salts such as ammonium chloride or zinc chloride as an electrolyte has the same effect as the battery using an alkaline electrolyte shown in the example. The present invention can be explained in detail for the same reason as the examples.

発明の効果 以上の説明で明らかなように、本発明による酸素ガス拡
散電極によれば、中性もしくはアルカリ性の水溶液を電
解液とする電池の重負荷から軽負荷にわたる優れた実用
性能と、優れた耐漏液性。
Effects of the Invention As is clear from the above explanation, the oxygen gas diffusion electrode according to the present invention has excellent practical performance across heavy to light loads for batteries using a neutral or alkaline aqueous solution as the electrolyte, and excellent performance. Leak resistant.

長期貯蔵性を具備させることができるという効果が得ら
れる。
The effect is that it can be stored for a long time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例及び比較例の検討に用いたボタ
ン形空気亜鉛電池の断面構造図、第2図は第1図の部分
拡大図、第3図は複合膜を使用していない従来のボタン
形空気亜鉛電池の断面構造図である。 1・・・・・・酸素極(空気極)、2・・・・・・撥水
膜、3・・・・・・空気取入れ孔、4・・・・・・多孔
膜、5.6・・・・・・セパレータ、7・・・・・・負
(j亜鉛、8・・・・・・負極容器、9・・・・・・絶
縁ガスケット、10・・・・・・正極容器、11・・・
・・・複合膜。 代理人の氏名 弁理士 粟 野 重 孝 ほか16第 図 /−一一酸紮@(2気λ歌ン 2・−撥水膜 3−2′iA取入れス昌 4−・ 夛 λし N爬 S、 6−゛セパ6レーダー 7−*へ!全貧 8− 玖′&容届、 9− 絶橘p゛スグフト
Fig. 1 is a cross-sectional structural diagram of a button-type zinc-air battery used to study examples and comparative examples of the present invention, Fig. 2 is a partially enlarged view of Fig. 1, and Fig. 3 does not use a composite membrane. 1 is a cross-sectional structural diagram of a conventional button-type zinc-air battery. 1... Oxygen electrode (air electrode), 2... Water repellent membrane, 3... Air intake hole, 4... Porous membrane, 5.6. ... Separator, 7 ... Negative (j zinc, 8 ... Negative electrode container, 9 ... Insulating gasket, 10 ... Positive electrode container, 11 ...
...Composite membrane. Name of agent Patent attorney Shigetaka Awano et al. , 6-゛Sepa 6 Radar 7-*To! All Poverty 8- Ku'& Yongtian, 9- Zetachibana p゛Sguft

Claims (8)

【特許請求の範囲】[Claims] (1)酸素を活物質とするガス拡散電極と、外気に通じ
る空気取入れ孔を有する電池容器を備え、前記ガス拡散
電極の空気取り入れ側と前記電池容器の内面との間に、
ポリ(2,2′−ジメチルフェニレンオキシド)の薄膜
と前記薄膜を支持する一層または二層以上の微多孔膜と
から形成された複合膜を介在させたことを特徴とする電
池。
(1) A gas diffusion electrode having oxygen as an active material and a battery container having an air intake hole communicating with the outside air, between the air intake side of the gas diffusion electrode and the inner surface of the battery container,
1. A battery comprising a composite membrane formed from a thin film of poly(2,2'-dimethylphenylene oxide) and one or more microporous membranes supporting the thin film.
(2)前記複合膜のポリ(2,2′ジメチルフェニレン
オキシド)の薄膜側が、空気取り入れ孔を有する前記電
池容器の内面に当接され、前記複合膜の微多孔膜側に、
直接ガス拡散電極が接している特許請求の範囲第1項記
載の電池。
(2) The poly(2,2' dimethylphenylene oxide) thin film side of the composite membrane is in contact with the inner surface of the battery container having air intake holes, and the microporous membrane side of the composite membrane is
The battery according to claim 1, wherein the gas diffusion electrode is in direct contact with the battery.
(3)前記複合膜のポリ(2,2′−ジメチルフェニレ
ンオキシド)の薄膜を支持する微多孔膜側が、空気取り
入れ孔を有する前記電池容器の内面に当接され、前記複
合膜の薄膜側に、直接ガス拡散電極が接している特許請
求の範囲第1項記載の電池。
(3) The microporous membrane side of the composite membrane that supports the thin film of poly(2,2'-dimethylphenylene oxide) is brought into contact with the inner surface of the battery container having an air intake hole, and the thin film side of the composite membrane , the battery according to claim 1, wherein the gas diffusion electrode is in direct contact with the battery.
(4)前記複合膜と前記電池容器との間に不織布等の空
気拡散多孔体を介在させた特許請求の範囲第2項又は第
3項記載の電池。
(4) The battery according to claim 2 or 3, wherein an air diffusion porous material such as a nonwoven fabric is interposed between the composite membrane and the battery container.
(5)前記複合膜と前記ガス拡散電極との間にポリテト
ラフルオロエチレン(PTFE)の多孔性フィルムより
なり酸素極を支持する微多孔膜を介在させた特許請求の
範囲第2項又は第3項記載の電池。
(5) A microporous membrane made of a porous film of polytetrafluoroethylene (PTFE) and supporting an oxygen electrode is interposed between the composite membrane and the gas diffusion electrode. Batteries listed in section.
(6)前記複合膜と前記電池容器との間に空気拡散多孔
体を介在させ、かつ前記複合膜と前記ガス拡散電極との
間にポリテトラフルオロエチレンの多孔性フィルムより
なり酸素極を支持する微多孔膜を介在させた特許請求の
範囲第2項又は第3項記載の電池。
(6) An air diffusion porous body is interposed between the composite membrane and the battery container, and an oxygen electrode made of a porous polytetrafluoroethylene film is supported between the composite membrane and the gas diffusion electrode. The battery according to claim 2 or 3, wherein a microporous membrane is interposed.
(7)前記複合膜を形成する微多孔膜がポリプロピレン
、ポリエチレン等のポリオレフィン、フッ素樹脂、ポリ
スルホン等の主成分とする耐アルカリ性微多孔膜である
特許請求の範囲第1項から第6項のいずれかに記載の電
池。
(7) Any one of claims 1 to 6, wherein the microporous membrane forming the composite membrane is an alkali-resistant microporous membrane whose main component is polyolefin such as polypropylene or polyethylene, fluororesin, polysulfone, etc. The battery described in Crab.
(8)前記複合膜を形成する微多孔膜を、耐アルカリ性
の微多孔膜とポリプロピレン等を主成分とする耐アルカ
リ性不織布とを一体化した複合層とした特許請求の範囲
第1項から第6項のいずれかに記載の電池。
(8) Claims 1 to 6 in which the microporous membrane forming the composite membrane is a composite layer that integrates an alkali-resistant microporous membrane and an alkali-resistant nonwoven fabric whose main component is polypropylene or the like. The battery described in any of the paragraphs.
JP63211023A 1988-08-25 1988-08-25 Battery Expired - Fee Related JP2757383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63211023A JP2757383B2 (en) 1988-08-25 1988-08-25 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63211023A JP2757383B2 (en) 1988-08-25 1988-08-25 Battery

Publications (2)

Publication Number Publication Date
JPH0260052A true JPH0260052A (en) 1990-02-28
JP2757383B2 JP2757383B2 (en) 1998-05-25

Family

ID=16599075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63211023A Expired - Fee Related JP2757383B2 (en) 1988-08-25 1988-08-25 Battery

Country Status (1)

Country Link
JP (1) JP2757383B2 (en)

Also Published As

Publication number Publication date
JP2757383B2 (en) 1998-05-25

Similar Documents

Publication Publication Date Title
US3507708A (en) Electric cell with gas permeable vent stopper
JPH0417259A (en) Battery
JPH07105991A (en) Oxygen enriched film for battery
JP2782837B2 (en) Battery
JPH04312771A (en) Air battery
JPH0260052A (en) Battery
JPH0562687A (en) Oxygen transmitting composite film and cell provided with the composite film
JP2778078B2 (en) Battery
JPH01195678A (en) Cell
JPH01267973A (en) Battery
JPH0287459A (en) Battery
JPH01267974A (en) Battery
JP2743574B2 (en) Battery
JPH01267971A (en) Battery
JPH04162374A (en) Battery
JPH01267972A (en) Battery
JPH01267970A (en) Battery
JP2822485B2 (en) Battery
JPH0287458A (en) Battery
JPH02109254A (en) Battery
JP2817343B2 (en) Battery
JP2782911B2 (en) Battery
JPH05205784A (en) Oxygen permeable composite film and battery employing said composite film
JPH042067A (en) Battery
JPH03108254A (en) Battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees