JPH09171714A - Conductive powder - Google Patents

Conductive powder

Info

Publication number
JPH09171714A
JPH09171714A JP34899195A JP34899195A JPH09171714A JP H09171714 A JPH09171714 A JP H09171714A JP 34899195 A JP34899195 A JP 34899195A JP 34899195 A JP34899195 A JP 34899195A JP H09171714 A JPH09171714 A JP H09171714A
Authority
JP
Japan
Prior art keywords
gold
coating
coated
plating
electroless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34899195A
Other languages
Japanese (ja)
Inventor
Junichi Takeshita
淳一 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP34899195A priority Critical patent/JPH09171714A/en
Publication of JPH09171714A publication Critical patent/JPH09171714A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain conductivity excellent in durability by coating a spherical resin particle whose surface is coated with gold by dry coating method, further with a gold plating film by electroless plating method. SOLUTION: For example, gold coating is made in advance on the surface of, for example, polystyrene resin particles by dry coating method, setting the quantity of coating to the range of, preferably, 0.05-65wt.%. The surface of this power is further coated with gold by electroless coating. At the time, the principal components of gold salt, a complexing agent, and a reducing agent, and a very small quantity of additive are dissolved in water, and the gold is adjusted with electroless plating solution. As for the gold salt, gold cyanide, and as for the complexing agent, citric acid, and as for the reducing agent, a boric sodium hydroxide or the like, are used, for example. The conductive powder coated with metallic coating by electroless plating is close in coating metallic layer, and is made as a continuous film, so as to obtain conductivity excellent in covering force of the metallic film and excellent in durability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,各種マトリックス材料
に配合した際に優れた分散性,密着性ならびに高導電性
能を付与することができる無電解めっき粉体,特にプラ
スチック材料に分散配合して電子機器類の微小部位を電
気的接続するACF(異方導電性フィルム)、HSC
(ヒートシールコネクター)等の目的に好適な導電性無
電解めっき粉体に関する。
The present invention relates to an electroless plated powder capable of imparting excellent dispersibility, adhesiveness and high conductive performance when compounded in various matrix materials, especially in a plastic material. ACF (anisotropic conductive film), HSC that electrically connects minute parts of electronic devices
The present invention relates to a conductive electroless plated powder suitable for purposes such as (heat seal connector).

【0002】[0002]

【従来技術】導電性を付与したプラスチックス材料は,
電子機器や部品の静電防止,電波吸収あるいは電磁波シ
ールド等の部材に広く使用されている。プラスチック材
料に導電性を付与する方法としては,従来からマトリッ
クス樹脂成分に微粉状の導電性フィラーを分散複合化す
る手段がある。このような、導電性フィラーとしては,
例えばCu、Fe、Niやステンレスなどの合金粉末、
繊維または箔片などの金属系物質、黒鉛粉末、カーボン
ブラック、炭素繊維などの炭素系物質が一般に用いられ
ている。
2. Description of the Related Art Plastic materials with conductivity are
It is widely used as a material for static electricity prevention, electromagnetic wave absorption, electromagnetic wave shielding, etc. of electronic devices and parts. As a method of imparting conductivity to a plastic material, there has been a conventional method of dispersing and compounding a fine powdery conductive filler in a matrix resin component. As such a conductive filler,
For example, alloy powder such as Cu, Fe, Ni and stainless steel,
Metal-based substances such as fibers or foil pieces, carbon-based substances such as graphite powder, carbon black and carbon fibers are generally used.

【0003】このほかの無機質導電性フィラーとして二
酸化チタン、シリカ、マイカ、シリケート、アルミナ、
硫酸バリウムなどの白色粉末の基材表面に、アンチモン
をドープして酸化第二錫を被覆した無電解めっき粉体が
知られている。(特開昭56−41603号公報、特開
昭62−181371号公報、特開平2−218768
号公報、特開平5−116930号公報、特開平7−5
08491号公報)めっき粉末品としては,例えばステ
ンレスやニッケル等の卑金属粒子にパラジウム、金等の
貴金属を被覆するもの(特開昭60−233166号公
報、特開平2−66101号公報),無機粉体にめっき
したもの(特開昭60−181294号公報,特開昭5
9−182961号公報),無機又は有機質の各種基材
にめっきしたもの(特開平1−242782号公報),
また,ベンゾグアナミンやスチレン等の特殊な樹脂粒子
に金属めっきを施したもの(特開昭57−49632号
公報、特開昭60−12603号公報)などが提案され
ている。
Other inorganic conductive fillers such as titanium dioxide, silica, mica, silicate, alumina,
An electroless plated powder is known in which the surface of a base material of white powder such as barium sulfate is doped with antimony and coated with stannic oxide. (JP-A-56-41603, JP-A-62-181371, JP-A-2-218768)
Japanese Patent Application Laid-Open No. 5-116930, Japanese Patent Application Laid-Open No. 7-5
As the plated powder product, for example, base metal particles such as stainless steel or nickel coated with a noble metal such as palladium or gold (Japanese Patent Laid-Open No. 60-233166, Japanese Patent Laid-Open No. 2-66101), inorganic powder What is plated on the body (Japanese Patent Laid-Open Nos. 60-181294 and 5
9-182961), plated on various inorganic or organic base materials (JP-A-1-242782),
In addition, there are proposed those in which special resin particles such as benzoguanamine and styrene are plated with metal (JP-A-57-49632 and JP-A-60-12603).

【0004】これらの導電性金属被覆粉末の製造方法に
おいて,上記した無電解めっき法等の湿式コーティング
法と化学蒸着法,物理蒸着法,アルコキシド法,メカノ
ケミカル法等の乾式コーティング法とに大別できる。湿
式コーティング法は,製造コストが低く量産性に優れて
いる等の利点はあるが,導電性能が不十分であったり,
めっきの場合はめっき可能な金属の選択が限定されると
いう欠点がある。特に,樹脂粒子に金等の貴金属を無電
解めっき法で被覆する場合は,必ずニッケル等の下地金
属を予め被覆しておかなかればならないが,ニッケルが
酸化され易いため,めっき膜の被覆力及び耐久性に欠け
る問題がある。このため,金のめっき膜厚で補う必要
上,その使用量を多くせざるを得ず,コスト高となる。
The methods for producing these conductive metal-coated powders are roughly classified into the wet coating methods such as the electroless plating method and the dry coating methods such as the chemical vapor deposition method, the physical vapor deposition method, the alkoxide method and the mechanochemical method. it can. The wet coating method has advantages such as low manufacturing cost and excellent mass productivity, but the conductive performance is insufficient,
In the case of plating, there is a drawback that the choice of metals that can be plated is limited. In particular, when resin particles are coated with a noble metal such as gold by electroless plating, it is necessary to coat a base metal such as nickel in advance. However, since nickel is easily oxidized, the coating power of the plating film is large. Also, there is a problem of lack of durability. For this reason, it is necessary to increase the amount of gold to be used because of the need to compensate for the thickness of the gold plating film, resulting in high cost.

【0005】一方,乾式コーティング法は,析出金属は
殆どの金属材料が可能であるが,これもまた,各粒子に
均質被膜するためには,装置が複雑かつ量産性が低いの
でコストが高いといった欠点を有する。
On the other hand, in the dry coating method, most metal materials can be used for the deposited metal, but this is also costly because the apparatus is complicated and the mass productivity is low in order to uniformly coat each particle. It has drawbacks.

【0006】[0006]

【発明が解決しようとする課題】近時,液晶ディスプレ
ーパネルの電極と駆動用LSIチップの回路基板への接
続,その他微小ピッチの電極端子間の接続など電子機器
類の微小部位を電気的接続するための導電材料として導
電性を付与したプラスチック材料が使用されているが,
これらの用途目的には特に高度かつ再現性の良好な導電
性能が要求されている。
Recently, electrical connection of minute parts of electronic devices such as connection of electrodes of a liquid crystal display panel to a circuit board of a driving LSI chip and connection between electrode terminals of other minute pitches has been made. A plastic material with conductivity is used as a conductive material for
For these purposes, particularly high and reproducible conductive performance is required.

【0007】現在,これらの精密電子材料としての導電
性フィラーにはカーボン粒子,金,ニッケル,ハンダ等
の金属粒子及び無電解めっき法による金属被覆樹脂粒子
が使用されている。しかしながら、更に高い導電性を要
求する場合、これら上記の導電性粒子ではその要求に十
分応えることができない。
At present, carbon particles, metal particles of gold, nickel, solder or the like and metal-coated resin particles by electroless plating are used as the conductive fillers as these precision electronic materials. However, when higher conductivity is required, these conductive particles cannot sufficiently meet the demand.

【0008】発明者らは,かかる未解決課題について鋭
意研究を重ね,実質的な球状樹脂粒子の表面に乾式コー
ティング法で金被覆された粒子表面に,更に金を無電解
めっき法で被覆した導電性粉体は,マトリックス成分に
対し高い導電性能を付与することを知見し,本発明を完
成した。本発明者は,特に精密電子部材として有用な導
電性粉体を提供することを目的とする。
The inventors of the present invention have conducted extensive studies on such unsolved problems, and conducted a conductive coating in which the surface of substantially spherical resin particles was coated with gold by a dry coating method, and further gold was coated by an electroless plating method. The present inventors have completed the present invention by finding that the conductive powder imparts high conductivity performance to the matrix component. The present inventor aims to provide a conductive powder that is particularly useful as a precision electronic member.

【0009】[0009]

【課題を解決するための手段】すなわち,本発明が提供
しようとする導電性粉体は,実質的な球状樹脂の粒子表
面に乾式コ−ティング法で金被覆された粒子に,さらに
無電解めっき法で金めっき被膜により被覆してなること
を構成上の特徴とするものである。
That is, the electroconductive powder to be provided by the present invention comprises particles coated with gold on the surface of particles of substantially spherical resin by a dry coating method, and further electroless plating. It is characterized in that it is coated with a gold plating film by the method.

【0010】以下、本発明に対し詳細に説明する。本発
明で基材として適用できる樹脂粒子は、特に制限される
ものではないが、使用可能な樹脂として、例えばポリス
チレン、ポリ塩化ビニル、ポリプロピレン、ポリエチレ
ン、ポリイソブチレン等のポリオレフィン、スチレン−
アクリロニトリルコポリマー、アクリロニトリル−ブタ
ジエン−スチレンターポリマー、ポリアクリレート、ポ
リメチルメタクリレート、ポリアクリルアミド等のアク
リル酸誘導体、ポリ酢酸ビニル、ポリビニルアルコール
等のポリビニル化合物、ポリアセタール、ポリエチレン
グリコール、ポリプロピレングリコール、エポキシ樹脂
等のエーテルポリマー、ベンゾグアナミン、尿素、チオ
尿素、メラミン、アセトグアナミン、ジシアンアミド、
アニリン等のアミノ化合物とホルムアルデヒド、パラホ
ルムアルデヒド、アセトアルデヒド、グリオキザールの
ようなアルデヒド類とからなるアミノ樹脂、ポリウレタ
ン、ポリエステル、含フッ素樹脂、ニトリル系樹脂など
を挙げることができる。
The present invention will be described in detail below. The resin particles applicable as a substrate in the present invention are not particularly limited, but usable resins include, for example, polystyrene, polyvinyl chloride, polypropylene, polyethylene, polyolefins such as polyisobutylene, styrene-
Acrylonitrile copolymer, acrylonitrile-butadiene-styrene terpolymer, acrylic acid derivatives such as polyacrylate, polymethylmethacrylate and polyacrylamide, polyvinyl compounds such as polyvinyl acetate and polyvinyl alcohol, ethers such as polyacetal, polyethylene glycol, polypropylene glycol and epoxy resin. Polymer, benzoguanamine, urea, thiourea, melamine, acetoguanamine, dicyanamide,
Examples thereof include amino resins made of amino compounds such as aniline and aldehydes such as formaldehyde, paraformaldehyde, acetaldehyde and glyoxal, polyurethanes, polyesters, fluorine-containing resins and nitrile resins.

【0011】かかる樹脂粒子は,実質的に球状なもので
あるが,その実質的に球状粒子とは,完全な球形の他,
楕円のような球形に近い形状を含みうることを意味する
が,球形に近いほど好ましい。粉末形状が鋭利な突片を
呈するものは、めっき被膜の密着性を損ねたり分散性を
減退させる原因になるので好ましくない。
The resin particles are substantially spherical particles, and the substantially spherical particles are, in addition to completely spherical particles,
It means that a shape close to a sphere such as an ellipse can be included, but a shape close to a sphere is preferable. It is not preferable that the powder form has sharp projections, because it causes the adhesion of the plating film to be impaired and the dispersibility to be reduced.

【0012】実質的な球状樹脂粒子の粒子径は、特に制
限されるものではないが、平均粒子径1〜50μm、好
ましくは4〜20μmである。この理由は,この範囲外
のものは,粒度分布がシャ−プなものが得られなかった
り,工業的な製造が実用的用途の点からみても必要性に
欠けるからである。
The particle size of the substantially spherical resin particles is not particularly limited, but the average particle size is 1 to 50 μm, preferably 4 to 20 μm. The reason for this is that if the particle size is out of this range, a sharp particle size distribution cannot be obtained, or the industrial production is not necessary in terms of practical use.

【0013】本発明に係る導電性粉体の特徴は,上記樹
脂球粉体の粒子表面に乾式コーティング法で、予め金被
覆されたものであり、その粒子形状は実質的に球状な粒
子である。ここで、乾式コーティング法とは、従来より
知られているものであれば特に制限されるものでない
が、例えば真空蒸着、スパッタリング、イオンビームミ
キシング、イオン注入法等の物理蒸着法(PVD)、熱
CVD法、光CVD法、プラズマCVD法等の化学蒸着
法(CVD)などに代表される気相堆積法である。
The characteristic of the conductive powder according to the present invention is that the particle surface of the above resin sphere powder is previously coated with gold by a dry coating method, and the particle shape is substantially spherical particles. . Here, the dry coating method is not particularly limited as long as it is conventionally known, and examples thereof include physical vapor deposition methods (PVD) such as vacuum vapor deposition, sputtering, ion beam mixing, and ion implantation, thermal It is a vapor deposition method represented by a chemical vapor deposition method (CVD) such as a CVD method, a photo CVD method, a plasma CVD method and the like.

【0014】その被覆量は、粒子径によって異なるため
に特に制限されるものではないが、通常0.05wt%
以上であればよい。コスト的には少なければ少ない程好
ましい。換言すれば,基材樹脂球粒子の表面を少なくと
も単分子層の金コ−ティングをするに必要な量以上であ
ればよく,その上限は自ずと制限される。
The coating amount is not particularly limited because it varies depending on the particle size, but is usually 0.05 wt%.
All that is required is the above. The smaller the cost, the more preferable. In other words, at least the amount required for gold coating of the monolayer on the surface of the base resin spherical particles is sufficient, and the upper limit is naturally limited.

【0015】本発明に係る導電性粉末の第2の特徴は,
上記粉末に無電解めっき法で更にその表面に金をコーテ
ィングさせるものである。すなわち、その特徴は従来の
無電解ニッケルめっき法の如きニッケルめっきを下地と
することなく、下地共々金単独で被覆することができる
ために,高い導電性は勿論,耐酸性,耐久性など優れた
被覆性を有するものである。また、従来の乾式法で同等
の金被覆をする場合と比較すると、製造コスト及び量産
の面で大きく有利となる。
The second characteristic of the conductive powder according to the present invention is that
The surface of the powder is further coated with gold by an electroless plating method. That is, the feature is that the base can be coated with gold alone without using the nickel plating as in the conventional electroless nickel plating method. Therefore, not only high conductivity but also acid resistance and durability are excellent. It has a covering property. Further, as compared with the case where the same gold coating is applied by the conventional dry method, it is greatly advantageous in terms of manufacturing cost and mass production.

【0016】なお,無電解めっき法による金コーティン
グには置換,化学還元,不均化反応などの反応に基づく
全ての無電解めっき反応を適用することができる。この
ような金めっき被覆は,下地として予め被覆されている
金被覆と強固に密着して被覆され,耐剥離性の良好な無
電解めっき層を形成するので,上記の効果を具備でき
る。その金属被覆重量は,含有量として0.03〜65
wt%であり,好ましくは0.3〜15wt%である。
Note that all electroless plating reactions based on reactions such as substitution, chemical reduction, and disproportionation reaction can be applied to gold coating by electroless plating. Since such a gold plating coating is tightly adhered to the gold coating previously coated as an underlayer to form an electroless plating layer having good peeling resistance, the above effects can be provided. The metal coating weight is 0.03 to 65 as the content.
wt%, preferably 0.3 to 15 wt%.

【0017】無電解めっき粉末を得るには,実質的に球
状な樹脂粒子に金を乾式コーティングした基材(以下、
「基材粒子」という)を、予め建浴した無電解金めっき
液中に分散させ、金を置換または還元析出させることに
より得られる。ここで用いる無電解金めっき液は、金を
置換または還元析出することが可能なものであれば良
く、入手可能なものであれば特に制限されるものではな
い。
In order to obtain the electroless plating powder, a substrate obtained by dry-coating substantially spherical resin particles with gold (hereinafter, referred to as
“Substrate particles”) is dispersed in an electroless gold plating solution prepared in advance, and gold is substituted or reduced and deposited. The electroless gold plating solution used here is not particularly limited as long as it can replace or reduce gold and is available.

【0018】無電解金めっき方法の具体的手段は、一例
を示せば次のように行われる。すなわち、金塩、錯化
剤、還元剤を主成分に、その他微量の添加剤を水に溶解
し無電解金めっき液を金を調整する。ここで、金塩とし
ては、例えばシアン化金、シアン化金ナトリウム、シア
ン化金カリウム等のシアン化金塩、塩化金、臭化金等の
ハロゲン化金塩、テトラクロロ金酸、テトラブロモ金酸
等のハロゲン金酸およびそのナトリウム塩またはカリウ
ム塩、亜硫酸金アンモニウム、亜硫酸金カリウム、亜硫
酸金ナトリウム等の亜硫酸金塩、チオシアン金、トリメ
チル金、等水に可溶であればその種類を問わない。
The specific means of the electroless gold plating method is as follows, as an example. That is, a gold salt, a complexing agent, and a reducing agent are used as main components, and other trace amounts of additives are dissolved in water to prepare gold for an electroless gold plating solution. Here, examples of the gold salt include gold cyanide, gold cyanide, potassium cyanide, and other cyanide cyanides, gold chloride, gold bromide, and other halogenated gold salts, tetrachloroauric acid, and tetrabromoauric acid. Such as halogenauric acid and its sodium salt or potassium salt, ammonium gold sulfite, potassium gold sulfite, gold sulfite such as sodium gold sulfite, thiocyan gold, trimethyl gold, and the like, as long as it is soluble in water.

【0019】錯化剤としては、例えばクエン酸、ヒドロ
キシ酢酸、酒石酸、リンゴ酸、乳酸、グルコン酸または
そのアルカリ金属塩やアンモニウム塩などのカルボン酸
(塩)、グリシンなどのアミノ酸、エチレンジアミン、
トリエタノールアミン、トリエチレンテトラミン、ジメ
チルアミン、塩酸ヒドロキシルアミン等の水溶性アミン
またはその誘導体、その他のアンモニウム,EDTA、
ピロリン酸(塩)、ヒドラジン化合物チオ硫酸塩など、
金イオンに対し錯化作用のある化合物の少なくとも1種
が用いられる。
Examples of complexing agents include citric acid, hydroxyacetic acid, tartaric acid, malic acid, lactic acid, gluconic acid or carboxylic acids (salts) such as alkali metal salts or ammonium salts thereof, amino acids such as glycine, ethylenediamine,
Water-soluble amines or their derivatives such as triethanolamine, triethylenetetramine, dimethylamine, hydroxylamine hydrochloride, other ammonium, EDTA,
Pyrophosphate (salt), hydrazine compound thiosulfate, etc.
At least one compound having a complexing effect on gold ions is used.

【0020】還元剤としては、水素化ホウ素ナトリウ
ム、水素化ホウ素ナトリウム等の水素化ホウ素化合物、
ジメチルアミンボラン(DMAB)等のアルキルアミン
ボラン、次亜リン酸またはその塩、ヒドラジン、ヒドロ
キシルアミン、アスコルビン酸またはその塩等が使用さ
れる。その他の添加剤としては、めっき浴の安定化およ
び析出する金皮膜の特性改善を目的として、鉛化合物、
タリウム化合物等の重金属化合物、または各種の有機化
合物が使用される。
As the reducing agent, borohydride compounds such as sodium borohydride and sodium borohydride,
An alkylamine borane such as dimethylamine borane (DMAB), hypophosphorous acid or a salt thereof, hydrazine, hydroxylamine, ascorbic acid or a salt thereof, and the like are used. Other additives include lead compounds for the purpose of stabilizing the plating bath and improving the characteristics of the deposited gold film.
Heavy metal compounds such as thallium compounds or various organic compounds are used.

【0021】このようにして調製した無電解金めっき液
を、所定のpHに合わせた後加温し、ここに基材導電性
粒子を投入し、十分均一に分散し、所定の時間の後分離
回収する。この際のpHは通常5〜14、温度は30〜
100℃の範囲内であるが、通常その無電解めっき液の
組成により最適な値が定まる。かかる金めっき方法は、
上記のように金めっき液を一度に使用する他、徐々に金
めっき液を添加していく方法が二次凝集が生じずらく、
好ましい。上記の工程により金属皮膜が濃密で連続的薄
膜として形成される。以下、常法により後処理すること
により製品として回収する。
The electroless gold plating solution thus prepared is adjusted to a predetermined pH and then heated, and the conductive particles of the base material are added thereto and dispersed sufficiently evenly, followed by separation after a predetermined time. to recover. The pH at this time is usually 5 to 14, and the temperature is 30 to
Although it is within the range of 100 ° C., the optimum value is usually determined by the composition of the electroless plating solution. This gold plating method is
In addition to using the gold plating solution at once as described above, the method of gradually adding the gold plating solution is less likely to cause secondary agglomeration,
preferable. Through the above steps, the metal film is formed as a dense and continuous thin film. Hereafter, it is collected as a product by post-processing in a conventional manner.

【0022】このようにして無電解めっき法により金属
被覆が施された導電性粉体は、被覆金属層が緻密で連続
性の薄膜として形成されているため、その粒子性状は基
材導電性粒子に比べて僅かに粒径が大きくなる程度で、
粒度分布等に実質的に相違をもたらすことはない。
Since the coated metal layer is formed as a dense and continuous thin film in the conductive powder thus metal-coated by the electroless plating method, the particle property is base conductive particles. The particle size is slightly larger than
It does not make a substantial difference in the particle size distribution or the like.

【0023】[0023]

【実施例】以下、本発明を実施例に基づいて説明する。 実施例1〜3,比較例1〜2 平均粒子径8μm、金含有量0.42wt%の化学蒸着
に基づく乾式コーティング法により金被覆されたスチレ
ン球状樹脂粒子粉末10gを、EDTA−4Na(10
g/l)、クエン酸−2Na(10g/l)及びシアン
化金カリウム(3.0g/l、Auとして2.1g/
l)からなる組成で水酸化ナトリウム水溶液によりpH
6に調整した液温60℃の無電解めっき液に撹拌しなが
ら添加し、10分間めっき処理を施した。この際の無電
解めっき液を表1に示す。
EXAMPLES The present invention will be described below based on examples. Examples 1 to 3, Comparative Examples 1 to 2 10 g of styrene spherical resin particle powder coated with gold by a dry coating method based on chemical vapor deposition having an average particle size of 8 μm and a gold content of 0.42 wt% was mixed with EDTA-4Na (10).
g / l), citrate-2Na (10 g / l) and potassium gold cyanide (3.0 g / l, 2.1 g / Au as Au).
l), and the pH of the aqueous solution of sodium hydroxide
The solution was added to the electroless plating solution having a solution temperature of 60 ° C. adjusted to 6 with stirring and subjected to plating treatment for 10 minutes. Table 1 shows the electroless plating solution at this time.

【0024】[0024]

【表1】 [Table 1]

【0025】引き続き、液を濾過し、濾過物を3回リパ
ルプ洗浄した後、熱風乾燥機で100℃の温度で乾燥し
て金被膜を形成した。このようにして得られた導電性粉
体の平均粒子径,金被膜の膜厚及び金属含有率,導電性
をそれぞれ測定評価し,その結果を表2に示した。な
お,金含有率の測定は,得られた試料粉末を王水に溶解
し,ICP及び化学分析により定量した。導電性の評価
は,試料粉末1.5gを垂直に立てた内径10mmの樹
脂製円筒内に入れ、5kgの加重をかけた状態で上下電
極間の電気抵抗を測定する方法で行った。比較のため
に,同一基材に下地として無電解ニッケルめっきを膜厚
0.1μmでめっきした後,無電解めっき法により上記
と同様な操作で金めっきした粉末についても表2に併記
した。
Subsequently, the liquid was filtered, and the filtered material was repulped and washed three times and then dried at a temperature of 100 ° C. with a hot air dryer to form a gold coating. The average particle diameter of the conductive powder thus obtained, the thickness of the gold coating, the metal content, and the conductivity were measured and evaluated, and the results are shown in Table 2. The gold content was measured by dissolving the obtained sample powder in aqua regia and quantifying it by ICP and chemical analysis. The conductivity was evaluated by placing 1.5 g of the sample powder vertically in a resin cylinder having an inner diameter of 10 mm and measuring the electrical resistance between the upper and lower electrodes while applying a weight of 5 kg. For comparison, Table 2 also shows powders obtained by electroless nickel plating as a base on the same base material with a film thickness of 0.1 μm and then gold plating by the same operation as above by the electroless plating method.

【0026】また、図1に実施例1により得られた導電
性無電解めっき粉末のSEM写真を示す。図よりめっき
粉末の状態はめっき層が基材の表面に沿った形状を呈し
ていることが認められる。
Further, FIG. 1 shows an SEM photograph of the electroconductive electroless plating powder obtained in Example 1. From the figure, it can be seen that the plating layer has a shape along the surface of the base material in the state of the plating powder.

【0027】(耐酸試験)実施例1〜3で得られためっ
き粉末及び比較例1〜2のめっき粉末を,1:1硝酸中
で5分間撹拌した後濾過回収し、脱塩水で3回洗浄の後
乾燥した粉末の電気抵抗測定結果を表2に併載した。
(Acid resistance test) The plating powders obtained in Examples 1 to 3 and the plating powders of Comparative Examples 1 and 2 were stirred in 1: 1 nitric acid for 5 minutes, collected by filtration, and washed three times with demineralized water. Table 2 also shows the electric resistance measurement results of the post-dried powder.

【0028】[0028]

【表2】 [Table 2]

【0029】表2に示すように本発明の要件を満たす実
施例品の導電性は、比較例に比べてより優れており、特
に耐酸性試験後の電気抵抗値の劣化が少なく、耐環境性
に優れていることが判る。試験後の比較例の粒子を顕微
鏡観察すると、めっき皮膜が完全に剥離していることが
観察される。これは下地ニッケルめっきが硝酸により溶
解されたためであり、実施例の無電解めっき粉体は皮膜
が金単独で構成されているため、優れた耐薬品性を示す
ことが証明された。
As shown in Table 2, the electrical conductivity of the example products satisfying the requirements of the present invention is better than that of the comparative example, and in particular, the electrical resistance value after the acid resistance test is less deteriorated and the environmental resistance is improved. It turns out that it is excellent. When the particles of the comparative example after the test are observed with a microscope, it is observed that the plating film is completely peeled off. This is because the underlying nickel plating was dissolved by nitric acid, and the electroless plated powders of the examples were proved to have excellent chemical resistance because the coating was composed of gold alone.

【0030】[0030]

【発明の効果】本発明に係る乾式コーティング法及び無
電解めっきに基づく湿式コーティング法で金コ−ティン
グ法で金コーティングした球状樹脂粉末は,金被膜の被
覆力に優れており,かつ異種金属を含まないので耐久性
にも良好な導電性を有する。したがって,特に精密電子
材料用の導電材として好適である。
INDUSTRIAL APPLICABILITY The spherical resin powder gold-coated by the gold coating method by the dry coating method and the wet coating method based on the electroless plating according to the present invention is excellent in the covering power of the gold coating and is free from the dissimilar metal. Since it does not contain it, it has good conductivity and durability. Therefore, it is particularly suitable as a conductive material for precision electronic materials.

【0031】[0031]

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1によって得られた導電性粉体(平均粒
子径;8μm)の粒子構造を示した電子顕微鏡写真(倍
率;約1000倍)である。
FIG. 1 is an electron micrograph (magnification: about 1000 times) showing a particle structure of a conductive powder (average particle diameter; 8 μm) obtained in Example 1.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C23C 18/44 C23C 18/44 H05K 1/09 H05K 1/09 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location // C23C 18/44 C23C 18/44 H05K 1/09 H05K 1/09 A

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 実質的な球状樹脂の粒子表面に乾式コ−
ティング法で金被覆された粒子表面に,さらに無電解め
っき法で金めっき被膜により被覆してなることを特徴と
する導電性粉体。
1. A dry coating on the surface of substantially spherical resin particles.
A conductive powder characterized in that the surface of particles coated with gold by the coating method is further coated with a gold plating film by the electroless plating method.
【請求項2】 乾式コーティング法は、物理蒸着法、化
学蒸着法である請求項1記載の導電性粉体。
2. The conductive powder according to claim 1, wherein the dry coating method is a physical vapor deposition method or a chemical vapor deposition method.
【請求項3】 金含有量が0.05〜65wt%の範囲
である請求項1乃至請求項2記載の導電性粉体。
3. The conductive powder according to claim 1, wherein the gold content is in the range of 0.05 to 65 wt%.
JP34899195A 1995-12-21 1995-12-21 Conductive powder Pending JPH09171714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34899195A JPH09171714A (en) 1995-12-21 1995-12-21 Conductive powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34899195A JPH09171714A (en) 1995-12-21 1995-12-21 Conductive powder

Publications (1)

Publication Number Publication Date
JPH09171714A true JPH09171714A (en) 1997-06-30

Family

ID=18400761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34899195A Pending JPH09171714A (en) 1995-12-21 1995-12-21 Conductive powder

Country Status (1)

Country Link
JP (1) JPH09171714A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100442519B1 (en) * 2002-04-09 2004-07-30 삼성전기주식회사 Alloy Plating Solution for Surface Treatment of Modular PCB
JP2004362838A (en) * 2003-06-02 2004-12-24 Sekisui Chem Co Ltd Conductive particulate and anisotropic conductive material
KR100765363B1 (en) * 2005-10-31 2007-10-09 전자부품연구원 Method for fabricating conductive particle
JP2009533552A (en) * 2006-04-12 2009-09-17 チバ ホールディング インコーポレーテッド Method for treating metal-coated particles
JP2011086631A (en) * 2010-11-24 2011-04-28 Sekisui Chem Co Ltd Conductive particulate, and anisotropic conductive material
JP2011251042A (en) * 2010-06-03 2011-12-15 Akita Univ Implant for hyperthermia and its manufacturing method
CN115558912A (en) * 2022-11-08 2023-01-03 深圳创智芯联科技股份有限公司 Environment-friendly chemical reduction gold liquid and process thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100442519B1 (en) * 2002-04-09 2004-07-30 삼성전기주식회사 Alloy Plating Solution for Surface Treatment of Modular PCB
JP2004362838A (en) * 2003-06-02 2004-12-24 Sekisui Chem Co Ltd Conductive particulate and anisotropic conductive material
KR100765363B1 (en) * 2005-10-31 2007-10-09 전자부품연구원 Method for fabricating conductive particle
JP2009533552A (en) * 2006-04-12 2009-09-17 チバ ホールディング インコーポレーテッド Method for treating metal-coated particles
JP2011251042A (en) * 2010-06-03 2011-12-15 Akita Univ Implant for hyperthermia and its manufacturing method
JP2011086631A (en) * 2010-11-24 2011-04-28 Sekisui Chem Co Ltd Conductive particulate, and anisotropic conductive material
CN115558912A (en) * 2022-11-08 2023-01-03 深圳创智芯联科技股份有限公司 Environment-friendly chemical reduction gold liquid and process thereof

Similar Documents

Publication Publication Date Title
JP3696429B2 (en) Conductive electroless plating powder, method for producing the same, and conductive material comprising the plating powder
JP5184612B2 (en) Conductive powder, conductive material containing the same, and method for producing the same
JP4638341B2 (en) Conductive fine particles and anisotropic conductive materials
JP5497183B2 (en) Silver-coated spherical resin, production method thereof, anisotropic conductive adhesive containing silver-coated spherical resin, anisotropic conductive film, and conductive spacer
JP4243279B2 (en) Conductive fine particles and anisotropic conductive materials
KR101922575B1 (en) Conductive particle, conductive material, and method for manufacturing the conductive particle
JPWO2006025485A1 (en) Conductive fine particles and anisotropic conductive materials
JP2007242307A (en) Conductive particulate and anisotropic conductive material
JP5941328B2 (en) Conductive particles and conductive material containing the same
JP2006302716A (en) Conductive particle and anisotropic conductive material
JPWO2006006687A1 (en) Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material
JP3832938B2 (en) Electroless silver plating powder and method for producing the same
JPH08311655A (en) Conductive electroless plating powder
JP4217271B2 (en) Conductive fine particles and anisotropic conductive materials
JPH09171714A (en) Conductive powder
JP6263228B2 (en) Conductive particles and conductive material containing the same
JP3596646B2 (en) Conductive electroless plating powder for anisotropic conductive film and heat seal connector
JP4188278B2 (en) Anisotropic conductive film and heat seal connector
JP2007324138A (en) Conductive particulate and anisotropic conductive material
JPH0694593B2 (en) Electroless nickel plating on anodized aluminum
JP3417699B2 (en) Conductive electroless plating powder
JP5695768B2 (en) Conductive powder and conductive material including the same
JP2007194210A (en) Conductive fine particle and anisotropic conductive material
JP4589810B2 (en) Conductive fine particles and anisotropic conductive materials
KR20080095047A (en) Manufacturing method of conductive ball using eletroless plating