JPH0225431B2 - - Google Patents

Info

Publication number
JPH0225431B2
JPH0225431B2 JP58166674A JP16667483A JPH0225431B2 JP H0225431 B2 JPH0225431 B2 JP H0225431B2 JP 58166674 A JP58166674 A JP 58166674A JP 16667483 A JP16667483 A JP 16667483A JP H0225431 B2 JPH0225431 B2 JP H0225431B2
Authority
JP
Japan
Prior art keywords
plating
powder
core material
aqueous suspension
electroless plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58166674A
Other languages
Japanese (ja)
Other versions
JPS6059070A (en
Inventor
Hiroshi Kawakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP58166674A priority Critical patent/JPS6059070A/en
Publication of JPS6059070A publication Critical patent/JPS6059070A/en
Publication of JPH0225431B2 publication Critical patent/JPH0225431B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は粉粒状芯材に無電解メツキすることに
関し、その目的とするところは、芯材表面に均一
で任意の厚さのメツキ皮膜を付与した物品を提供
することにある。 一般に、無電解メツキはその技術の進歩と用途
の開発によつて、今日では有機または無機の材質
を問わないことは勿論、その形状や大きさも関係
なく、適用されている。とは云え多くの場合、基
材は板状または成型体が多く、粉末または粒状の
芯材についてはその用途開発が新しいだけに最近
のことであつて、確立された製造方法はなく、僅
かに従来の一般的方法に従つて処理されているの
が現状である。 即ち、無電解メツキする場合通常、予め調製さ
れたメツキ液に被メツキ基材を浸漬して予め推測
により定められた時間反応させた後、反応を停止
させる方法がとられている。 被メツキ基材が粉末または粒状体についても、
上記と同様な方法が採られるがこの場合は速やか
にメツキ液に添加してメツキを施し、反応後はメ
ツキ液の過、急冷または希釈等の停止を行なわ
なければならない。 基材が粉粒体(粉末または粉状体)である場合
は他の基材に比して著しく比表面積が大きいため
メツキ反応速度が異常に速い。 従つてメツキ液のPHや各成分の変動も激しいの
でPHの調節や各成分の補給によりメツキ液を安全
に保持することは極めて困難であるのみならず、
その度にめつき速度も不定となる。 他方、粉粒体を一挙によくメツキ液に投入でき
れば問題はないが時間をかけて投入した場合始め
と終りとではメツキ皮膜の膜厚に差が生じ不均一
となる。 特に、粉粒体をメツキする場合に問題なのは凝
集した二次粒子にメツキ皮膜が施されるとその使
用に際して、二次粒子が壊われて未被覆面の露出
による被覆の欠陥が現われる。 従つて粉粒体をメツキする場合には可能な限
り、二次粒子の少ない状態によく分散したものに
メツキ皮膜を施すことが最も重要なことになる
が、従来の方法では全く期待できないものであつ
た。 このような粉粒体の微細粒子をメツキするに際
して上記の事実を鑑み、本発明者は、鋭意研究し
たところ、芯材を分散させた懸濁体にメツキ液を
添加することにより所望のメツキ皮膜が形成され
ることの知見に基づいて本発明を完成した。 すなわ本発明は、粉粒状芯材に無電解メツキを
するに当り粉粒状芯材を分散させた水性懸濁体に
無電解メツキ液を制抑して添加しながら、該芯材
を無電解メツキすることを特徴とする粉粒体メツ
キ品の製造法である。 本発明において、無電解メツキに供せられる基
材としての粉粒状芯材というのはその粒子径は特
に限定するものではなく、コロイド状微粒子から
数mm程度の粒子まで外観上粉末状態または粉粒体
のいずれでもよい。またその形状を顕微鏡的観察
によつて球状、板状、棒状、針状、中空状または
繊維状のいずれの形状であつてもよい。要するに
被メツキ基材が外観上粒状または粉状として扱れ
ているものを芯材として対象とするものである。
また芯材の材質は、有機質又は無機質を問わず無
電解メツキ可能な材質は全て包含する。尤も、芯
材は当然のことながら、実質的に水不溶性または
水難溶性でなければならない。また、芯材は化学
的に均一な組成であることを要しないのはもちろ
んであるが、それが結晶質または非晶質のいずれ
であつてもよい。重要なことは、芯の表面が化学
的にメツキ液と反応して皮膜の形成能であること
であり、外観上、粉状ないし粒状であるというこ
とである。 かかる芯材を例示的に列挙すれば、無機芯材と
しては、金属粉末、金属または非金属の酸化物
(含水物も含む)、アルミノ珪酸塩を含む金属珪酸
塩、金属炭化物、金属窒化物、金属炭酸塩、金属
硫酸塩、金属燐酸塩、金属硫化物、金属酸塩、金
属ハロゲン化物または炭素などであり、有機芯材
としては天然繊維、天然樹脂、ポリエチレン、ポ
リプロピレン、ポリ塩化ビニル、ポリスチレン、
ポリブテン、ポリアミド、ポリアクリル酸エステ
ル、ポリアクリルニトリル、ポリアセタアール、
アイオノマー、ポリエステルなどの熱可塑性樹
脂、アルキツド樹脂、フエノール樹脂、尿素樹
脂、メラミン樹脂、キシレン樹脂、シリコーン樹
脂またはジアリルフタレート樹脂の如き熱硬化性
樹脂などがあげられる。それらは、一種または二
種以上の混合物であつてもよい。この混合物とい
うのは化学的に組成が不均質のものから芯材とし
て混合物であるいずれの場合も含むものである。 かかる芯材表面上に無電解メツキするに当りま
ず、よく分散された水性懸濁体を調製する。ここ
に水性懸濁体というのは媒体が水は勿論であるが
実質的に、無電解メツキが生じない濃度の薄い無
電解メツキ液のいずれかが適当である。 水懸濁体の分散性は芯材の物性によつて異なる
ので、分散方法は、適宜所望の手段、例えば、通
常撹拌から高速撹拌、あるいはコロイドミルまた
はホモジナイザーの如きセン断分散装置を通過さ
せたセン断分散、その他超音波分散などを用い、
芯材のアグロメレートをできるだけ除去した一次
粒子に近い分散状態の水性懸濁体を調製すること
が望ましい。なお芯材を分散させるに際し例え
ば、苛性アルカリ、珪酸ソーダ等のアルカリ、ポ
リリン酸アルカリ、または界面活性剤などの分散
剤を必要に応じて用いることができる。水性懸濁
体の濃度は、特に限定する理由はないが、スラリ
ー濃度が低いとメツキ濃度が低下するので処理容
量が大となるから経済的でなく、また、逆にその
濃度が濃くなると芯材の分散性が悪くなるので芯
材の物性に応じ適宜所望のスラリー濃度に設定す
ればよいが、多くの場合50g/〜700g/好
ましくは100g/〜500g/の範囲にある。ま
たこの懸濁体中の芯材をメツキするに当り、メツ
キが効果的に実施されるべく懸濁体の温度をメツ
キ可能温度に予め調節しておくことが望ましい。 なお、これら芯材をメツキ処理するに当り、予
め洗浄、エツチング、増感および活性化処理など
芯材の物性に応じた前処理を施すことは云うまで
もない。この前処理も前記の如く水性懸濁体にし
て行うことが好ましいが、その他の方法で行つて
も差支えない。 例えば洗浄処理はアルカリ剤で行い増感処理は
可溶性第1錫塩水溶液にて行い、更に活性化処理
は可溶性パラジウム塩水溶液にて、それぞれ芯材
と接触処理することにより前処理すればよいが、
これらは既に公知のことであり、本発明において
格別の前処理を行う必要はない。 従つて水性懸濁体は、前処理操作の一部または
全部の操作の過程で調整する場合、予め何らかの
手段で前処理したものを水性懸濁体として調製す
るかまたは調製した水性懸濁体について前処理操
作を施し、次いでその懸濁体をメツキ処理に移行
させる場合など、前処理と懸濁体の調製との兼ね
合いで、幾つかの態様があげられるが、それは、
実際の操作と芯材との関係において適合した合理
的な態様を適宜選定して行えばよい。 かくして調製された水性懸濁体に無電解メツキ
液の制御しながら添加する。懸濁体には分散状態
が保たれるよう、必要に応じた、撹拌、超音波分
散処理などを与えておくことが望ましく、また温
度も制御できるように設定しておくことが望まし
い。無電解メツキ液は、水性懸濁体に添加してそ
の容量の大小に応じて稀釈されるために、通常の
メツキ液濃度の浴に被メツキ基材を浸漬処理して
メツキ操作を行うのと異なり、通常のメツキ液濃
度よりも濃い方がよい。 ここで無電解メツキ液を制御しながら添加する
というのは液濃度と共に添加速度がメツキ反応に
直接的に影響し、また、この要素は芯材の物性特
に表面特性にも著しく関係するのでこれらの要素
を十分に考慮した上で、メツキむらの生じないよ
う均一かつ強固なメツキ皮膜を形成させるために
メツキ液の添加速度を設定するということであり
多くの場合徐々に添加する方がよい。 また、このメツキ液の添加と共に多くの場合要
すれば、水性懸濁体のPH調整のため、アルカリ剤
を個別的かつ同時に添加することが望ましい。こ
の理由はメツキ液の添加によつてメツキ反応が進
行し、液中の次亜リン酸ソーダの如き還元剤が酸
化されるに従つて水素イオン濃度が増加し、次第
に水性懸濁体のPHが低下することによる。それ故
当初に設定したPHを一定に保持するためにメツキ
液とPH調整剤とを上記の如く併行して添加するの
がよい。添加方法はPH計をコントロールしなが
ら、添加する方法もよいが、還元剤の酸化還元反
応に見合つた量のアルカリ量を所定の濃度にして
添加することでもよい。 このようにして、無電解メツキを水性懸濁体に
制御して添加することにより懸濁体中で速やかな
メツキ反応が生じ分散した芯材表面に均一かつ強
固なメツキ皮膜が形成されてゆく。従つて、添加
量に応じてメツキ皮膜の膜厚を調節することがで
き、用途に応じて、添加量は設定すればよい。 本発明にかかる方法において適用されるメツキ
皮膜は特に限定なく、従来知られている無電解メ
ツキはすべて適用でき、例えば、代表的にはニツ
ケルメツキ、コバルトメツキ、銅メツキ、合金メ
ツキ、金メツキ、銀メツキなどがあげられる。 かくして、本発明にかかる方法によれば粉末ま
たは粒状の芯材について実質的に一次粒状に近い
状態で均一なメツキ皮膜を付与することができ、
またその膜厚は精度よく自由に設定することがで
きる。 他方、メツキ操作の面からみるとメツキ反応は
完全に停止するまで行われるのでメツキ薬剤を効
率よく使用できること、メツキ雰囲気が安定して
いるので各成分濃度の適節が不要であるのみなら
ずPHの変動も実質的に回避できその為の調整装置
も特に必要としないなど従来法に比べて数々の利
点があげられる。 本発明にかかるメツキ品は、例えば電導性顔料
として塗料分野、あるいは電磁遮蔽用樹脂に添加
する導電材、各種粉末冶金材料、その他複合材
料、触媒として有用である。 実施例 1 平均粒径5μのα−Al2O3粉末100gについてニ
ツケルメツキを次の方法で行つて、粉末メツキ品
を製造した。 前処理操作:塩化第1錫1g/および塩酸1
ml/の水溶液1に試料粉末を添加し、常温で
5分間撹拌する。次いで過洗浄して増感処理し
た。次いで塩化パラジウム0.1g/、塩酸0.1
ml/水溶液1に前記処理物を投入して常温で
5分間撹拌して芯材の活性化処理を行つた後過
洗浄して前処理を行つた。次いでこの前処理を行
つた試料を65℃に加温した脱塩水200mlに添加し
て充分にアグロメレートの分散が達成されるよう
に撹拌して水性懸濁体を調製した。次いで無電解
ニツケルメツキ液(硫酸ニツケル:180g/、
次亜リン酸ソーダ:218g/、エチレンジアミ
ン:20g/、PH:7.0)1を50ml/分および
164g/の苛性ソーダ水溶液500mlを25ml/分の
割合で撹拌下の上記水性懸濁体に個別かつ同時に
添加し、添加終了後は水素の発生が停止するまで
65℃に保持しながら撹拌を続けた。 かくして、メツキ反応により、α−Al2O3粒子
表面に均一かつ強固なニツケル皮膜のある粉末を
得た。 実施例 2 平均粒径20μのフエノール系樹脂粉末(ベルパ
ール、鐘紡社製商標名)50gについて実施例1と
同じ条件で前処理を行つた後、実施例1で用いた
老化メツキ液(硫酸ニツケル:0.7g/、次亜
リン酸ソーダ:0g/、エチレンジアミン:16
g/、亜リン酸ソーダ:210g/、硫酸ソー
ダ:81g/)200mlに分散させて70℃に加温し
十分撹拌分散させて水性懸濁体を調製した。次い
で、実施例1と同一組成の濃厚ニツケルメツキ液
1および苛性ソーダ500mlを上記懸濁体へ撹拌
下それぞれ50ml/分および25ml/分の割合で個別
が同時に添加してメツキ操作を行い添加終了後
は、水素の発生が停止したところで保温と撹拌を
終了させてメツキ反応終了させた。 かくして、粒子径の揃つた均一なニツケル皮膜
のあるフエノール系樹脂粉末を得た。 実施例 3 平均粒径50μの中空ガラスビース30gを実施例
1と同一条件で前処理した後、85℃に加温した脱
塩水200mlに分散させて十分撹拌して水性懸濁体
を調製した。次いで、濃厚ニツケルメツキ液(硫
酸ニツケル:150g/、次亜リン酸ソーダ:180
g/、クエン酸ソーダ:25g/、酢酸ソー
ダ:15g/)1および実施例1と同じ苛性ソ
ーダ水溶液500mlを上記懸濁体の撹拌下にそれぞ
れ50ml/分および25ml/分の割合で個別かつ同時
に添加し、添加終了後は、水素の発生が終了した
ところでメツキ操作を終了させた。 かくして粒径の揃つた均質なニツケル皮膜を付
与したガラスビーズを得た。 実施例 4〜8 被メツキ基材である各種の芯材を実施例1と全
く同じ条件で前処理したものについて、水性懸濁
体を調製してメツキ液とアルカリ剤を個別かつ同
時に添加してそれぞれメツキ処理したが、その条
件と結果は第1表および第2表の如くであつた。
The present invention relates to electroless plating of a powdery core material, and its purpose is to provide an article having a uniform plating film of any thickness on the surface of the core material. In general, due to the advancement of technology and the development of applications, electroless plating is now applied regardless of the material, organic or inorganic, and regardless of its shape or size. However, in many cases, the base material is plate-shaped or molded, and the use of powdered or granular core materials has only recently been developed, and there is no established manufacturing method. Currently, it is processed according to conventional general methods. That is, when performing electroless plating, a method is generally used in which the substrate to be plated is immersed in a plating solution prepared in advance, allowed to react for a predetermined time, and then the reaction is stopped. Even if the base material to be plated is powder or granular,
The same method as above is used, but in this case, it must be added to the plating solution immediately to perform plating, and after the reaction, the plating solution must be stopped by filtration, rapid cooling, dilution, etc. When the base material is a granular material (powder or granular material), the plating reaction rate is abnormally fast because the specific surface area is significantly larger than that of other base materials. Therefore, since the PH and each component of the plating solution fluctuate rapidly, it is not only extremely difficult to maintain the plating solution safely by adjusting the PH and replenishing each component.
Each time, the plating speed becomes unstable. On the other hand, if the powder and granules can be added to the plating solution all at once, there is no problem, but if the powder is added over time, there will be a difference in the thickness of the plating film between the beginning and the end, resulting in non-uniformity. Particularly, when plating powder or granules, a problem is that if a plating film is applied to aggregated secondary particles, the secondary particles will be broken during use and coating defects will appear due to exposure of the uncoated surface. Therefore, when plating powder or granular materials, it is most important to apply a plating film to a well-dispersed material with as few secondary particles as possible, but this cannot be expected at all with conventional methods. It was hot. In view of the above facts when plating such fine particles of powder or granular materials, the present inventor conducted extensive research and found that a desired plating film can be obtained by adding a plating liquid to a suspension in which a core material is dispersed. The present invention was completed based on the knowledge that . In other words, in the present invention, when performing electroless plating on a powdery core material, the core material is electrolessly plated while suppressing and adding an electroless plating liquid to an aqueous suspension in which the powdery core material is dispersed. This is a method for producing plated powder products characterized by plating. In the present invention, the particle size of the powder core material used as a base material to be subjected to electroless plating is not particularly limited, and may range from colloidal fine particles to particles of several millimeters in size, and may be powdery or powdery in appearance. Any part of the body is fine. Further, the shape may be determined by microscopic observation to be spherical, plate-like, rod-like, needle-like, hollow, or fibrous. In short, the core material is a base material to be plated that can be treated as granular or powdery in appearance.
Moreover, the material of the core material includes all materials that can be electrolessly plated, regardless of whether they are organic or inorganic. Of course, the core material must be substantially water-insoluble or sparingly water-soluble. Furthermore, it goes without saying that the core material does not need to have a chemically uniform composition, but it may be either crystalline or amorphous. What is important is that the surface of the core has the ability to chemically react with the plating solution to form a film, and that it has a powdery or granular appearance. Examples of such core materials include metal powders, metal or nonmetal oxides (including hydrated materials), metal silicates including aluminosilicates, metal carbides, and metal nitrides. , metal carbonate, metal sulfate, metal phosphate, metal sulfide, metal acid salt, metal halide, or carbon, and organic core materials include natural fiber, natural resin, polyethylene, polypropylene, polyvinyl chloride, polystyrene,
Polybutene, polyamide, polyacrylic ester, polyacrylonitrile, polyacetaal,
Examples include thermoplastic resins such as ionomers and polyesters, thermosetting resins such as alkyd resins, phenolic resins, urea resins, melamine resins, xylene resins, silicone resins, and diallyl phthalate resins. They may be one type or a mixture of two or more types. This mixture includes anything from chemically heterogeneous compositions to mixtures used as core materials. In performing electroless plating on the surface of such a core material, first a well-dispersed aqueous suspension is prepared. Here, the aqueous suspension is not limited to water as a medium, but it is suitable to use any electroless plating solution having a low concentration that does not substantially cause electroless plating. Since the dispersibility of the aqueous suspension differs depending on the physical properties of the core material, the dispersion method may be determined by any desired means, such as normal stirring, high-speed stirring, or passing through a shear dispersion device such as a colloid mill or homogenizer. Using shear dispersion, other ultrasonic dispersion, etc.
It is desirable to prepare an aqueous suspension in a state of dispersion close to that of primary particles, with the agglomerates of the core material removed as much as possible. In addition, when dispersing the core material, a dispersant such as a caustic alkali, an alkali such as sodium silicate, an alkali polyphosphate, or a surfactant may be used as necessary. There is no particular reason to limit the concentration of the aqueous suspension, but if the slurry concentration is low, the plating concentration will be low and the processing capacity will be large, making it uneconomical. Since the dispersibility of the slurry becomes poor, the slurry concentration may be appropriately set to a desired value depending on the physical properties of the core material, but in most cases it is in the range of 50 g/-700 g/preferably 100 g/-500 g/. Further, when plating the core material in this suspension, it is desirable to adjust the temperature of the suspension in advance to a temperature that allows plating so that plating can be carried out effectively. It goes without saying that before plating these core materials, pretreatments such as cleaning, etching, sensitization, and activation treatments are performed in accordance with the physical properties of the core materials. Although this pretreatment is preferably carried out in the form of an aqueous suspension as described above, other methods may also be used. For example, the cleaning treatment may be performed with an alkaline agent, the sensitization treatment may be performed with a soluble tin salt aqueous solution, and the activation treatment may be pretreated with a soluble palladium salt aqueous solution by contact treatment with the core material.
These are already known, and there is no need for special pretreatment in the present invention. Therefore, when an aqueous suspension is prepared in the course of some or all of the pretreatment operations, the aqueous suspension must be pretreated by some means beforehand and then prepared as an aqueous suspension, or the aqueous suspension prepared There are several ways to balance the pretreatment and preparation of the suspension, such as when a pretreatment operation is performed and then the suspension is transferred to plating treatment.
It is sufficient to appropriately select a rational mode that is suitable for the actual operation and the relationship with the core material. An electroless plating solution is added in a controlled manner to the aqueous suspension thus prepared. It is desirable that the suspension be subjected to stirring, ultrasonic dispersion treatment, etc., as necessary, in order to maintain its dispersed state, and it is also desirable that the temperature be set so as to be controllable. Since the electroless plating solution is added to an aqueous suspension and diluted according to its volume, it is different from plating by immersing the substrate to be plated in a bath with a normal plating solution concentration. Differently, it is better to have a higher concentration than normal plating solution. The reason why the electroless plating solution is added in a controlled manner is that the addition rate as well as the solution concentration directly affect the plating reaction, and these factors are also significantly related to the physical properties, especially the surface properties, of the core material. The rate of addition of the plating solution is set after fully considering the factors in order to form a uniform and strong plating film to prevent uneven plating, and in many cases it is better to add the plating solution gradually. In addition, in many cases, it is desirable to add an alkaline agent separately and simultaneously with the addition of the plating solution in order to adjust the pH of the aqueous suspension, if necessary. The reason for this is that the plating reaction progresses with the addition of the plating liquid, and as the reducing agent such as sodium hypophosphite in the liquid is oxidized, the hydrogen ion concentration increases, and the pH of the aqueous suspension gradually increases. By decreasing. Therefore, in order to maintain the initially set pH constant, it is preferable to add the plating solution and the pH adjuster simultaneously as described above. The addition method may be one in which the alkali is added while controlling the PH meter, but it is also possible to add the alkali in an amount commensurate with the redox reaction of the reducing agent at a predetermined concentration. In this way, by adding electroless plating to the aqueous suspension in a controlled manner, a rapid plating reaction occurs in the suspension, forming a uniform and strong plating film on the surface of the dispersed core material. Therefore, the thickness of the plating film can be adjusted depending on the amount added, and the amount added can be set depending on the application. The plating film applied in the method of the present invention is not particularly limited, and all conventionally known electroless platings can be applied. For example, typical examples include nickel plating, cobalt plating, copper plating, alloy plating, gold plating, and silver plating. Examples include Metsuki. Thus, according to the method of the present invention, a uniform plating film can be applied to a powder or granular core material in a state substantially close to the primary granular shape,
Further, the film thickness can be freely set with high precision. On the other hand, from the viewpoint of the plating operation, the plating reaction is carried out until it completely stops, so the plating chemical can be used efficiently, and since the plating atmosphere is stable, there is no need to adjust the concentration of each component, and the PH It has many advantages over conventional methods, such as substantially avoiding fluctuations in the amount of water and not requiring any special adjusting device for that purpose. The plated product according to the present invention is useful, for example, in the paint field as a conductive pigment, as a conductive material added to electromagnetic shielding resins, various powder metallurgical materials, other composite materials, and catalysts. Example 1 100 g of α-Al 2 O 3 powder with an average particle size of 5 μm was nickel-plated in the following manner to produce a powder-plated product. Pretreatment operation: 1 g of stannous chloride and 1 g of hydrochloric acid
Add the sample powder to 1/ml of the aqueous solution and stir for 5 minutes at room temperature. Then, it was overwashed and sensitized. Then palladium chloride 0.1g/, hydrochloric acid 0.1
The treated product was added to 1 ml/aqueous solution and stirred for 5 minutes at room temperature to activate the core material, followed by overwashing and pretreatment. Next, the pretreated sample was added to 200 ml of demineralized water heated to 65° C. and stirred to obtain sufficient agglomerate dispersion to prepare an aqueous suspension. Next, electroless nickel oxide liquid (nickel sulfate: 180g/,
Sodium hypophosphite: 218g/, ethylenediamine: 20g/, PH: 7.0) 1 at 50ml/min and
500 ml of 164 g/min of caustic soda aqueous solution were added separately and simultaneously to the above aqueous suspension under stirring at a rate of 25 ml/min until hydrogen evolution ceased after the addition was complete.
Stirring was continued while maintaining the temperature at 65°C. As a result of the plating reaction, a powder with a uniform and strong nickel film on the surface of the α-Al 2 O 3 particles was obtained. Example 2 50 g of phenolic resin powder (Bell Pearl, trade name manufactured by Kanebo Co., Ltd.) with an average particle size of 20 μm was pretreated under the same conditions as in Example 1, and then treated with the aged plating solution (nickel sulfate: 0.7g/, Sodium hypophosphite: 0g/, Ethylenediamine: 16
g/, sodium phosphite: 210 g/, sodium sulfate: 81 g/), heated to 70° C., and sufficiently stirred and dispersed to prepare an aqueous suspension. Next, a concentrated nickel plating solution 1 having the same composition as in Example 1 and 500 ml of caustic soda were individually added simultaneously to the above suspension at a rate of 50 ml/min and 25 ml/min, respectively, with stirring, and a plating operation was performed. After the addition was completed, When the generation of hydrogen ceased, the heating and stirring were terminated to complete the plating reaction. In this way, a phenolic resin powder having a uniform nickel film with a uniform particle size was obtained. Example 3 30 g of hollow glass beads with an average particle size of 50 μm were pretreated under the same conditions as in Example 1, and then dispersed in 200 ml of demineralized water heated to 85° C. and sufficiently stirred to prepare an aqueous suspension. Next, concentrated nickel liquid (nickel sulfate: 150 g/, sodium hypophosphite: 180
g/, sodium citrate: 25 g/, sodium acetate: 15 g/) 1 and 500 ml of the same caustic soda aqueous solution as in Example 1 were added separately and simultaneously to the above suspension at a rate of 50 ml/min and 25 ml/min, respectively, while stirring. However, after the addition was completed, the plating operation was terminated when hydrogen generation was completed. In this way, glass beads with uniform particle size and a homogeneous nickel film were obtained. Examples 4 to 8 Various core materials to be plated were pretreated under exactly the same conditions as in Example 1, an aqueous suspension was prepared, and a plating solution and an alkaline agent were added separately and simultaneously. Each was plated, and the conditions and results were as shown in Tables 1 and 2.

【表】【table】

【表】【table】

【表】 比較例 実施例1で用いたα−Al2O3粉末100gを実施
例1と同一の条件と方法で前処理した。 他方予め調製したニツケルメツキ浴(硫酸ニツ
ケル:25g/、次亜リン酸ソーダ:30g/、
エチレンジアミン16g/:PH7.0)10を65℃
に加温し、撹拌状態にして、前記の粉末を一挙に
加えて10分間メツキ反応させた後速やかに過し
た。得られたメツキ粉末は明らかに凝集した二次
粒子にメツキされており、不揃の粒子のメツキ粉
末であつた。 なお、実施例及び比較例で得られたメツキ粉末
を試料ごとに10等分し、それぞれの粉末の金属分
を化学分析により定量したところ、下記の表の如
き結果が得られた。
[Table] Comparative Example 100 g of α-Al 2 O 3 powder used in Example 1 was pretreated under the same conditions and method as in Example 1. On the other hand, pre-prepared nickel metal bath (nickel sulfate: 25g/, sodium hypophosphite: 30g/,
Ethylenediamine 16g/:PH7.0) 10 at 65℃
The powder was added all at once to the mixture, and the mixture was plated for 10 minutes, followed by rapid filtration. The resulting plating powder was clearly plated into agglomerated secondary particles, and was a plated powder with irregular particles. The plating powder obtained in Examples and Comparative Examples was divided into 10 equal parts for each sample, and the metal content of each powder was determined by chemical analysis, and the results shown in the table below were obtained.

【表】【table】

Claims (1)

【特許請求の範囲】 1 粉粒状芯材に無電解メツキをするに当り、粉
粒状芯材を分散させた水性懸濁体に無電解メツキ
液を制御して添加しながら、該芯材を無電解メツ
キすることを特徴とする粉粒体メツキ品の製造
法。 2 水性懸濁体は水または無電解メツキが実質的
に生じない濃度の無電解メツキ液を媒体とする懸
濁体である特許請求の範囲第1項記載の粉粒体メ
ツキ品の製造法。 3 水性懸濁体は無電解メツキの可能な温度に加
温されていることを特徴とする特許請求の範囲第
1項記載の粉粒体メツキ品の製造法。 4 無電解メツキがニツケルメツキであることを
特徴とする特許請求の範囲第1項記載の粉粒体メ
ツキ品の製造法。
[Claims] 1. When performing electroless plating on a powdery core material, the core material is electrolessly plated while controlling and adding an electroless plating solution to an aqueous suspension in which the powdery core material is dispersed. A method for producing powder-plated products characterized by electrolytic plating. 2. The method for producing a powder plated product according to claim 1, wherein the aqueous suspension is a suspension using water or an electroless plating solution having a concentration that substantially does not cause electroless plating. 3. The method for producing a powder plated product according to claim 1, wherein the aqueous suspension is heated to a temperature that allows electroless plating. 4. The method for producing a powder plated product according to claim 1, wherein the electroless plating is nickel plating.
JP58166674A 1983-09-12 1983-09-12 Manufacture of plated fine grain Granted JPS6059070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58166674A JPS6059070A (en) 1983-09-12 1983-09-12 Manufacture of plated fine grain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58166674A JPS6059070A (en) 1983-09-12 1983-09-12 Manufacture of plated fine grain

Publications (2)

Publication Number Publication Date
JPS6059070A JPS6059070A (en) 1985-04-05
JPH0225431B2 true JPH0225431B2 (en) 1990-06-04

Family

ID=15835617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58166674A Granted JPS6059070A (en) 1983-09-12 1983-09-12 Manufacture of plated fine grain

Country Status (1)

Country Link
JP (1) JPS6059070A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276979A (en) * 1985-05-30 1986-12-06 Nippon Chem Ind Co Ltd:The Manufacture of nickel plated material
JPS62107073A (en) * 1985-11-01 1987-05-18 Nippon Chem Ind Co Ltd:The Production of noble metal plated material
JPS6421082A (en) * 1987-07-15 1989-01-24 Nippon Chemical Ind Production of powdery plated material
JPH01225776A (en) * 1988-03-07 1989-09-08 Mitsubishi Metal Corp Silver-coated spherical phenolic resin powder
WO2009054387A1 (en) 2007-10-22 2009-04-30 Nippon Chemical Industrial Co., Ltd. Coated conductive powder and conductive adhesive using the same
KR101505227B1 (en) 2007-10-22 2015-03-23 니폰 가가쿠 고교 가부시키가이샤 Coated conductive powder and conductive adhesive using the same
KR101586659B1 (en) 2013-09-10 2016-01-20 한국기계연구원 A Controlling Method of Oxidizing Film of High explosive characteristics
JP6863170B2 (en) * 2016-12-21 2021-04-21 住友金属鉱山株式会社 A method for measuring the plating treatment time of an electroless plating solution, a sample preparation method for preparing a sample for evaluating an electroless plating solution, and a method for evaluating an electroless plating solution.
KR102568485B1 (en) * 2020-12-30 2023-08-21 한국수력원자력 주식회사 Passive cooling device for cooling main control room of nuclear power plant

Also Published As

Publication number Publication date
JPS6059070A (en) 1985-04-05

Similar Documents

Publication Publication Date Title
US20060073335A1 (en) Conductive electrolessly plated powder and method for making same
CN109382508A (en) A kind of electric slurry spherical gold powder and preparation method thereof
US4719145A (en) Catalytic process and systems
JPH0225431B2 (en)
CN111618316A (en) Surface-modified silver powder and coating preparation method thereof
JPH0696771B2 (en) Electroless plating powder, conductive filler and method for producing the same
CN111687429A (en) End slurry silver powder for chip electronic component and preparation method thereof
US4888209A (en) Catalytic process and systems
JPS6155562B2 (en)
IE910373A1 (en) Process for making finely divided particles of silver metal
JPS6320486A (en) Production of silver or copper coated mica
JPH0372683B2 (en)
JPS60177182A (en) Electroless plating liquid and plating method using said liquid
JP2602495B2 (en) Manufacturing method of nickel plating material
JPH0475316B2 (en)
JPS6096548A (en) Electrically conductive material
JP3905013B2 (en) Conductive electroless plating powder and manufacturing method thereof
JP3210096B2 (en) Nickel alloy plated powder and method for producing the same
JPS60162779A (en) Silver plated composition and its manufacture
JP2632007B2 (en) Manufacturing method of magnetic electroless plating powder
JP3028972B2 (en) Aluminum-based electroless plating powder, conductive filler and method for producing the same
JP2619266B2 (en) Colored electroless plating powder and method for producing the same
US4224178A (en) Method for reducing the crystallinity of a stabilized colloidal composition
US20050227073A1 (en) Conductive electrolessly plated powder and method for making same
JPS62107073A (en) Production of noble metal plated material