JPH02295063A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH02295063A
JPH02295063A JP1114160A JP11416089A JPH02295063A JP H02295063 A JPH02295063 A JP H02295063A JP 1114160 A JP1114160 A JP 1114160A JP 11416089 A JP11416089 A JP 11416089A JP H02295063 A JPH02295063 A JP H02295063A
Authority
JP
Japan
Prior art keywords
electrode
cylindrical
conductive polymer
electrodes
cracks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1114160A
Other languages
Japanese (ja)
Other versions
JP2810105B2 (en
Inventor
Keiji Taniguchi
圭司 谷口
Okitoshi Kimura
興利 木村
Toshiyuki Kahata
利幸 加幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1114160A priority Critical patent/JP2810105B2/en
Publication of JPH02295063A publication Critical patent/JPH02295063A/en
Application granted granted Critical
Publication of JP2810105B2 publication Critical patent/JP2810105B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase contact area with an electrolyte and facing area with a counter electrode without cracks, coming-off, or breakage which may happen in winding operation of a sheet-shaped electrode by using an electrode prepared by cylindrically molding a conductive polymer. CONSTITUTION:An electrode prepared by cylindrically molding a conductive polymer is used. A cylindrical shape is preferable but a prismatic shape such as triangle, square, and hexagonal shape is allowable. The cylindrical mix electrode can be in contact with an electrolyte on both sides of outer surface and inner surface, and also can be faced with counter electrodes on both sides. If cylindrical mix type electrodes having different sizes are arranged concentrically and separators and counter electrodes are arranged between these electrodes, large area is ensured like a spiral type. In addition, problems such as cracks, coming-off, and breakage which may happen in winding operation of a sheet- shaped electrode are avoided.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、導電性高分子を応用した二次電池に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a secondary battery using a conductive polymer.

[従来の技術] 従来導電性高分子よりなる合剤型電極を使用した2次電
池としては、特開昭62− 243248、特開昭62
− 193061、特開昭62− 1−78011i8
、特開昭62−93865 、特開昭62− 1883
48等が公知である。
[Prior art] Conventional secondary batteries using a mixture type electrode made of conductive polymer are disclosed in Japanese Patent Application Laid-open No. 62-243248 and Japanese Patent Application Laid-open No. 62-243248.
- 193061, JP-A-62-1-78011i8
, JP-A-62-93865, JP-A-62-1883
48 etc. are publicly known.

導電性高分子よりなる合剤型電極の形態としして従来は
粉状または微粒子状の導電性高分子をポリテトラフルオ
口エチレン等の結着剤及びカーボンブラック等の導電性
材料と共に混練し、加圧成型するペレット型か一般的で
あるが、このものはボタン型電池等、小容量タイプに適
している。一方人電流を取り出すいわゆる大容量タイプ
に本合剤型電極を適用する場合は金属メッシュ等の東電
体に」二記混練物を塗布し、加圧成型して集電体と一体
化したシー1・状合剤電極とし、セパレーター、対極と
スパイラル状にして利用するのか一般的である。
Conventionally, a mixture electrode made of a conductive polymer is prepared by kneading a powder or particulate conductive polymer with a binder such as polytetrafluoroethylene and a conductive material such as carbon black. The pellet type, which is pressure molded, is generally used, and this type is suitable for small capacity types such as button batteries. On the other hand, when applying this mixture type electrode to a so-called large-capacity type electrode that extracts human current, apply the kneaded product described in "2" to a TEPCO body such as a metal mesh, press-mold it, and integrate it with a current collector.・It is common to use it as a spiral electrode with a separator and a counter electrode.

たか、この場合スパイラル状に巻く時、合剤型電極のひ
び割れ、脱落、折れ等が生じ、到底実用に耐えるもので
はない。この点の改良を11指し、例えば特開昭62−
93865ではアニリン系重合体、フッ素樹脂の水性デ
ィスバージョンに更に低d1;点水溶性有機化合物を添
加する事が記載されているが未だ満足のいくものではな
い。
However, in this case, when spirally wound, the mixture type electrode may crack, fall off, or break, making it completely impractical. There are 11 improvements in this regard, such as JP-A-62-
No. 93865 describes the addition of a water-soluble organic compound with a lower d1 point to the aqueous dispersion of an aniline polymer or fluororesin, but this is not yet satisfactory.

従って大電流を取り出すにふさわしい合剤型電極の形態
として従来は満足のゆくものがながった。
Therefore, until now, there have been no satisfactory forms of mixture type electrodes suitable for extracting large currents.

[発明が解決しようとする課題コ 本発明は、こうした実情に鑑み、スパイラル型電極の様
に電解液との接触面積及び対極との対向面積が広くとれ
る長所を有しながら、かつ平板状に成型した合剤を巻く
時のひび割れ、脱落、折れ等を防止した新規な形態の二
次電池を提供することを目的とするものである。
[Problems to be Solved by the Invention] In view of these circumstances, the present invention has the advantage of having a large contact area with the electrolyte and a large opposing area with the counter electrode like a spiral electrode, and which is formed into a flat plate shape. The object of the present invention is to provide a new type of secondary battery that prevents cracking, falling off, bending, etc. when the mixture is wound.

[課題を解決するための手段] 本発明者らは、前記した課題を解決すべく、鋭意研究を
重ねた結果、導電性高分子を筒状に成形して電極とした
形態が有効であることを見出し、本発明に至った。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present inventors have conducted extensive research and found that it is effective to form an electrode by forming a conductive polymer into a cylindrical shape. This discovery led to the present invention.

すなわち、本発明は導電性高分子を筒状に成型せしめた
電極を有することを特徴とする二次電池である。この場
合筒の形状は円筒状か好ましいが、必要により三角、四
角、六角等の角筒でもよい。
That is, the present invention is a secondary battery characterized by having an electrode made of a conductive polymer molded into a cylindrical shape. In this case, the shape of the tube is preferably cylindrical, but it may be a rectangular tube such as a triangular, square, or hexagonal tube if necessary.

本発明の円筒状合剤型電極によれば外周面及び内周面の
2面で電解液に接触が可能であり、同様にこの2面で対
極との対向が可能である。
According to the cylindrical mixture type electrode of the present invention, it is possible to contact the electrolytic solution on two surfaces, the outer circumferential surface and the inner circumferential surface, and similarly, it is possible to face the counter electrode on these two surfaces.

必要ならば大きさの異なる筒状合剤型電極を同心状ある
いは同心円状に配置し、各々の間にセパレーター、対極
を配置すれば実質的に大面積のとれるスパイラル型と何
らかイつる事なく、しかもシー1・状合剤型電極を巻く
時の様なひび割れ、脱落、折れ等の問題は全くないもの
となる。
If necessary, cylindrical mixture type electrodes of different sizes can be arranged concentrically or in concentric circles, and a separator and counter electrode can be placed between each electrode without any difference from the spiral type, which can substantially cover a large area. Moreover, there is no problem of cracking, falling off, bending, etc. when winding the C1-like mixture type electrode.

この場合の集電方法は種々考えられるが、例としてはく
し状の東電体とし、各くしの歯を各々の円筒状電極に取
りつければ、全円筒状電極からの電流を集中して取り出
す事は容易である。
Various current collection methods can be considered in this case, but for example, if you use a comb-shaped TEPCO body and attach the teeth of each comb to each cylindrical electrode, it is possible to concentrate the current from all the cylindrical electrodes. It's easy.

本発明で使用される導電性高分子としては、例えばポリ
ピロール、ポリチオフェン、ポリチアジル、ポリアセチ
レン、ポリパラフェニレン、ボリパラフェニレンスルフ
ィド、ポリアニリン、ポリパラフェニレンビニレン、ポ
リイソチアナフテン、ポリピリダジン、ポリアスレン、
ポリセレノフェン、ポリピリジン、ポリアセン、ポリペ
リナフタレン等が適宜用いられる。
Examples of the conductive polymer used in the present invention include polypyrrole, polythiophene, polythiazyl, polyacetylene, polyparaphenylene, polyparaphenylene sulfide, polyaniline, polyparaphenylene vinylene, polyisothianaphthene, polypyridazine, polyathrene,
Polyselenophene, polypyridine, polyacene, polyperinaphthalene, etc. are used as appropriate.

また、これら導電性高分子に対するドーパン1・とじて
はBF4−  C104−  PF6AsF5、SbF
5、Na1 I2、KSBr2等がある。
In addition, dopant 1 for these conductive polymers is BF4-C104-PF6AsF5, SbF
5, Na1 I2, KSBr2, etc.

また、本発明で用いる樹脂結着剤としてはポリテ1・ラ
フルオロエチレン、フッ化ビニリデン等のフッ素樹脂、
エチレンー酢ビ共重合体、エチレンーエチルアクリレー
ト共重合体、エポキシ樹脂、ポリビニルアルコール、ポ
リエステル樹脂、ポリエチレン、ポリプロピレン等のポ
リアルキレン樹脂等が用いられる。これらの樹脂結着剤
は使用する導電性高分子、導電性材料、電解液により適
切なものを選択すれば良いが、少量でこれら導電性高分
子、導電性祠料を結希でき、かつ電解液への溶解、膨潤
がないものを選択する必要がある。ただし、これら樹脂
結着剤は必要不可欠なものではなく、導電性高分子によ
っては(例えばポリアニリン)これら樹脂結着剤を使用
せずに加圧成形するだけで本発明の円筒状電極を得るこ
とができる。その場合は正極単位量当りの導電性高分子
の比率を向上させるため、樹脂結着剤は使用しない事が
望ましい。
In addition, as the resin binder used in the present invention, fluororesins such as polytetrafluoroethylene and vinylidene fluoride,
Polyalkylene resins such as ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, epoxy resin, polyvinyl alcohol, polyester resin, polyethylene, and polypropylene are used. These resin binders can be selected appropriately depending on the conductive polymer, conductive material, and electrolyte solution used, but a small amount can bind these conductive polymers and conductive abrasive materials, and It is necessary to select one that does not dissolve in liquid or swell. However, these resin binders are not essential, and depending on the conductive polymer (for example, polyaniline), it is possible to obtain the cylindrical electrode of the present invention simply by pressure molding without using these resin binders. I can do it. In that case, in order to improve the ratio of conductive polymer per unit amount of positive electrode, it is desirable not to use a resin binder.

また、導電性材料としてはケッチェンブラック、アセチ
レンブラック、グラファイト等のカーボン系材料、SU
S短繊維、白金、金、銀等の金属微粒子及び金属短繊維
等が挙げられるが、カーボン系材料がより好ましい。
In addition, as conductive materials, carbon-based materials such as Ketjen black, acetylene black, and graphite, SU
Examples include S short fibers, metal fine particles such as platinum, gold, and silver, and short metal fibers, but carbon-based materials are more preferable.

次に、これら導電性高分子、導電性材料、樹脂結着剤を
用いて本発明の筒状合剤型電極を作成する方法を以下に
例示する。
Next, a method for producing the cylindrical mixture type electrode of the present invention using these conductive polymers, conductive materials, and resin binders will be exemplified below.

導電性高分子(好ましくは粉体)と導電性祠料及び樹脂
結若剤(粉体、溶液、ディスバージョンいずれでも可)
を混練し、円筒状・合剤成型器で加圧成型後、真空乾燥
(樹脂結着剤が粉体の場合は真空乾燥の必要はない)す
れば良い。
Conductive polymer (preferably powder), conductive abrasive, and resin binder (powder, solution, or dispersion can be used)
After kneading and press-molding in a cylindrical mixer, vacuum drying (if the resin binder is a powder, vacuum drying is not necessary).

導電性嵩分子及び導電性材料及び樹脂結着剤の重量比と
しては導電性高分子が60〜100重量%好ましくは8
0〜95重量%、導電性材料は0〜40重凰%好ましく
は5〜20重量%、樹脂結着剤は0〜20重量%好まし
くは0−10重量%である。
The weight ratio of the conductive bulk molecule, conductive material, and resin binder is 60 to 100% by weight of the conductive polymer, preferably 8
0 to 95% by weight, the conductive material is 0 to 40% by weight, preferably 5 to 20% by weight, and the resin binder is 0 to 20% by weight, preferably 0 to 10% by weight.

本発明で使用する導電性高分子は電解重合法、化学重合
法いずれでも良いが、混練の際、便利な粉状で得やすい
事及び量産性の点で化学重合法のものかより好ましい。
The conductive polymer used in the present invention may be produced by either an electrolytic polymerization method or a chemical polymerization method, but it is more preferable to use a chemical polymerization method because it is easy to obtain in powder form during kneading and can be mass-produced.

本発明の筒状合剤型電極を正極として二次電池に使用す
る場合、負極としては亜鉛、アノレミニウム、マグネシ
ウム、リチウム、カドミウム竹及び正極とは別種の導電
性高分子か使用てきる。
When the cylindrical mixture type electrode of the present invention is used as a positive electrode in a secondary battery, zinc, anoleminium, magnesium, lithium, cadmium bamboo, or a conductive polymer different from the positive electrode can be used as the negative electrode.

また、本発明の筒状合剤型電極を負極として二次電池に
使用する場合、正極としては二酸化マンガン、酸化銀、
弗化黒鉛、塩化チオニノレ、活性炭、二硫化チタン、二
硫化モリブデン及び負極とは別種の導電性高分子が使用
できる。もちろん、正極、負極ともに本発明の導電性高
分子よりなる筒状合剤型電極であっても良0。
In addition, when the cylindrical mixture type electrode of the present invention is used as a negative electrode in a secondary battery, as a positive electrode, manganese dioxide, silver oxide,
Graphite fluoride, thionyl chloride, activated carbon, titanium disulfide, molybdenum disulfide, and other types of conductive polymers than the negative electrode can be used. Of course, both the positive electrode and the negative electrode may be cylindrical mixture type electrodes made of the conductive polymer of the present invention.

電解液としてはノ\ロゲン化金属の水溶液または有機溶
媒の溶液が好適に使用できる。たたし、負極かリチウム
の場合は有機溶媒、例えばγブチロラク1・ン、プロピ
レンカーボネ−1ヘ、ジメチルホルムアミド、ジメトキ
シエタン等から選択される。支持塩としては水溶液系で
は塩化アンモニウム、有機溶媒などは過塩素酸リチウム
、ホウフソ化リチウム等が用いられる。
As the electrolytic solution, an aqueous solution of a metal halogenide or a solution of an organic solvent can be suitably used. However, when the negative electrode is lithium, an organic solvent is selected from, for example, γ-butyrolactone, propylene carbonate, dimethylformamide, dimethoxyethane, and the like. As the supporting salt, ammonium chloride is used in an aqueous solution system, and lithium perchlorate, lithium borofluoride, etc. are used in an organic solvent.

[実施例] 以下、実施例により本発明を更に具体的1こ説明する。[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例] (1)化学重合ボリアニリンの合成 3QOmlのIMHCI水溶液にアニリン20.4g(
 0.219mol)を溶解し、水冷下5〜10°C1
こ保ちながら(NI+4 ) 2 S 2 0 a l
I..5g  (0.0504mol)を200mlの
IMHCI水溶液に溶解した溶液を滴下、撹拌した。滴
下終了後、2時間同温度で撹拌を続け、析出したボリア
ニリン(粉状)を濾取した。得られたポリアニリンを2
 0 [] m lの水で3回洗浄し、次にメタノール
100mlで2回洗浄し、乾燥した。
Examples] (1) Synthesis of chemically polymerized polyaniline 20.4 g of aniline (
0.219 mol) and cooled at 5-10°C1 under water cooling.
While keeping this (NI+4) 2 S 2 0 a l
I. .. A solution of 5 g (0.0504 mol) dissolved in 200 ml of IMHCI aqueous solution was added dropwise and stirred. After completion of the dropwise addition, stirring was continued at the same temperature for 2 hours, and precipitated polyaniline (powder) was collected by filtration. The obtained polyaniline is 2
It was washed three times with 0 [] ml of water, then twice with 100 ml of methanol, and dried.

次に本ポリアニリンをヒドラジンの20%メタノール溶
液300+n l中、室温で2時間撹拌し、脱ドーブ及
び還元を行ない濾取した。本ボリアニリンを再びヒドラ
ジンの20%メタノール溶液300ml中処理を行なっ
た。この脱ドープ還元処理を5回繰返し、濾取物をメタ
ノールI.OOmlで2回洗浄し、淡青色のポリアニリ
ンio.ogを得た。
Next, this polyaniline was stirred for 2 hours at room temperature in 300+nl of a 20% methanol solution of hydrazine to perform dedoving and reduction, and then filtered. This polyaniline was treated again in 300 ml of a 20% methanol solution of hydrazine. This dedoping reduction treatment was repeated five times, and the filtered material was washed with methanol I. Wash twice with OOml and remove pale blue polyaniline io. I got og.

(2)円筒状合剤型電極の作成 上記で合成したボリアニリンI..5[igとグラファ
イI−0.16g  (ロンザ社製KS−6)を充分に
混練し、加圧成型器にて100kg/cm 2の圧力で
外径9.5mm、内径6mms高さ40mmの第1図に
示す円筒状電極を作成した。
(2) Creation of cylindrical mixture electrode The polyaniline I. .. 5.ig and Graphite I-0.16g (KS-6 manufactured by Lonza) were thoroughly kneaded, and molded into a mold with an outer diameter of 9.5 mm, an inner diameter of 6 mm, and a height of 40 mm at a pressure of 100 kg/cm2. A cylindrical electrode shown in Figure 1 was created.

(3)電池特性の評価 上記円筒状電極を正極とし、リチウム箔[本城金属■、
50μm厚]セパレーター(ポリプラスチックス■ジュ
ラガード)、及び電解液としてLiBF+のプロピレン
カーボネ−ト70Vol%、ジメトキンエタン 30v
ol%の3M溶液を使用し、第2図に示す評価用セルを
作成し、充放電特性を調べた。
(3) Evaluation of battery characteristics The above cylindrical electrode was used as the positive electrode, and lithium foil [Honjo Metal ■,
50 μm thick] separator (Polyplastics Duraguard), and as electrolyte LiBF+ propylene carbonate 70 Vol%, dimethine ethane 30 V
An evaluation cell shown in FIG. 2 was prepared using a 3M solution of 3M ol%, and its charge/discharge characteristics were investigated.

なお、評価方法は次の通りである。The evaluation method is as follows.

充電終止電圧3、8■、放電終止電圧2,3■、充放電
電流20mAに設定し、充放電試験を行つた。正極エネ
ルギー密度は348″Wh/kgであった。
A charging/discharging test was conducted by setting the charging end voltage to 3.8 cm, the discharging end voltage to 2.3 cm, and the charging/discharging current to 20 mA. The positive electrode energy density was 348″Wh/kg.

また、100回の充放電においても正極の形状に変化は
見られず、割れ、脱落等は認められなかった。
Further, even after 100 charging and discharging cycles, no change in the shape of the positive electrode was observed, and no cracking, falling off, etc. were observed.

実施例2 ポリアニリン2g1ケッチェンブラック(ライオン■、
ケッチェンブラックE C ) 0.2g,テフロンデ
ィスバージョン(ダイキン■D−2、固型分60wt%
) 0.33g ,水2.27gを充分に混練し、本混
練物3 . 44gを取り加圧成型器にてIOOkg/
ell’の圧力で外径9.5mm %内径[iIllm
S胃さ43mmの円筒状電極を作成した。本円筒状電極
を真空下100℃で5時間乾燥した。
Example 2 Polyaniline 2g1 Ketjen Black (Lion ■,
Ketjen Black E C ) 0.2g, Teflon Disversion (Daikin D-2, solid content 60wt%)
) and 2.27 g of water were sufficiently kneaded to obtain the main kneaded product 3. Take 44g and use a pressure molder to make IOOkg/
Outer diameter 9.5 mm at ell' pressure % inner diameter [iIllm
A cylindrical electrode with a diameter of 43 mm was created. The cylindrical electrode was dried under vacuum at 100° C. for 5 hours.

本乾燥後の円筒状電極を正極とし、以下実施例1と同様
にして充放電試験を行った。
The cylindrical electrode after main drying was used as a positive electrode, and a charge/discharge test was conducted in the same manner as in Example 1.

正極エネルギー密度は352Wh/kgであり、1− 
0 0回の充放電でも正極の形状に変化は見られなかっ
た。
The positive electrode energy density is 352Wh/kg, and 1-
No change was observed in the shape of the positive electrode even after charging and discharging 00 times.

比較例1 ポリアニリン2.81g,クラファイ1・(ロンザ社製
KS−8) 0.28gを充分に混練し、加圧成型器に
て1.00kg/cm2の圧力で直径9.5■、高さ4
0++vの円柱状電極を作成した。本円柱状電極を正極
とし、この周りにセパレータ−(ポリプラスチックス銖
ジュラガード)を巻き、更にこの周りにリチウム箔(本
城金属妹、50μm厚)を巻き、実施例1と同様の評価
用セルで充放電試験を行なった。
Comparative Example 1 2.81 g of polyaniline and 0.28 g of Krafay 1 (KS-8 manufactured by Lonza) were thoroughly kneaded and molded using a pressure molder at a pressure of 1.00 kg/cm2 to form a mold with a diameter of 9.5 cm and a height of 4
A 0++v cylindrical electrode was created. This cylindrical electrode was used as a positive electrode, a separator (Polyplastics Kinudura Guard) was wrapped around it, and lithium foil (Honjo Metal Imouto, 50 μm thick) was wrapped around it, and the same evaluation as in Example 1 was carried out. A charge/discharge test was conducted on the cell.

正極エネルギー密度は23/ ’tJh/ kgであっ
た。
The positive electrode energy density was 23/′tJh/kg.

また100回の充放電試験後、正極には縦方向に亀裂が
認められた。
Furthermore, after 100 charge/discharge tests, cracks were observed in the positive electrode in the vertical direction.

比較例2 厚さ 0.1mm,メッシュサイズ2mmX 1mmの
ステンレス( S U S 31B)のエキスバンドメ
タルを長さ 100IIlm,幅40mmの大きさに切
断した上に実施例2の混練物を塗布時の厚さ 2IIl
mになる様に塗布し、加圧成型器にて100kg/cm
 ’で加圧し、シート状合剤型電極とした。本シー1・
状合剤型電極を真空下、100℃で5時間、乾燥し、本
乾燥後のシー1・状合剤型電極を5■φの丸棒に巻きつ
けてクラックの発生、エキスバンドメタルとの密着性を
観察した。その結果、塗布後の乾燥時にクラックが入り
、巻きつけテストでは大きな割れが生じた。また、エキ
スバンドメタルからの剥れも生じていた。
Comparative Example 2 An expanded metal made of stainless steel (SUS 31B) with a thickness of 0.1 mm and a mesh size of 2 mm x 1 mm was cut into a size of 100 II m in length and 40 mm in width, and the kneaded material of Example 2 was applied on it. Thickness 2IIl
Apply to a weight of 100kg/cm using a pressure molder.
' to form a sheet-like mixture type electrode. This Sea 1・
Dry the mixture type electrode under vacuum at 100°C for 5 hours, and wrap the dried mixture electrode around a 5mm diameter round bar to check for cracks and the contact with the expanded metal. Adhesion was observed. As a result, cracks appeared during drying after application, and large cracks occurred in the winding test. In addition, peeling from the extended band metal also occurred.

[発明の効果コ 以上説明したように本発明の筒状合剤型電極を使用した
2次電池は製作時あるいは使用時に電極にひび割れ、剥
れ等の欠陥を生じることがなく、充分なエネルキギー容
量と充放電特性、および安定性を示し、信頼性の高い電
極である。
[Effects of the Invention] As explained above, the secondary battery using the cylindrical composite electrode of the present invention does not have defects such as cracking or peeling in the electrode during manufacture or use, and has sufficient energy capacity. It is a highly reliable electrode with excellent charge/discharge characteristics and stability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の二次電池に使用する筒状電極の説明す
る図、第2図は本発明の二次電池を評価するためのセル
を説明する図。 1・・・正極用白金リード線、 2・・・負極用白金線リード、3・・・テフロン栓、4
・・・電解液、5・・・リチウム箔(負極)、6・・・
ジュラガード(セパレータ)、7・・・筒状正極、8・
・・ガラスビン。
FIG. 1 is a diagram illustrating a cylindrical electrode used in the secondary battery of the present invention, and FIG. 2 is a diagram illustrating a cell for evaluating the secondary battery of the present invention. 1... Platinum lead wire for positive electrode, 2... Platinum wire lead for negative electrode, 3... Teflon plug, 4
... Electrolyte, 5... Lithium foil (negative electrode), 6...
Duraguard (separator), 7... Cylindrical positive electrode, 8.
...Glass bottle.

Claims (1)

【特許請求の範囲】[Claims]  導電性高分子を筒状に成型せしめた電極を有すること
を特徴とする二次電池。
A secondary battery characterized by having an electrode made of a conductive polymer molded into a cylindrical shape.
JP1114160A 1989-05-09 1989-05-09 Electrodes for secondary batteries Expired - Lifetime JP2810105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1114160A JP2810105B2 (en) 1989-05-09 1989-05-09 Electrodes for secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1114160A JP2810105B2 (en) 1989-05-09 1989-05-09 Electrodes for secondary batteries

Publications (2)

Publication Number Publication Date
JPH02295063A true JPH02295063A (en) 1990-12-05
JP2810105B2 JP2810105B2 (en) 1998-10-15

Family

ID=14630664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1114160A Expired - Lifetime JP2810105B2 (en) 1989-05-09 1989-05-09 Electrodes for secondary batteries

Country Status (1)

Country Link
JP (1) JP2810105B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6235422B1 (en) 1999-05-28 2001-05-22 The Gillette Company Battery
US6261717B1 (en) 1999-05-28 2001-07-17 The Gillette Company Battery having an electrode within another electrode
US6342317B1 (en) 1999-07-21 2002-01-29 The Gillette Company Battery
US6410187B1 (en) 1999-09-09 2002-06-25 The Gillette Company Primary alkaline battery
JP2003308839A (en) * 2002-04-15 2003-10-31 Nec Corp Radical battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112772U (en) * 1980-01-30 1981-08-31
JPS6013672U (en) * 1983-07-08 1985-01-30 三洋電機株式会社 cylindrical battery
JPS6293865A (en) * 1985-10-21 1987-04-30 Showa Denko Kk Aniline polymer electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112772U (en) * 1980-01-30 1981-08-31
JPS6013672U (en) * 1983-07-08 1985-01-30 三洋電機株式会社 cylindrical battery
JPS6293865A (en) * 1985-10-21 1987-04-30 Showa Denko Kk Aniline polymer electrode

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6235422B1 (en) 1999-05-28 2001-05-22 The Gillette Company Battery
US6261717B1 (en) 1999-05-28 2001-07-17 The Gillette Company Battery having an electrode within another electrode
US6342317B1 (en) 1999-07-21 2002-01-29 The Gillette Company Battery
US6410187B1 (en) 1999-09-09 2002-06-25 The Gillette Company Primary alkaline battery
JP2003308839A (en) * 2002-04-15 2003-10-31 Nec Corp Radical battery

Also Published As

Publication number Publication date
JP2810105B2 (en) 1998-10-15

Similar Documents

Publication Publication Date Title
TW488104B (en) Battery electrode and non-aqueous electrolyte battery equipped therewith
US6558840B1 (en) Electrode for use in a non-aqueous battery
JPH0982363A (en) Lithium secondary battery
WO2003041194A1 (en) Negative electrode current collector, negative electrode using the same, and nonaqueous electrolytic secondary cell
WO1999056336A1 (en) Solid electrolytic secondary battery
JP2003100284A (en) Lithium secondary battery
JP2001328813A (en) Lithium-manganese composite oxide for active material of positive electrode for lithium secondary battery, and method for producing the same
JP2000195499A (en) Lithium battery
JP4830207B2 (en) battery
JPH02295063A (en) Secondary battery
JP4209985B2 (en) Polyolefin microporous membrane
JPS63102166A (en) Secondary battery
JP2001052746A (en) High-molecular solid electrolyte and lithium secondary battery using the same
JP4492039B2 (en) Water-based lithium secondary battery
JP3680883B2 (en) Electric double layer capacitor and manufacturing method thereof
KR102126968B1 (en) Lithium secondary battery having improved safty
JPH07220722A (en) Manufacture of electrode for lithium secondary battery
JPH01132045A (en) Battery
JPH0850894A (en) Nonaqueous solvent secondary battery
JPS60202666A (en) Paste type cadmium anode plate for alkaline storage battery
CN116666610B (en) Silicon-carbon negative electrode material and preparation method and application thereof
CN116742116B (en) Gel electrolyte, preparation method thereof and lithium ion battery
JPS5990364A (en) Manufacture of positive electrode for battery
JP2003017067A (en) Lithium secondary battery
JP2002075377A (en) Negative electrode for nonaqueous electrolyte secondary battery