JP2003100284A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2003100284A
JP2003100284A JP2001291043A JP2001291043A JP2003100284A JP 2003100284 A JP2003100284 A JP 2003100284A JP 2001291043 A JP2001291043 A JP 2001291043A JP 2001291043 A JP2001291043 A JP 2001291043A JP 2003100284 A JP2003100284 A JP 2003100284A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
pores
carbon
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001291043A
Other languages
Japanese (ja)
Inventor
Takayuki Hirae
貴之 平重
Masahiro Kasai
昌弘 葛西
Hidetoshi Honbou
英利 本棒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001291043A priority Critical patent/JP2003100284A/en
Publication of JP2003100284A publication Critical patent/JP2003100284A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To prevent possible deterioration in cycle characteristics due to expansion and shrinkage of negative electrode material, accompanying storage and release of lithium and subsequent advancement in micronization owing to strain caused by stress, and lowering of adhesion to conductive materials, and to provide a lithium secondary battery having enhanced cycle characteristics. SOLUTION: Carbon material such as activated carbon 10 has a plurality of pores 1, 2, 3, and silicon particles 4 are adhered to the surface and the inside of the pores of the activated carbon 10 on hydrolysis. Even when the silicon compound expands and shrinks according to the storage and release of lithium ions, silicon compound 4 is adhered to the surface and the inside of the pores of the activated carbon 10, so that the cycle characteristics, in which service capacity characteristics are maintained at a constant lead, can be enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高容量・長寿命の
リチウム二次電池の負極材料を改良したリチウム二次電
池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery having an improved negative electrode material for a high capacity and long life lithium secondary battery.

【0002】[0002]

【従来の技術】近年、携帯電話、ラップトップコンピュ
ーター等の移動体通信機器や携帯電子機器が数多く登場
しており、その電源として主にリチウム二次電池が用い
られている。リチウム二次電池は、ニッケルカドミウム
電池等の他の二次電池と比較して、大きなエネルギー密
度をもっているが、移動体通信機器や携帯電子機器のさ
らなる小型軽量化に伴い、そのエネルギー密度やサイク
ル特性の向上が求められている。
2. Description of the Related Art In recent years, a large number of mobile communication devices such as mobile phones and laptop computers and mobile electronic devices have appeared, and lithium secondary batteries are mainly used as the power source thereof. Lithium secondary batteries have a larger energy density than other secondary batteries such as nickel-cadmium batteries, but with the further reduction in size and weight of mobile communication devices and portable electronic devices, their energy density and cycle characteristics Is required to improve.

【0003】現在の一般的なリチウム二次電池では、負
極材料として黒鉛を代表とする炭素材料が用いられてい
る。しかし、黒鉛からなる負極材料では、リチウムがL
iC 6の組成までしか挿入できず、理論容量372mA
h/gが限度であり、高容量化への障害になっている。
In the current general lithium secondary battery,
Carbon materials such as graphite are used as pole materials.
It However, in the negative electrode material made of graphite, lithium is
iC 6The theoretical capacity is 372mA.
The limit is h / g, which is an obstacle to higher capacity.

【0004】炭素以外の負極材料として、アルミニウ
ム、ケイ素、スズ等のリチウムと合金化する負極材料の
研究も行われている。これらの負極材料は、炭素材料に
比べて高容量であることが特徴である。特に、ケイ素は
理論容量が4200mAh/gであり、黒鉛の理論容量
372mAh/gより遥かに大きく、また、リチウムと
合金化する負極材料の中で最も容量が大きい。しかし、
リチウムと合金化する負極材料は、サイクル劣化が非常
に大きいという欠点を持っていた。
As a negative electrode material other than carbon, a negative electrode material alloying with lithium such as aluminum, silicon and tin has also been studied. These negative electrode materials are characterized by having a higher capacity than carbon materials. In particular, silicon has a theoretical capacity of 4200 mAh / g, which is much larger than the theoretical capacity of graphite of 372 mAh / g, and is the highest capacity among the negative electrode materials alloyed with lithium. But,
The negative electrode material that alloys with lithium has a drawback that the cycle deterioration is very large.

【0005】リチウムと合金化する負極材料を用いる場
合には、リチウムと合金化する負極材料と、炭素材料な
どの導電材、及びポリフッ化ビニリデン(PVDF)な
どの結着剤を混合しスラリー状にしたものを、銅箔など
の集電体上に塗布し、乾燥プレスしたものを負極として
いる。
When a negative electrode material that alloys with lithium is used, a negative electrode material that alloys with lithium, a conductive material such as a carbon material, and a binder such as polyvinylidene fluoride (PVDF) are mixed to form a slurry. The obtained product is applied onto a current collector such as a copper foil and dried and pressed to obtain a negative electrode.

【0006】リチウムと合金化する負極材料を用いた際
のサイクル劣化の原因として、これまで用いられていた
リチウムと合金化する負極材料の粒径は、10μm以上
と大きく比表面積が小さいために、導電材との接触面積
が小さく、十分に導電性が確保できないといった点があ
げられる。
As a cause of cycle deterioration when a negative electrode material alloyed with lithium is used, since the particle size of the negative electrode material conventionally alloyed with lithium is as large as 10 μm or more and the specific surface area is small, The contact area with the conductive material is small, and sufficient conductivity cannot be ensured.

【0007】人造黒鉛のような一般に用いられている導
電材は、塊状であるために、リチウムと合金化する負極
材料との接触が点接触でしかなく、リチウムと合金化す
る負極材料の粒径が大きい場合には、接触面積が小さく
なり十分な導電性が確保できない。
Since a commonly used conductive material such as artificial graphite has a lump shape, the contact with the negative electrode material that alloys with lithium is only point contact, and the particle size of the negative electrode material that alloys with lithium is small. Is large, the contact area becomes small and sufficient conductivity cannot be secured.

【0008】また、もう一つのサイクル劣化の原因とし
て、リチウムのドープ・脱ドープつまり吸蔵・放出に伴
い、リチウムと合金化する負極材料の体積変化が大き
く、微細化が起こることが挙げられる。例えば、リチウ
ムはケイ素にLi44Siの組成までドープ可能である
が、体積はケイ素の約4倍となる。このようにリチウム
のドープ・脱ドープに伴い非常に大きな格子体積の膨張
・収縮が起こり、応力歪が生じて微細化が進むことによ
り、導電材との密着性が低下し、サイクル劣化が起こる
ものである。
Another cause of cycle deterioration is that the volume change of the negative electrode material alloyed with lithium is large due to lithium doping / dedoping, that is, occlusion / desorption, and miniaturization occurs. For example, lithium can be converted into silicon by Li 4 . It is possible to dope up to the composition of 4 Si, but the volume is about 4 times that of silicon. In this way, due to the very large lattice volume expansion / contraction with lithium doping / dedoping, stress strain occurs and the miniaturization progresses, which reduces the adhesion to the conductive material and causes cycle deterioration. Is.

【0009】リチウムのドープ・脱ドープに伴う体積変
化が起こっても十分に導電性を確保できるようにする方
法として、例えば、特開平2000−173612号公
報には、導電材として繊維状炭素を用いることが開示さ
れている。また、特開平10−3920号公報には、炭
素質物層を活物質表面に形成させることにより、また、
特開平6−279112号公報には、炭素質物で活物質
を包含させることで導電性を向上させることが開示され
ている。
As a method for ensuring sufficient conductivity even when a volume change occurs due to lithium doping / dedoping, for example, Japanese Patent Laid-Open No. 2000-173612 uses fibrous carbon as a conductive material. It is disclosed. Further, in JP-A-10-3920, by forming a carbonaceous material layer on the surface of an active material,
Japanese Unexamined Patent Publication No. 6-279112 discloses that the conductivity is improved by including an active material with a carbonaceous material.

【0010】また、特開平2000−357514号公
報には、リチウムと合金化する非炭素材料と、炭素材料
の混合物からなる負極材料のうち、リチウムと合金化す
る非炭素材料の平均粒径をRM、炭素材料の平均粒径を
Cとした時、RMとRCとの比RM/RCを1以下に規定
することにより、導電性を向上させることが開示されて
いる。
Further, in Japanese Unexamined Patent Publication No. 2000-357514, the average particle size of a non-carbon material alloyed with lithium among negative electrode materials made of a mixture of a non-carbon material alloyed with lithium and a carbon material is R. M, when the average particle size of the carbon material was R C, by defining the ratio R M / R C of R M and R C to 1 or less, to improve the conductivity is disclosed.

【0011】これらの方法では、導電材とリチウムと合
金化する負極材料との接触を多くすることができ、リチ
ウムのドープ・脱ドープに伴う体積変化が起こっても十
分な導電性を保つことができるため、サイクル特性をあ
る程度向上させることができる。
According to these methods, it is possible to increase the contact between the conductive material and the negative electrode material which is alloyed with lithium, and it is possible to maintain sufficient conductivity even if the volume change due to doping / dedoping of lithium occurs. Therefore, the cycle characteristics can be improved to some extent.

【0012】しかし、上記のいずれの方法を用いても、
正極にLiCoO2を用いた電池のサイクル特性は、3
00サイクル後の容量維持率が80%以下であり、未だ
十分な寿命を得るには至ってない。
However, using any of the above methods,
The cycle characteristics of the battery using LiCoO 2 for the positive electrode are 3
The capacity retention rate after 00 cycles is 80% or less, and a sufficient life has not yet been obtained.

【0013】[0013]

【発明が解決しようとする課題】本発明の目的は、サイ
クル特性を向上させたリチウム二次電池を提供すること
にある。
An object of the present invention is to provide a lithium secondary battery having improved cycle characteristics.

【0014】[0014]

【課題を解決するたの手段】上記の目的を達成するため
に、本発明では、負極には複数の孔を有する活性炭を使
用し、活性炭の表面及び孔内にリチウムイオンを吸蔵・
放出するケイ素化合物を付着させ、活性炭とケイ素化合
物との間の密着性を保つことが出来るようになり、サイ
クル特性を向上させることを特徴とする。
In order to achieve the above object, in the present invention, an active carbon having a plurality of pores is used for the negative electrode, and lithium ions are occluded on the surface and in the pores of the activated carbon.
It is characterized in that the silicon compound to be released can be adhered to maintain the adhesion between the activated carbon and the silicon compound, thereby improving the cycle characteristics.

【0015】[0015]

【発明の実施の形態】一般に、リチウム二次電池は、正
極、負極及びこれを分離するセパレーターを具備し、正
極と負極の間に電解液を介在させたものから構成されて
いる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Generally, a lithium secondary battery comprises a positive electrode, a negative electrode, and a separator for separating the positive electrode, a negative electrode, and an electrolyte solution interposed between the positive electrode and the negative electrode.

【0016】正極活物質としては、リチウムコバルト酸
化物(LiCoO2)、リチウムニッケル酸化物(Li
NiO2)、リチウムマンガン酸化物(LiMn
24)、リチウム含有バナジウム酸化物などを用いる。
これらと、人造黒鉛、アセチレンブラック等の導電材及
びポリフッ化ビニリデン(PVDF)などの結着剤を混
合してスラリー状にしたものを、アルミニウム箔などの
集電体上に塗布し、乾燥プレスすることにより正極とす
る。
As the positive electrode active material, lithium cobalt oxide (LiCoO 2 ) and lithium nickel oxide (Li
NiO 2 ), lithium manganese oxide (LiMn
2 O 4 ), lithium-containing vanadium oxide, etc. are used.
A conductive material such as artificial graphite or acetylene black and a binder such as polyvinylidene fluoride (PVDF) are mixed to form a slurry, which is applied onto a current collector such as an aluminum foil and dried and pressed. This makes it a positive electrode.

【0017】負極活物質としては、一般に、人造黒鉛、
天然黒鉛、非晶質炭素などの、リチウムの挿入・脱離可
能な炭素材料を用いる。これらと、ポリフッ化ビニリデ
ン(PVDF)やポリテトラフルオロエチレン(PTF
E)などの結着剤を混合してスラリー状にしたものを、
銅箔などの集電体上に塗布し、乾燥プレスすることによ
り負極とする。
As the negative electrode active material, artificial graphite,
A carbon material such as natural graphite or amorphous carbon capable of inserting and removing lithium is used. In addition to these, polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTF)
E) and other binders are mixed to form a slurry,
It is applied onto a collector such as a copper foil and dried to give a negative electrode.

【0018】また、正極と負極を分離するセパレーター
としては、ポリエチレン多孔質フィルム、ポリプロピレ
ン多孔質フィルムなどを用いるのが一般的である。
As the separator for separating the positive electrode and the negative electrode, it is common to use a polyethylene porous film, a polypropylene porous film, or the like.

【0019】電解液としては、プロピレンカーボネー
ト、エチレンカーボネート、エチルメチルカーボネー
ト、ジメチルカーボネート、ジエチルカーボネートなど
の混合溶媒に、LiPF6、LiClO4などの電解質を
溶解させたものを用いる。
As the electrolytic solution, a solution prepared by dissolving an electrolyte such as LiPF 6 or LiClO 4 in a mixed solvent such as propylene carbonate, ethylene carbonate, ethylmethyl carbonate, dimethyl carbonate or diethyl carbonate is used.

【0020】負極の活物質として、ケイ素やアルミニウ
ムなどのリチウムと合金化するものを用いた場合、リチ
ウムのドープ・脱ドープに伴い非常に大きな格子体積の
膨張・収縮が起こり、応力歪が生じて微細化が進む。こ
のため、活物質と導電材との密着性或いは活物質と集電
体との密着性が低下してサイクル劣化が起こる。
When a material such as silicon or aluminum that alloys with lithium is used as the active material of the negative electrode, a very large lattice volume expands and contracts due to lithium doping / dedoping, resulting in stress strain. Miniaturization progresses. For this reason, the adhesion between the active material and the conductive material or the adhesion between the active material and the current collector is reduced, and cycle deterioration occurs.

【0021】このサイクル劣化を軽減することを目的と
して、本発明は、リチウム二次電池用負極材料が、リチ
ウムをドープ・脱ドープ可能な、炭素以外の無機化合物
を、粒子内部に細孔構造を有する多孔質炭素の表面及び
細孔内に付着させたものから構成されることを特徴とす
るリチウム二次電池を提供するものである。
For the purpose of reducing this cycle deterioration, the present invention provides a negative electrode material for a lithium secondary battery, which comprises an inorganic compound other than carbon capable of being doped or dedoped with lithium with a pore structure inside the particles. It is intended to provide a lithium secondary battery characterized in that the lithium secondary battery is composed of the porous carbon which is attached to the surface and inside the pores.

【0022】本発明では、上記粒子内部に細孔構造を有
する多孔質炭素材料として、カーボンブラック、非晶質
炭素、活性炭等を用いたものである。より好ましくは、
粒径が1〜100μm、比表面積が100〜3000m
2/gであり、ミクロ孔と呼ばれる直径0.002μm
以下の細孔、メソ孔と呼ばれる直径0.002〜0.0
5μmの細孔、及びマクロ孔と呼ばれる直径0.05μ
m以上の細孔を有する活性炭を用いるものである。
In the present invention, carbon black, amorphous carbon, activated carbon or the like is used as the porous carbon material having a pore structure inside the particles. More preferably,
Particle size is 1 to 100 μm, specific surface area is 100 to 3000 m
2 / g, which is called a micropore and has a diameter of 0.002 μm
The following pores, diameters called mesopores 0.002-0.0
5μm pores and 0.05μm diameter called macropores
Activated carbon having pores of m or more is used.

【0023】また、リチウムをドープ・脱ドープ可能な
炭素以外の無機化合物として、アルミ化合物、スズ化合
物、ケイ素化合物等のリチウムと合金化するものや、L
4Ti512等のリチウムイオンを構造内にインターカ
レーションするものを用いた。より好ましくは、理論容
量の大きいケイ素化合物を用いるものである。
Inorganic compounds other than carbon capable of being doped and dedoped with lithium, such as aluminum compounds, tin compounds, and silicon compounds, which are alloyed with lithium, and L
An intercalator of lithium ions such as i 4 Ti 5 O 12 was used in the structure. More preferably, a silicon compound having a large theoretical capacity is used.

【0024】また、上記炭素材料の平均粒径をRC、上
記リチウムをドープ・脱ドープ可能なケイ素化合物の平
均粒径をRSiとする時、RSi/RC<0.1であること
が望ましい。また、そのケイ素化合物の粒径は、0.0
01μm〜10μmの範囲にあることが望ましい。
Further, when the average particle diameter R C of the carbon material, the average particle size of the lithium capable of doping and dedoping silicon compound and R Si, it is R Si / R C <0.1 Is desirable. The particle size of the silicon compound is 0.0
It is desirable to be in the range of 01 μm to 10 μm.

【0025】リチウムをドープ・脱ドープ可能な、炭素
以外の無機化合物を、炭素材料表面及び細孔内に付着さ
せた負極材料の製造工程を以下に示す。リチウムをドー
プ・脱ドープ可能な、炭素以外の無機化合物源として、
有機金属、或いは無機化合物塩を溶解させた水溶液等の
液体状の物質を用いる。これらの液体状の無機化合物源
と、活性炭などの炭素材料とを混合させて、無機化合物
源を、炭素材料の表面及び細孔内に付着させる。
The steps for producing a negative electrode material in which an inorganic compound other than carbon capable of being doped / dedoped with lithium is attached to the surface of the carbon material and the inside of the pores will be described below. As a source of inorganic compounds other than carbon that can be doped and dedoped with lithium,
A liquid substance such as an aqueous solution in which an organic metal or an inorganic compound salt is dissolved is used. These liquid inorganic compound sources are mixed with a carbon material such as activated carbon, and the inorganic compound sources are attached to the surface and pores of the carbon material.

【0026】その後、ArやN2等の不活性ガス雰囲気
中で熱処理し、無機化合物源を熱分解させることで、リ
チウムをドープ・脱ドープ可能な、炭素以外の無機化合
物を、炭素材料表面に分散或いは炭素材料の細孔内に含
有させることができる。この時の熱処理温度としては、
100℃から、炭素材料の黒鉛化が起こる3500℃ま
でが望ましい。熱処理時間としては、30分から10時
間が望ましい。
After that, a heat treatment is performed in an atmosphere of an inert gas such as Ar or N 2 to thermally decompose the inorganic compound source, so that an inorganic compound other than carbon capable of being doped or dedoped with lithium is deposited on the surface of the carbon material. It can be dispersed or contained in the pores of the carbon material. The heat treatment temperature at this time is
It is desirable that the temperature is 100 ° C. to 3500 ° C. where graphitization of the carbon material occurs. The heat treatment time is preferably 30 minutes to 10 hours.

【0027】リチウムをドープ・脱ドープ可能な、炭素
以外の無機化合物源として、金属アルコキシドを用いた
場合の製造工程を以下に示す。まず、金属アルコキシド
と炭素材料を混合させて、金属アルコキシドを炭素材料
表面に分散或いは炭素材料の細孔内に含有させる。
The production process when a metal alkoxide is used as a source of an inorganic compound other than carbon that can be doped and dedoped with lithium will be described below. First, the metal alkoxide and the carbon material are mixed, and the metal alkoxide is dispersed on the surface of the carbon material or contained in the pores of the carbon material.

【0028】次に、H2Oを加えて金属アルコキシドを
加水分解させる。そして、過剰のH2Oを空気中60〜
100℃で乾燥させる。その後、ArやN2等の不活性
ガス雰囲気中で熱処理することにより、リチウムをドー
プ・脱ドープ可能な、炭素以外の無機化合物を、炭素材
料表面に分散或いは炭素材料の細孔内に含有させること
ができる。
Next, H 2 O is added to hydrolyze the metal alkoxide. And, excess H 2 O in air is 60-
Dry at 100 ° C. Then, by heat treatment in an atmosphere of an inert gas such as Ar or N 2 , an inorganic compound other than carbon capable of doping and dedoping lithium is dispersed on the surface of the carbon material or contained in the pores of the carbon material. be able to.

【0029】リチウムをドープ・脱ドープ可能な、炭素
以外の無機化合物源として、無機化合物塩を用いた場合
の製造工程を以下に示す。まず、H2O、無機化合物塩
及び炭素材料を混合させる。そして、pH調整すること
により、炭素材料表面或いは炭素材料の細孔内に、無機
化合物塩を析出させる。
The manufacturing process when an inorganic compound salt is used as a source of an inorganic compound other than carbon that can be doped / dedoped with lithium will be described below. First, H 2 O, an inorganic compound salt and a carbon material are mixed. Then, by adjusting the pH, the inorganic compound salt is deposited on the surface of the carbon material or in the pores of the carbon material.

【0030】そして、H2Oを空気中60〜100℃で
乾燥させる。その後、ArやN2等の不活性ガス雰囲気
中で熱処理することにより、リチウムをドープ・脱ドー
プ可能な、炭素以外の無機化合物を、炭素材料表面に分
散或いは炭素材料の細孔内に含有させることができる。
Then, H 2 O is dried in air at 60 to 100 ° C. Then, by heat treatment in an atmosphere of an inert gas such as Ar or N 2 , an inorganic compound other than carbon capable of doping and dedoping lithium is dispersed on the surface of the carbon material or contained in the pores of the carbon material. be able to.

【0031】リチウムをドープ・脱ドープ可能な、炭素
以外の無機化合物の中で、最も大きな容量を示すのがケ
イ素である。以下に、ケイ素を炭素材料表面及び細孔内
に付着させた負極材料の製造工程を詳しく示す。
Among inorganic compounds other than carbon that can be doped and dedoped with lithium, silicon has the largest capacity. The manufacturing process of the negative electrode material in which silicon is attached to the surface of the carbon material and the inside of the pores will be described in detail below.

【0032】ケイ素源としての、液体状のケイ素化合物
は、Si(OCH34やSi(OC 254のような金
属アルコキシドや、C332−CH2CH(OH)CH
2O(CH23Si(OCH33などのようなポリシラ
ン等を用いることができる。
Liquid Silicon Compound as Silicon Source
Is Si (OCH3)FourAnd Si (OC 2HFive)FourLike gold
Genus alkoxide, C3H3N2-CH2CH (OH) CH
2O (CH2)3Si (OCH3)3Polysila such as
Can be used.

【0033】炭素材料は、粒径が1〜100μm、比表
面積が100〜3000m2/gであり、ミクロ孔と呼
ばれる直径0.002μm以下の細孔、メソ孔と呼ばれ
る直径0.002〜0.05μmの細孔、及びマクロ孔
と呼ばれる直径0.05μm以上の細孔を有する活性炭
を用いることができる。
The carbon material has a particle size of 1 to 100 μm, a specific surface area of 100 to 3000 m 2 / g, micropores having a diameter of 0.002 μm or less, and mesopores having a diameter of 0.002 to 0. Activated carbon having pores with a diameter of 0.05 μm and macro pores having a diameter of 0.05 μm or more can be used.

【0034】まず、上記液体状のケイ素化合物及び上記
活性炭を混合させ、ケイ素化合物を、活性炭の表面及び
細孔内に分散付着させる。
First, the liquid silicon compound and the activated carbon are mixed, and the silicon compound is dispersed and adhered to the surface and the pores of the activated carbon.

【0035】次にH2Oを加えて、ケイ素化合物を加水
分解して、活性炭の表面に分散或いは活性炭の細孔内に
含有したSi(OH)4を得る。
Next, H 2 O is added to hydrolyze the silicon compound to obtain Si (OH) 4 dispersed on the surface of the activated carbon or contained in the pores of the activated carbon.

【0036】そして、過剰のH2O及び加水分解による
副生成物を空気中で乾燥させる。その時の乾燥温度は、
60〜100℃、乾燥時間は、2時間〜12時間が望ま
しい。
Then, excess H 2 O and the hydrolysis by-product are dried in air. The drying temperature at that time is
The drying time is preferably 60 to 100 ° C. and 2 to 12 hours.

【0037】次に、ArやN2等の不活性ガス気流中
で、活性炭の表面に分散或いは活性炭の細孔内に含有し
たSi(OH)4を熱処理することにより、OH基を脱
離させて、活性炭の表面に分散或いは活性炭の細孔内に
含有させたケイ素を得ることができる。この時の熱処理
温度としては、100℃から、活性炭の黒鉛化が起こる
3500℃までが望ましい。熱処理時間としては、30
分から10時間が望ましい。
Then, Si (OH) 4 dispersed on the surface of the activated carbon or contained in the pores of the activated carbon is heat-treated in a stream of an inert gas such as Ar or N 2 to remove the OH group. Thus, silicon dispersed on the surface of activated carbon or contained in the pores of activated carbon can be obtained. The heat treatment temperature at this time is preferably 100 ° C. to 3500 ° C. at which graphitization of activated carbon occurs. The heat treatment time is 30
Minutes to 10 hours is desirable.

【0038】以上の方法により製造したケイ素を炭素材
料表面或いは炭素材料の細孔内に付着させた負極材料の
表面及び細孔部分の概略図を図1に示す。ケイ素を炭素
材料表面或いは炭素材料の細孔内に含有させることによ
り、ケイ素と炭素材料との密着性を向上させることがで
きる。
FIG. 1 is a schematic view of the surface and pores of the negative electrode material in which the silicon produced by the above method is attached to the surface of the carbon material or the pores of the carbon material. By containing silicon on the surface of the carbon material or in the pores of the carbon material, the adhesion between the silicon and the carbon material can be improved.

【0039】リチウムをドープ・脱ドープ可能な、炭素
以外の無機化合物を、炭素材料表面に分散及び炭素材料
の細孔内に付着させることにより、リチウムをドープ・
脱ドープ可能な、炭素以外の無機化合物と炭素材料との
密着性を高めることができるため、サイクル特性を向上
させることが可能である。
An inorganic compound other than carbon, which is capable of being doped or dedoped with lithium, is dispersed on the surface of the carbon material and adhered in the pores of the carbon material to dope lithium.
Since it is possible to improve the adhesion between the carbon material and the inorganic compound other than carbon that can be dedoped, it is possible to improve the cycle characteristics.

【0040】以下、本発明について実施例を用いて詳細
に説明する。尚、本発明は下記実施例に限定されるもの
ではない。 (実施例1)本実施例においては、ケイ素源として、S
i(OC254で表されるテトラエトキシシリコンを
用い、多孔質炭素材料として、平均粒径が1μm、比表
面積が1270m2/gである活性炭を用いた。
The present invention will be described in detail below with reference to examples. The present invention is not limited to the examples below. (Example 1) In this example, S was used as a silicon source.
Tetraethoxy silicon represented by i (OC 2 H 5 ) 4 was used, and activated carbon having an average particle size of 1 μm and a specific surface area of 1270 m 2 / g was used as a porous carbon material.

【0041】5mlのテトラエトキシシリコンを磁製容
器に入れ、かき混ぜながら1gの活性炭を投入し、テト
ラエトキシシリコンを、活性炭の表面及び細孔内に付着
させた。その後、磁製容器内に水を投入し、テトラエト
キシシリコンを加水分解させ、Si(OH)4で表され
る水酸化シリコンを活性炭の表面及び細孔内に分散付着
させた。
5 ml of tetraethoxy silicon was placed in a porcelain container, and 1 g of activated carbon was charged with stirring to deposit tetraethoxy silicon on the surface and pores of the activated carbon. Then, water was charged into the porcelain container to hydrolyze the tetraethoxysilicone, and silicon hydroxide represented by Si (OH) 4 was dispersed and adhered to the surface and the pores of the activated carbon.

【0042】そして、空気中80℃で12時間乾燥し、
過剰の水及び加水分解で生じたC25OHを取り除い
た。その後、Arガス気流中1000℃で8時間焼成し
て、水酸基を脱離させて、図1に示すケイ素を炭素材料
表面或いは炭素材料の細孔内に含有させることにより、
ケイ素と炭素材料との密着性を向上させることができ
る。
Then, it is dried in air at 80 ° C. for 12 hours,
Excess water and C 2 H 5 OH formed by hydrolysis were removed. Then, by firing at 1000 ° C. for 8 hours in an Ar gas stream to eliminate the hydroxyl groups, and to contain the silicon shown in FIG. 1 on the surface of the carbon material or in the pores of the carbon material,
The adhesion between silicon and the carbon material can be improved.

【0043】図1において、炭素材料は例えば活性炭1
0には複数の多孔を形成しており、この多孔にはマクロ
孔1とマクロ孔1の径より小さい枝状にメソ孔2を有
し、メソ孔2の先端にミクロ孔3を有する。これらの孔
内及び活性炭10の表面にはケイ素粒子4を加水分解に
より付着している。SEM、TEM観察等により、活性
炭10の平均粒径RCとケイ素4の平均粒径RSiの比
は、RSi/RC<0.1であった。
In FIG. 1, the carbon material is, for example, activated carbon 1.
In FIG. 0, a plurality of pores are formed, and the pores have macropores 1 and mesopores 2 in a branch shape smaller than the diameter of the macropores 1, and micropores 3 at the tips of the mesopores 2. Silicon particles 4 are attached to these pores and the surface of the activated carbon 10 by hydrolysis. From the SEM and TEM observations, the ratio of the average particle size R C of the activated carbon 10 and the average particle size R Si of the silicon 4 was R Si / R C <0.1.

【0044】電極特性を調べるために、以下のように電
極を作製した。ケイ素を含有させた活性炭と結着剤とし
てのポリフッ化ビニリデン(PVDF)を、95:5の
重量比で混合した後、N−メチル−2−ピロリドンに分
散させてスラリー状とした。このスラリーを、負極集電
体である銅箔上に均一に塗布し、80℃で2時間乾燥
後、油圧プレス機でプレスした。それを直径15mmの
円形状に打ち抜いたものを電極とした。
In order to examine the electrode characteristics, electrodes were prepared as follows. Activated carbon containing silicon and polyvinylidene fluoride (PVDF) as a binder were mixed at a weight ratio of 95: 5 and then dispersed in N-methyl-2-pyrrolidone to form a slurry. This slurry was uniformly applied on a copper foil as a negative electrode current collector, dried at 80 ° C. for 2 hours, and then pressed by a hydraulic press machine. An electrode was formed by punching it out into a circular shape having a diameter of 15 mm.

【0045】電極特性は、対極、参照極に金属リチウム
を用いた3極式セルを用いて測定した。電解液は、エチ
レンカーボネートとジメチルカーボネートを1:2で混
合した溶液にLiPF6を1.0M溶解させたものを用
いた。充放電は、0.5mA/cm2の定電流で、2.
0〜0.01Vの範囲でおこなった。
The electrode characteristics were measured using a three-electrode cell using metallic lithium for the counter electrode and the reference electrode. As the electrolytic solution, a solution obtained by dissolving LiPF 6 at 1.0 M in a solution in which ethylene carbonate and dimethyl carbonate were mixed at a ratio of 1: 2 was used. Charge / discharge was performed with a constant current of 0.5 mA / cm 2 , 2.
It was performed in the range of 0 to 0.01V.

【0046】このように、実施例1によれば、ケイ素化
合物であるテトラエトキシシリコンを容器に入れ、かき
混ぜながら活性炭を投入し、その後、容器内に水を投入
し、ケイ素化合物を加水分解させ、Si(OH)4で表
される水酸化シリコンを活性炭の表面及び細孔内に分散
付着させた後、乾燥し、水分を蒸発してケイ素化合物を
活性炭の表面及び細孔内に効率良く分散付着させること
ができるようになった。
As described above, according to Example 1, tetraethoxysilicon, which is a silicon compound, was placed in a container, activated carbon was added while stirring, and then water was placed in the container to hydrolyze the silicon compound, Silicon hydroxide represented by Si (OH) 4 is dispersed and adhered on the surface and pores of activated carbon, then dried and water is evaporated to efficiently disperse silicon compounds on the surface and pores of activated carbon. I was able to let you.

【0047】またリチウムイオンの吸蔵・放出に伴いケ
イ素化合物が膨張・収縮にしても、ケイ素化合物が活性
炭の表面及び細孔内に密着して剥離しにくいので、活性
炭とケイ素化合物との間の接触抵抗が増加せず、導電性
が良くなり、図2及び図3に示す放電容量特性図及び充
電容量特性図を得た。
Further, even if the silicon compound expands or contracts due to the occlusion / release of lithium ions, the silicon compound adheres to the surface and pores of the activated carbon and is difficult to be peeled off. Therefore, contact between the activated carbon and the silicon compound occurs. The resistance was not increased and the conductivity was improved, and the discharge capacity characteristic chart and the charge capacity characteristic chart shown in FIGS. 2 and 3 were obtained.

【0048】図2に本発明の充電容量特性A・放電容量
特性Bを示す。この特性図によれば、初充電容量は18
90mAh/g、初放電容量は1650mAh/gであ
り、不可逆容量は240mAh/gであった。平均放電
電圧は0.5Vであった。
FIG. 2 shows the charge capacity characteristic A and the discharge capacity characteristic B of the present invention. According to this characteristic diagram, the initial charge capacity is 18
The discharge capacity was 90 mAh / g, the initial discharge capacity was 1650 mAh / g, and the irreversible capacity was 240 mAh / g. The average discharge voltage was 0.5V.

【0049】図3にサイクル特性図を示す。300サイ
クル後の容量は1470mAh/gであり、容量維持率
は90%であった。本発明の放電容量特性Bにおける初
放電容量は1650mAh/gであるが、2回以降のサ
イクル特性は一定値を維持している。これに対して、従
来技術の放電容量特性A1における初放電容量は大きい
が、2回目以降の放電容量であるサイクル特性は一定値
を維持できないで、減少して行く。
FIG. 3 shows a cycle characteristic diagram. The capacity after 300 cycles was 1470 mAh / g, and the capacity retention rate was 90%. In the discharge capacity characteristic B of the present invention, the initial discharge capacity is 1650 mAh / g, but the cycle characteristics after two times maintain a constant value. On the other hand, although the initial discharge capacity in the discharge capacity characteristic A1 of the prior art is large, the cycle characteristic, which is the discharge capacity after the second time, cannot maintain a constant value and decreases.

【0050】更に、ケイ素化合物の粒径が、0.001
μm〜10μmの範囲を使用するとよい。それはケイ素
化合物の粒径が、10μm以上になると、粒径が大きく
なり、多孔質炭素とケイ素化合物との間の密着性が悪く
なり、接触抵抗が増し、導電性が低下し、サイクル特性
を向上することができないからである。又0.001μ
m以下になると、製造しにくくなり、コスト高となり、
使用できないからである。 (実施例2)本実施例においては、ケイ素源として、S
i(OC254で表されるテトラエトキシシリコンを
用い、多孔質炭素材料として、平均粒径が10μm、比
表面積が700m2/gである活性炭を用いた。実施例
1と同様の方法で、ケイ素を活性炭の表面及び細孔内に
分散付着させた。SEM、TEM観察等により、活性炭
の平均粒径RCとケイ素の平均粒径RSiの比は、RSi
C<0.1であった。
Further, the particle size of the silicon compound is 0.001.
A range of μm to 10 μm may be used. When the particle size of the silicon compound is 10 μm or more, the particle size becomes large, the adhesion between the porous carbon and the silicon compound deteriorates, contact resistance increases, conductivity decreases, and cycle characteristics improve. Because you cannot do it. Also 0.001μ
If it is less than m, it will be difficult to manufacture and the cost will increase,
This is because it cannot be used. (Example 2) In this example, S was used as a silicon source.
Tetraethoxysilicone represented by i (OC 2 H 5 ) 4 was used, and activated carbon having an average particle diameter of 10 μm and a specific surface area of 700 m 2 / g was used as the porous carbon material. In the same manner as in Example 1, silicon was dispersed and adhered on the surface and pores of activated carbon. The ratio of the average particle size R C of activated carbon to the average particle size R Si of silicon is R Si /
R C <0.1.

【0051】実施例1と同様の方法で、電極を作製し、
電極特性を調べた。初充電容量は、1045mAh/
g、初放電容量は845mAh/gであり、不可逆容量
は200mAh/gであった。300サイクル後の放電
容量は786mAh/gであり、容量維持率は93%で
あった。 (比較例1)本比較例においては、負極活物質として平
均粒径10μmからなるケイ素を用い、導電材として平
均粒径20μmからなる人造黒鉛を用いた。ケイ素と人
造黒鉛、及び結着剤としてのポリフッ化ビニリデン(P
VDF)を混合後、N−メチル−2−ピロリドンに分散
させてスラリー状とした。
An electrode was prepared in the same manner as in Example 1,
The electrode characteristics were investigated. The initial charge capacity is 1045 mAh /
g, the initial discharge capacity was 845 mAh / g, and the irreversible capacity was 200 mAh / g. The discharge capacity after 300 cycles was 786 mAh / g, and the capacity retention rate was 93%. Comparative Example 1 In this comparative example, silicon having an average particle size of 10 μm was used as the negative electrode active material, and artificial graphite having an average particle size of 20 μm was used as the conductive material. Silicon and artificial graphite, and polyvinylidene fluoride (P
VDF) was mixed and then dispersed in N-methyl-2-pyrrolidone to form a slurry.

【0052】このスラリーを、負極集電体である銅箔上
に均一に塗布し、80℃で2時間乾燥後、油圧プレス機
でプレスした。それを直径15mmの円形状に打ち抜い
たものを電極とした。電極特性は、対極、参照極に金属
リチウムを用いた3極式セルを用いて測定した。
This slurry was uniformly applied on a copper foil as a negative electrode current collector, dried at 80 ° C. for 2 hours and then pressed by a hydraulic press machine. An electrode was formed by punching it out into a circular shape having a diameter of 15 mm. The electrode characteristics were measured using a three-electrode cell using metallic lithium for the counter electrode and the reference electrode.

【0053】電解液は、エチレンカーボネートとジメチ
ルカーボネートを1:2で混合した溶液にLiPF6
1.0M溶解させたものを用いた。充放電は、0.5m
A/cm2の定電流で、2.0〜0.01Vの範囲でお
こなった。
The electrolytic solution used was a solution of ethylene carbonate and dimethyl carbonate mixed in a ratio of 1: 2, in which 1.0 M of LiPF 6 was dissolved. Charge / discharge is 0.5m
It was carried out at a constant current of A / cm 2 in the range of 2.0 to 0.01V.

【0054】初期放電容量は、2200mAh/gだっ
たものの、300サイクル後の容量は、48mAh/g
であり、容量維持率は2%であった。
Although the initial discharge capacity was 2200 mAh / g, the capacity after 300 cycles was 48 mAh / g.
And the capacity retention rate was 2%.

【0055】[0055]

【表1】 表1に示すように、実施例1や実施例2のようにケイ素
を活性炭の表面及び細孔内に分散付着させた負極材料に
比べて、比較例1のように製造した負極材料では、1サ
イクル目の放電容量は大きくなるものの、300サイク
ル後の放電容量維持率は遥かに低いものとなった。 (実施例3)実施例1、実施例2、比較例1に記載した
方法で製造した負極を用いて、図4に示すような円筒型
リチウム二次電池を作製した。図4の円筒型リチウム二
次電池は、帯状正極41と帯状負極42を、セパレータ
ー43を挟んで重ねあわせて、渦巻き状に捲回した渦巻
き状電極を電池缶44に収容した構成である。電池缶4
4内には、電解液が注入されている。また、渦巻き状電
極の上下には、電池缶44との間に絶縁板45が配置さ
れている。帯状負極42としては実施例1の負極材料を
使用した。
[Table 1] As shown in Table 1, as compared with the negative electrode material obtained by dispersing and depositing silicon on the surface and the pores of activated carbon as in Example 1 and Example 2, the negative electrode material manufactured as in Comparative Example 1 has 1 Although the discharge capacity at the cycle increased, the discharge capacity retention rate after 300 cycles was much lower. (Example 3) Using the negative electrode manufactured by the method described in Example 1, Example 2 and Comparative Example 1, a cylindrical lithium secondary battery as shown in FIG. 4 was manufactured. The cylindrical lithium secondary battery of FIG. 4 has a structure in which a band-shaped positive electrode 41 and a band-shaped negative electrode 42 are superposed with a separator 43 interposed therebetween, and a spirally wound electrode is housed in a battery can 44. Battery can 4
An electrolyte solution is injected into the inside of 4. In addition, insulating plates 45 are arranged above and below the spiral electrode between the spiral can electrode and the battery can 44. The negative electrode material of Example 1 was used as the strip negative electrode 42.

【0056】正極活物質にはLiCoO2を用いた。正
極は、LiCoO2と、導電材としての人造黒鉛、及び
結着剤としてのポリフッ化ビニリデン(PVDF)を、
80:13:7の重量比で混合した後、N−メチル−2
−ピロリドンに分散させてスラリー状とした。このスラ
リーを、正極集電体であるアルミニウム箔上に均一に塗
布し、80℃で2時間乾燥後、油圧プレス機でプレスし
たものを正極とした。
LiCoO 2 was used as the positive electrode active material. The positive electrode comprises LiCoO 2 , artificial graphite as a conductive material, and polyvinylidene fluoride (PVDF) as a binder,
After mixing in a weight ratio of 80: 13: 7, N-methyl-2
-Dispersed in pyrrolidone to form a slurry. This slurry was uniformly applied onto an aluminum foil as a positive electrode current collector, dried at 80 ° C. for 2 hours, and then pressed with a hydraulic press machine to obtain a positive electrode.

【0057】電解液は、エチレンカーボネートとジメチ
ルカーボネートを1:2で混合した溶液にLiPF6
1.0M溶解させたものを用いた。セパレーターには、
ポリエチレン多孔質フィルムを用いた。
The electrolyte used was a solution of ethylene carbonate and dimethyl carbonate mixed in a ratio of 1: 2, in which 1.0 M of LiPF 6 was dissolved. For the separator,
A polyethylene porous film was used.

【0058】各電池に対して、充電を1Aの定電流で
4.2Vまで行い、放電を0.5Aの定電流で2.5V
まで行った。以上の工程を1サイクルとして、300サ
イクルまで行った。
Each battery was charged to 4.2 V at a constant current of 1 A and discharged to 2.5 V at a constant current of 0.5 A.
I went up to. The above process was set as one cycle and was repeated up to 300 cycles.

【0059】[0059]

【表2】 表2に示すように、比較例1により製造した負極を用い
た電池と比較して、実施例1、実施例2により製造した
負極を用いた電池では、放電容量維持率が飛躍的に向上
した。
[Table 2] As shown in Table 2, as compared with the battery using the negative electrode manufactured according to Comparative Example 1, the batteries using the negative electrode manufactured according to Example 1 and Example 2 had a dramatically improved discharge capacity retention rate. .

【0060】[0060]

【発明の効果】以上のように、本発明によれば、充電及
び放電を繰り返しても導電性の確保ができる容量を有
し、サイクル特性を向上させることが可能である。
As described above, according to the present invention, it is possible to improve the cycle characteristics by having a capacity capable of ensuring conductivity even if charging and discharging are repeated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例として示した活性炭の表面及び
細孔内にケイ素を付着させた負極材料の概略図。
FIG. 1 is a schematic view of a negative electrode material in which silicon is attached to the surface and pores of activated carbon shown as an example of the present invention.

【図2】図1の負極材料の初回充電及び放電特性図。FIG. 2 is a characteristic diagram of initial charge and discharge of the negative electrode material of FIG.

【図3】図1の負極材料におけるサイクル特性図。FIG. 3 is a cycle characteristic diagram of the negative electrode material of FIG.

【図4】図1の負極材料を使用したリチウム二次電池の
構成を示す断面図。
FIG. 4 is a cross-sectional view showing the configuration of a lithium secondary battery using the negative electrode material of FIG.

【符号の説明】[Explanation of symbols]

1…活性炭細孔(マクロ孔)、2…活性炭細孔(メソ
孔)、3…活性炭細孔(ミクロ孔)、4…ケイ素粒子、
10…活性炭、41…帯状正極、42…帯状負極、43
…セパレーター、44…電池缶、45…絶縁板、46…
電流引き出し用タブ。
1 ... Activated carbon pores (macro pores), 2 ... Activated carbon pores (meso pores), 3 ... Activated carbon pores (micro pores), 4 ... Silicon particles,
10 ... Activated carbon, 41 ... Strip positive electrode, 42 ... Strip negative electrode, 43
... Separator, 44 ... Battery can, 45 ... Insulation plate, 46 ...
Current drawing tab.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 本棒 英利 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 5H029 AJ05 AK03 AL01 AL02 AL03 AL06 AL08 AM03 AM05 AM07 BJ02 BJ14 CJ22 HJ05 5H050 AA07 BA17 CA08 CA09 CB01 CB02 CB03 CB07 CB09 DA19 FA05 GA22 HA05    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Honri             7-1-1, Omika-cho, Hitachi-shi, Ibaraki Prefecture             Inside the Hitachi Research Laboratory, Hitachi Ltd. F term (reference) 5H029 AJ05 AK03 AL01 AL02 AL03                       AL06 AL08 AM03 AM05 AM07                       BJ02 BJ14 CJ22 HJ05                 5H050 AA07 BA17 CA08 CA09 CB01                       CB02 CB03 CB07 CB09 DA19                       FA05 GA22 HA05

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 リチウム複合酸化物を含有する正極と、
リチウムイオンを吸蔵・放出する負極と、前記正極と負
極との間に介在させた電解液とを備えたリチウム二次電
池において、前記負極に多孔質炭素を使用し、前記多孔
質炭素の表面及び孔内に前記リチウムイオンを吸蔵・放
出する無機化合物(但し炭素を省く)を付着させること
を特徴とするリチウム二次電池。
1. A positive electrode containing a lithium composite oxide,
In a lithium secondary battery comprising a negative electrode that absorbs and releases lithium ions, and an electrolytic solution interposed between the positive electrode and the negative electrode, porous carbon is used for the negative electrode, and the surface of the porous carbon and A lithium secondary battery, wherein an inorganic compound (excluding carbon) that absorbs and releases the lithium ions is attached to the inside of the pores.
【請求項2】 前記無機化合物としてケイ素化合物を使
用することを特徴とする請求項1に記載のリチウム二次
電池。
2. The lithium secondary battery according to claim 1, wherein a silicon compound is used as the inorganic compound.
【請求項3】 リチウム複合酸化物を含有する正極と、
リチウムイオンを吸蔵・放出する負極と、前記正極と負
極との間に介在させた電解液とを備えたリチウム二次電
池において、前記負極に多孔質炭素を使用し、前記多孔
質炭素の表面及び孔内に前記リチウムイオンを吸蔵・放
出するケイ素化合物を付着させ、そのケイ素化合物の粒
径が、0.001μm〜10μmの範囲にあることを特
徴とするリチウム二次電池。
3. A positive electrode containing a lithium composite oxide,
In a lithium secondary battery comprising a negative electrode that absorbs and releases lithium ions, and an electrolytic solution interposed between the positive electrode and the negative electrode, porous carbon is used for the negative electrode, and the surface of the porous carbon and A lithium secondary battery, characterized in that a silicon compound which occludes / desorbs the lithium ion is attached to the inside of the pores, and the particle size of the silicon compound is in the range of 0.001 μm to 10 μm.
【請求項4】 前記無機化合物としてケイ素化合物を使
用することを特徴とする請求項1に記載のリチウム二次
電池。
4. The lithium secondary battery according to claim 1, wherein a silicon compound is used as the inorganic compound.
【請求項5】 前記多孔質炭素の平均粒径をRC、前記
リチウムを吸蔵・放出するケイ素化合物の平均粒径をR
Siとする時、RSi/RC<0.1であることを特徴とす
る請求項1又は2に記載のリチウム二次電池。
5. The average particle size of the porous carbon is R C , and the average particle size of the silicon compound that absorbs and releases lithium is R.
The lithium secondary battery according to claim 1 or 2, wherein when Si is used, R Si / R C <0.1.
【請求項6】 正極と負極との間にセパレーターを配置
することを特徴とする請求項1から4のいずれか1項に
記載のリチウム二次電池。
6. The lithium secondary battery according to claim 1, further comprising a separator disposed between the positive electrode and the negative electrode.
【請求項7】 リチウム複合酸化物を含有する正極と、
リチウムイオンを吸蔵・放出する負極と、前記正極と負
極との間に介在させた電解液とを備えたリチウム二次電
池において、前記負極として複数の孔を有する活性炭と
リチウムイオンを吸蔵・放出する液体状のケイ素化合物
を混合させることにより、前記活性炭表面及び孔内にケ
イ素化合物を付着させたものを用いることを特徴とする
リチウム二次電池。
7. A positive electrode containing a lithium composite oxide,
In a lithium secondary battery including a negative electrode that stores and releases lithium ions, and an electrolyte solution that is interposed between the positive electrode and the negative electrode, activated carbon having a plurality of holes as the negative electrode and stores and releases lithium ions. A lithium secondary battery characterized in that a silicon compound is adhered to the surface and inside the pores of the activated carbon by mixing a liquid silicon compound.
JP2001291043A 2001-09-25 2001-09-25 Lithium secondary battery Pending JP2003100284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001291043A JP2003100284A (en) 2001-09-25 2001-09-25 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001291043A JP2003100284A (en) 2001-09-25 2001-09-25 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2003100284A true JP2003100284A (en) 2003-04-04

Family

ID=19113250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001291043A Pending JP2003100284A (en) 2001-09-25 2001-09-25 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2003100284A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101877406A (en) * 2009-04-28 2010-11-03 株式会社电装 Battery with nonaqueous electrolyte is with negative pole and the battery with nonaqueous electrolyte that uses this negative pole to make
KR101030041B1 (en) * 2009-05-07 2011-04-20 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery and rechargeable lithium battery comprising same
JP2012084359A (en) * 2010-10-08 2012-04-26 Mazda Motor Corp Active material containing active carbon for power storage device, production method therefor, and power storage device having active material
WO2014031929A1 (en) 2012-08-24 2014-02-27 Sila Nanotechnologies Inc. Scaffolding matrix with internal nanoparticles
US20150099187A1 (en) * 2013-10-04 2015-04-09 Board Of Trustees Of The Leland Stanford Junior University Large-volume-change lithium battery electrodes
JP2015195645A (en) * 2014-03-31 2015-11-05 デクセリアルズ株式会社 Polymer element, electronic apparatus, camera module, and imaging apparatus
WO2016052098A1 (en) * 2014-09-30 2016-04-07 日本電気株式会社 Material for negative electrode active material for lithium ion secondary battery, method for producing said material, negative electrode, and lithium ion secondary battery
JP2017147228A (en) * 2017-03-06 2017-08-24 日本ケミコン株式会社 Electrode material and electrochemical element
US10424786B1 (en) 2018-12-19 2019-09-24 Nexeon Limited Electroactive materials for metal-ion batteries
US10508335B1 (en) 2019-02-13 2019-12-17 Nexeon Limited Process for preparing electroactive materials for metal-ion batteries
WO2020095067A1 (en) 2018-11-08 2020-05-14 Nexeon Limited Electroactive materials for metal-ion batteries
WO2020095066A1 (en) 2018-11-08 2020-05-14 Nexeon Limited Electroactive Materials for Metal-Ion Batteries
WO2020128523A1 (en) 2018-12-21 2020-06-25 Nexeon Limited Process for preparing electroactive materials for metal-ion batteries
WO2020234586A1 (en) 2019-05-20 2020-11-26 Nexeon Limited Electroactive materials for metal-ion batteries
US10964940B1 (en) 2020-09-17 2021-03-30 Nexeon Limited Electroactive materials for metal-ion batteries
CN113471419A (en) * 2021-06-09 2021-10-01 济南精智方正新材料有限公司 Silicon-carbon composite material and preparation method and application thereof
WO2022029423A1 (en) 2020-08-03 2022-02-10 Nexeon Limited Electroactive materials for metal-ion batteries
WO2022029422A1 (en) 2020-08-03 2022-02-10 Nexeon Limited Electroactive materials for metal-ion batteries
WO2022163595A1 (en) * 2021-01-29 2022-08-04 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries, and secondary battery

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8778541B2 (en) 2009-04-28 2014-07-15 Denso Corporation Negative electrode for nonaqueous electrolyte solution battery and nonaqueous electrolyte solution battery having the same
JP2010277989A (en) * 2009-04-28 2010-12-09 Denso Corp Negative electrode for nonaqueous electrolyte solution battery, and nonaqueous electrolyte solution
DE102010018458A1 (en) 2009-04-28 2011-02-17 Denso Corporation, Kariya-City Non-aqueous electrolyte solution battery negative electrode and non-aqueous electrolyte solution battery with same
CN101877406A (en) * 2009-04-28 2010-11-03 株式会社电装 Battery with nonaqueous electrolyte is with negative pole and the battery with nonaqueous electrolyte that uses this negative pole to make
KR101203227B1 (en) * 2009-04-28 2012-11-20 다이가쿠쿄도리요기깐호우징 시젠카가꾸켄뀨기꼬 Negative electrode for nonaqueous electrolyte solution battery and nonaqueous electrolyte solution battery having the same
KR101030041B1 (en) * 2009-05-07 2011-04-20 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery and rechargeable lithium battery comprising same
US8309254B2 (en) 2009-05-07 2012-11-13 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery comprising same
US8906555B2 (en) 2009-05-07 2014-12-09 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery comprising same
JP2012084359A (en) * 2010-10-08 2012-04-26 Mazda Motor Corp Active material containing active carbon for power storage device, production method therefor, and power storage device having active material
WO2014031929A1 (en) 2012-08-24 2014-02-27 Sila Nanotechnologies Inc. Scaffolding matrix with internal nanoparticles
US11942624B2 (en) 2012-08-24 2024-03-26 Sila Nanotechnologies, Inc. Scaffolding matrix with internal nanoparticles
US20150099187A1 (en) * 2013-10-04 2015-04-09 Board Of Trustees Of The Leland Stanford Junior University Large-volume-change lithium battery electrodes
US10873074B2 (en) * 2013-10-04 2020-12-22 The Board Of Trustees Of The Leland Stanford Junior University Large-volume-change lithium battery electrodes
JP2015195645A (en) * 2014-03-31 2015-11-05 デクセリアルズ株式会社 Polymer element, electronic apparatus, camera module, and imaging apparatus
WO2016052098A1 (en) * 2014-09-30 2016-04-07 日本電気株式会社 Material for negative electrode active material for lithium ion secondary battery, method for producing said material, negative electrode, and lithium ion secondary battery
JPWO2016052098A1 (en) * 2014-09-30 2017-07-13 日本電気株式会社 Negative electrode active material for lithium ion secondary battery, method for producing the same, negative electrode and lithium ion secondary battery
US10326137B2 (en) 2014-09-30 2019-06-18 Nec Corporation Negative electrode active material for a lithium ion secondary battery and production method for same, and negative electrode and lithium ion secondary battery
JP2017147228A (en) * 2017-03-06 2017-08-24 日本ケミコン株式会社 Electrode material and electrochemical element
WO2020095067A1 (en) 2018-11-08 2020-05-14 Nexeon Limited Electroactive materials for metal-ion batteries
US11688849B2 (en) 2018-11-08 2023-06-27 Nexeon Limited Electroactive materials for metal-ion batteries
US11695110B2 (en) 2018-11-08 2023-07-04 Nexeon Limited Electroactive materials for metal-ion batteries
WO2020095066A1 (en) 2018-11-08 2020-05-14 Nexeon Limited Electroactive Materials for Metal-Ion Batteries
US11165054B2 (en) 2018-11-08 2021-11-02 Nexeon Limited Electroactive materials for metal-ion batteries
US11011748B2 (en) 2018-11-08 2021-05-18 Nexeon Limited Electroactive materials for metal-ion batteries
WO2020128495A1 (en) 2018-12-19 2020-06-25 Nexeon Limited Electroactive materials for metal-ion batteries
US10938027B2 (en) 2018-12-19 2021-03-02 Nexeon Limited Electroactive materials for metal-ion batteries
US10424786B1 (en) 2018-12-19 2019-09-24 Nexeon Limited Electroactive materials for metal-ion batteries
US11715824B2 (en) 2018-12-19 2023-08-01 Nexeon Limited Electroactive materials for metal-ion batteries
US10658659B1 (en) 2018-12-19 2020-05-19 Nexeon Limited Electroactive materials for metal-ion batteries
US11905593B2 (en) 2018-12-21 2024-02-20 Nexeon Limited Process for preparing electroactive materials for metal-ion batteries
WO2020128523A1 (en) 2018-12-21 2020-06-25 Nexeon Limited Process for preparing electroactive materials for metal-ion batteries
US10508335B1 (en) 2019-02-13 2019-12-17 Nexeon Limited Process for preparing electroactive materials for metal-ion batteries
WO2020234586A1 (en) 2019-05-20 2020-11-26 Nexeon Limited Electroactive materials for metal-ion batteries
WO2022029423A1 (en) 2020-08-03 2022-02-10 Nexeon Limited Electroactive materials for metal-ion batteries
EP4156329A1 (en) 2020-08-03 2023-03-29 Nexeon Limited Electroactive materials for metal-ion batteries
WO2022029422A1 (en) 2020-08-03 2022-02-10 Nexeon Limited Electroactive materials for metal-ion batteries
US10964940B1 (en) 2020-09-17 2021-03-30 Nexeon Limited Electroactive materials for metal-ion batteries
WO2022163595A1 (en) * 2021-01-29 2022-08-04 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries, and secondary battery
CN113471419A (en) * 2021-06-09 2021-10-01 济南精智方正新材料有限公司 Silicon-carbon composite material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
KR101479320B1 (en) Negative electrode active material for rechargeable lithium battery, and method for preparing the same
KR101704103B1 (en) Porous silicon based anode active material and lithium secondary battery comprising the same
KR101837235B1 (en) Lithium-sulfur rechargeable battery containing porous carbon sulfur composite and multi-layer separator, method for manufacturing thereof
KR20170137000A (en) Negative electrode active material, negative electrode comprising the negative electrode active material and lithium secondarty battery comprising the negative electrode
US20150132655A1 (en) Negative electrode active material and method for producing the same
JP2003100284A (en) Lithium secondary battery
KR20160040046A (en) Composite anode active material, anode including the composite anode active material, and lithium secondary battery including the anode
WO2000033404A1 (en) Lithium secondary cell and method for manufacturing the same
JPH10334948A (en) Electrode, lithium secondary battery, and electric double layer capacitor using the electrode
JP2020077611A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
JP3868231B2 (en) Carbon material, negative electrode for lithium ion secondary battery and lithium ion secondary battery
KR101775542B1 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and negative electrode and rechargeable lithium battery including same
JP4828688B2 (en) Positive electrode and non-aqueous electrolyte secondary battery
JP4792618B2 (en) Carbonaceous particles for negative electrode of lithium secondary battery, manufacturing method thereof, negative electrode of lithium secondary battery and lithium secondary battery
JP2022501787A (en) Negative electrode active material for lithium secondary batteries and lithium secondary batteries containing them
KR20150128432A (en) Silicon-carbon composite, preparation method thereof, and anode active material comprising the same
JP2008066128A (en) Negative electrode active material for lithium ion battery, and its manufacturing method, cathode for lithium ion battery, and lithium ion battery
US20130337324A1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing same
KR20130125173A (en) Method for manufacturing silicon based negative active material, negative active material for lithium recharable battery and lithium rechargable battery using the same
JP2002260742A (en) Nonaqueous electrolyte secondary battery
KR20190066867A (en) Negative electrode active material, negative electrode including the negative electrode active material, and lithium secondary battery including the same
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
KR101084080B1 (en) Non-aqueous electrolyte secondary cell
JPH11279785A (en) Composite carbon material for electrode, its production and nonaqueous electrolytic solution secondary cell using that
JP3582823B2 (en) Positive electrode for non-aqueous secondary battery and non-aqueous secondary battery