JPH0850894A - Nonaqueous solvent secondary battery - Google Patents

Nonaqueous solvent secondary battery

Info

Publication number
JPH0850894A
JPH0850894A JP6187149A JP18714994A JPH0850894A JP H0850894 A JPH0850894 A JP H0850894A JP 6187149 A JP6187149 A JP 6187149A JP 18714994 A JP18714994 A JP 18714994A JP H0850894 A JPH0850894 A JP H0850894A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode body
binder
secondary battery
polyolefin resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP6187149A
Other languages
Japanese (ja)
Inventor
Masami Suzuki
正美 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP6187149A priority Critical patent/JPH0850894A/en
Publication of JPH0850894A publication Critical patent/JPH0850894A/en
Abandoned legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a nonaqueous solvent secondary battery with strong positive electrode body and high charge/discharge cycle performance by using polyolefin resin aqueous dispersion as a binder of the positive electrode body. CONSTITUTION:A metal chalcogen compound or its oxide is used as a positive electrode active material of a nonaqueous solvent secondary battery, and aqueous dispersion of polyolefin resin having a mean particle size of 20mum or less is used as a binder. The dispersibility of the binder is enhanced and a positive electrode body with high mechanical strength can be obtained. The polyolefin resin is preferably thermoplastic elastomer comprising ethylene-propylene copolymer. In the manufacturing process of the positive electrode body, heating treatment at a temperature of the lowest film forming temperature or higher of the polyolefin resin aqueous dispersion serving as the binder is preferable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非水溶媒二次電池に関
し、特に正極を改良した非水溶媒二次電池に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous solvent secondary battery, and more particularly to a non-aqueous solvent secondary battery having an improved positive electrode.

【0002】[0002]

【従来の技術】TiS2 、MoS2 、MnO2 、LiM
24 、LiCoO2 、V25 のような遷移金属の
カルコゲン化合物やその酸化物を正極活物質とし、リチ
ウム金属、リチウム合金、又はリチウムを担持すること
のできる炭素質材にリチウムをドープした物を負極活物
質として用いた非水溶媒二次電池は、高いエネルギー密
度を有し、かつ良好な充放電サイクル特性を持つことが
確認されている。
2. Description of the Related Art TiS 2 , MoS 2 , MnO 2 , LiM
Using a chalcogen compound of a transition metal such as n 2 O 4 , LiCoO 2 , or V 2 O 5 or an oxide thereof as a positive electrode active material, lithium is added to lithium metal, a lithium alloy, or a carbonaceous material capable of supporting lithium. It has been confirmed that a non-aqueous solvent secondary battery using a doped material as a negative electrode active material has a high energy density and good charge / discharge cycle characteristics.

【0003】従来この系の電池の正極体は、正極活物質
として前述の金属カルコゲン化合物又はその金属酸化物
と、黒鉛やアセチレンブラック等の導電材と、結着剤と
してポリテトラフルオロエチレンやテトラフルオロエチ
レン−ヘキサフルオロプロピレン共重合体等のフッ素樹
脂とを混合し、加圧成形することにより得られていた。
フッ素樹脂、正極活物質および導電材を混合することに
より、フッ素樹脂が繊維化して正極活物質及び導電材の
表面を覆い、かつ、フッ素樹脂の繊維同士が絡み合うこ
とにより結着性を有し、正極体を形成していた。
Conventionally, the positive electrode body of this type of battery has a metal chalcogen compound or its metal oxide as a positive electrode active material, a conductive material such as graphite or acetylene black, and polytetrafluoroethylene or tetrafluoro as a binder. It was obtained by mixing with a fluororesin such as an ethylene-hexafluoropropylene copolymer and pressure molding.
By mixing the fluororesin, the positive electrode active material and the conductive material, the fluororesin is formed into fibers to cover the surface of the positive electrode active material and the conductive material, and the fibers of the fluororesin are entangled with each other to have binding properties, The positive electrode body was formed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前述の
フッ素樹脂を結着剤に使用した場合、フッ素樹脂繊維同
士は固着せず、また、フッ素樹脂繊維自体の強度が弱い
ため、得られた正極体は機械的強度が弱く、電池を製造
する上で正極体の割れや欠け等を招き支障をきたしてい
た。更に、この系の電池では充放電サイクルを繰り返す
度に、正極活物質の膨張、収縮が繰り返されるが、正極
活物質が電池の放電により一旦膨張するとフッ素樹脂繊
維同士の絡み合いがゆるむため、再度充電した場合に正
極活物質や導電材間の接触がとれなくなり、その結果、
充放電サイクルの進行に伴い放電容量の著しい減少を招
いた。本発明は、前述の問題点を解決し、正極体の強度
が強く、充放電サイクル特性の優れた非水溶媒二次電池
を提供するものである。
However, when the above-mentioned fluororesin is used as a binder, the fluororesin fibers do not adhere to each other and the strength of the fluororesin fiber itself is low, so that the obtained positive electrode body is obtained. Has a weak mechanical strength, and causes problems such as cracking and chipping of the positive electrode body in manufacturing a battery. Further, in the battery of this system, expansion and contraction of the positive electrode active material are repeated each time the charge / discharge cycle is repeated, but once the positive electrode active material expands due to discharge of the battery, the entanglement between the fluororesin fibers loosens, and the battery is charged again. In this case, the contact between the positive electrode active material and the conductive material is lost, and as a result,
As the charge / discharge cycle progressed, the discharge capacity was significantly reduced. The present invention solves the above-mentioned problems, and provides a non-aqueous solvent secondary battery in which the strength of the positive electrode body is high and the charge / discharge cycle characteristics are excellent.

【0005】[0005]

【課題を解決するための手段】本発明の非水溶媒二次電
池は、正極活物質、導電材および結着剤を有する正極体
を具備する非水溶媒二次電池において、該正極活物質が
金属カルコゲン化合物又その酸化物であり、かつ、該結
着剤に平均粒径20μm 以下、更に好ましくは10μm
以下のポリオレフィン系樹脂の水性ディスパージョンを
用いたことを特徴とする。とくにその中にあって、該ポ
リオレフィン系樹脂がエチレン−プロピレン共重合体か
らなる熱可塑性エラストマーであることを特徴とする。
さらに、該ポリオレフィン系樹脂の水性ディスパージョ
ンの最低成膜温度以上の温度で加熱処理した正極体を用
いたことを特徴とする。
The non-aqueous solvent secondary battery of the present invention is a non-aqueous solvent secondary battery comprising a positive electrode body having a positive electrode active material, a conductive material and a binder, wherein the positive electrode active material is It is a metal chalcogen compound or its oxide, and the binder has an average particle size of 20 μm or less, more preferably 10 μm.
The following aqueous dispersions of polyolefin resin are used. In particular, it is characterized in that the polyolefin resin is a thermoplastic elastomer composed of an ethylene-propylene copolymer.
Further, it is characterized in that a positive electrode body heat-treated at a temperature higher than the minimum film forming temperature of the aqueous dispersion of the polyolefin resin is used.

【0006】本発明において特徴的なことは、正極体の
結着剤としてポリオレフィン系樹脂の水性ディスパージ
ョンを用いることである。融着性のあるポリオレフィン
系樹脂を正極体の結着剤に使用することにより、結着剤
粒子間の固着が可能となるため合剤強度の向上が期待で
きる。しかしながら、ポリオレフィン系樹脂は一般に粉
末の形で供給されており、実際に正極体の結着剤に使用
した場合は結着剤の分散性が悪く、得られた正極体は機
械的強度が弱く、脆い物であった。
A feature of the present invention is the use of an aqueous dispersion of a polyolefin resin as a binder for the positive electrode body. By using a fusible polyolefin resin as the binder of the positive electrode body, it becomes possible to fix the binder particles to each other, so that improvement of the mixture strength can be expected. However, the polyolefin resin is generally supplied in the form of powder, and when actually used as a binder for the positive electrode body, the dispersibility of the binder is poor, and the obtained positive electrode body has low mechanical strength, It was fragile.

【0007】そこで、我々は鋭意研究を重ねた結果、正
極体の結着剤にポリオレフィン系樹脂の水性ディスパー
ジョンを用いることにより、正極活物質や導電材に対す
る結着剤の分散性を飛躍的に高めることができ、機械的
強度が優れた正極体を得ることができることを見い出し
た。
[0007] Therefore, as a result of intensive studies, we have dramatically improved the dispersibility of the binder in the positive electrode active material and the conductive material by using an aqueous dispersion of a polyolefin resin as the binder of the positive electrode body. It has been found that a positive electrode body that can be increased and has excellent mechanical strength can be obtained.

【0008】また、用いるポリオレフィン系樹脂の粒径
は、好ましくは20μm 以下、更に好ましくは10μm
以下であることが好ましい。なぜなら、ポリオレフィン
系樹脂の平均粒径が20μm より大きいと、溶媒中での
粒子の沈降が起こりやすく、水への分散が困難となり、
安定したディスパージョンを得ることが不可能であるか
らであり、更に、平均粒径10μm 以下の微細なポリオ
レフィン系樹脂を用いることにより、正極活物質及び導
電材との接触面積が増加するため、機械的強度の強い正
極体を得ることが可能となるからである。
The particle size of the polyolefin resin used is preferably 20 μm or less, more preferably 10 μm.
The following is preferred. This is because if the average particle size of the polyolefin resin is larger than 20 μm, the particles tend to settle in the solvent, making it difficult to disperse them in water.
This is because it is impossible to obtain a stable dispersion, and by using a fine polyolefin resin having an average particle diameter of 10 μm or less, the contact area with the positive electrode active material and the conductive material increases, so This is because it becomes possible to obtain a positive electrode body having a high dynamic strength.

【0009】また、ポリオレフィン系樹脂の材質につい
ては、ポリエチレンやポリプロピレンおよびそれらを基
本としたアイノマー等の各種重合体を用いることができ
るが、なかでもエチレン−プロピレン共重合体による熱
可塑性エラストマーが好ましい。なぜなら、エチレン−
プロピレン共重合体による熱可塑性エラストマーは、ポ
リエチレンやポリプロピレンに比べ樹脂強度が強く、か
つ弾性に富み、柔軟性があるため、エチレン−プロピレ
ン共重合体を結着剤に使用することにより、機械的強度
が強い正極体を得ることができ、更に、電池の充放電サ
イクルの進行に伴い、正極活物質が膨張、収縮を繰り返
しても、正極体が崩壊せずに優れたサイクル特性を持つ
非水溶媒二次電池を得ることができるからである。
As the material of the polyolefin resin, various polymers such as polyethylene, polypropylene and ionomers based on them can be used, and among them, a thermoplastic elastomer of ethylene-propylene copolymer is preferable. Because ethylene
Thermoplastic elastomers made from propylene copolymers have stronger resin strength than polyethylene and polypropylene, and are highly elastic and flexible, so by using ethylene-propylene copolymers as binders, mechanical strength is improved. A non-aqueous solvent having a strong positive electrode body and having excellent cycle characteristics without collapsing the positive electrode body even if the positive electrode active material repeatedly expands and contracts as the charge and discharge cycle of the battery progresses. This is because a secondary battery can be obtained.

【0010】更に、前述の機械的強度が強い正極体を得
るには、正極体の製造工程において、結着剤であるポリ
オレフィン系樹脂の水性ディスパージョンの最低成膜温
度以上の温度で加熱処理することが好ましい。なぜな
ら、ポリオレフィン系樹脂を正極活物質や導電材に対し
て混合・乾燥・成形しただけでは結着剤間の固着がおこ
らず、希望する正極体の強度は得られないからであり、
前述の温度で加熱することにより、結着剤粒子同士を互
いに融着せしめ、緻密で強固な樹脂膜を形成させること
により、機械的強度が強い正極体を得ることができるか
らである。
Further, in order to obtain the above-mentioned positive electrode body having high mechanical strength, in the manufacturing process of the positive electrode body, heat treatment is carried out at a temperature higher than the minimum film forming temperature of the aqueous dispersion of the polyolefin resin as the binder. It is preferable. This is because the mixture of the polyolefin-based resin with respect to the positive electrode active material or the conductive material, drying and molding does not cause the sticking between the binders and the desired strength of the positive electrode cannot be obtained.
By heating at the above-mentioned temperature, the binder particles are fused to each other and a dense and strong resin film is formed, whereby a positive electrode body having high mechanical strength can be obtained.

【0011】なお、実際に前述の正極体を製造する場合
は、正極活物質、導電材および結着剤を含む混合物を乾
燥後、加圧成形し正極体を形成した後、前述の加熱処理
を行ってもよいし、先の混合物に予め前述の加熱処理を
行った後、加圧成形し正極体を形成してもよい。更に
は、先の混合物に予め前述の処理を行った後、加圧成形
し正極体を形成し、再度前述の加熱処理を行ってもよ
い。また、先の混合物を金属箔やパンチドメタル、ネッ
ト等の集電体に塗付または充填した後、前述の加熱処理
を行うことにより、筒型及び角型の非水溶媒二次電池に
対しても適用可能である。
When the above-mentioned positive electrode body is actually manufactured, a mixture containing a positive electrode active material, a conductive material and a binder is dried and pressure-molded to form a positive electrode body, and then the above-mentioned heat treatment is carried out. Alternatively, the mixture may be subjected to the above-mentioned heat treatment in advance and then pressure-molded to form the positive electrode body. Further, the above mixture may be subjected to the above-mentioned treatment in advance, then pressure-molded to form a positive electrode body, and the above-mentioned heat treatment may be performed again. Further, after applying or filling the above mixture to a current collector such as a metal foil, punched metal, or net, the above heat treatment is applied to the cylindrical and square non-aqueous solvent secondary batteries. However, it is applicable.

【0012】[0012]

【実施例】以下、本発明を図1を参照して詳細に説明す
る。 実施例1 図中の1は厚さ0.3mmのステンレス鋼からなる正極容
器であり、この容器1内面にはステンレス製の正極集電
体2が内接されている。この集電体2を含む正極容器1
内には、正極体3が収納されている。この正極体3はV
25 粉末90gと人造黒鉛10gを混合した後、最低
成膜温度105℃である平均粒径6μmの低密度ポリエ
チレンの水性ディスパージョンを乾燥後の固形分が5g
となるように添加し、数分間混合し、一旦、80℃の温
度下で乾燥させた後、厚さ0.8mmのペレット状に加圧
成形し、正極体を形成し、更に、120℃の温度下で2
時間加熱処理することにより製作した。
The present invention will be described in detail below with reference to FIG. Example 1 1 in the figure is a positive electrode container made of stainless steel having a thickness of 0.3 mm, and a positive electrode current collector 2 made of stainless steel is inscribed on the inner surface of the container 1. Positive electrode container 1 including this current collector 2
The positive electrode body 3 is housed inside. This positive electrode body 3 is V
After mixing 90 g of 2 O 5 powder and 10 g of artificial graphite, an aqueous dispersion of low-density polyethylene having an average particle size of 6 μm and having a minimum film forming temperature of 105 ° C. has a solid content of 5 g after drying.
And mixed for several minutes, once dried at a temperature of 80 ° C., and then pressure-molded into a pellet having a thickness of 0.8 mm to form a positive electrode body. 2 under temperature
It was manufactured by performing heat treatment for an hour.

【0013】前記正極3上にはポリプロピレン不織布か
らなるセパレータ4が設置され、前記セパレータ4に
は、プロピレンカーボネートに過塩素酸リチウムを0.
7mol/l の濃度で溶解した電解液が保持されている。
A separator 4 made of polypropylene non-woven fabric is installed on the positive electrode 3, and the separator 4 contains propylene carbonate and lithium perchlorate of 0.1%.
An electrolyte solution dissolved at a concentration of 7 mol / l is retained.

【0014】また、図中の9は厚さ0.3mmのステンレ
ス鋼からなる負極容器であり、この容器9の内面には負
極集電体8が内接している。この集電体8を含む前記負
極容器9の内面に金属リチウム7が圧着され、さらに金
属リチウム7のセパレータ側には負極担持体6が設置さ
れている。この負極担持体6は炭素質材と結着剤とから
なり、ノボブラック樹脂を窒素雰囲気中、950℃で焼
成した後、さらに、2,000℃に加熱して炭素化し、
粉砕し平均粒径50μm の粉末とすることにより得た炭
素質材粉末に、結着剤としてMBRラテックスを固形分
で5重量%となるように混合した後、乾燥させ、更に厚
さ0.8mmのペレット状に加圧成形したものである。
Reference numeral 9 in the drawing is a negative electrode container made of stainless steel having a thickness of 0.3 mm, and the negative electrode current collector 8 is inscribed on the inner surface of the container 9. Metal lithium 7 is pressure bonded to the inner surface of the negative electrode container 9 including the current collector 8, and the negative electrode carrier 6 is installed on the separator side of the metal lithium 7. The negative electrode carrier 6 is composed of a carbonaceous material and a binder, and after firing the novoblack resin at 950 ° C. in a nitrogen atmosphere, it is further heated to 2,000 ° C. to carbonize it.
MBR latex as a binder was mixed to the carbonaceous material powder obtained by pulverizing to obtain a powder having an average particle size of 50 μm, and the mixture was dried to a solid content of 5% by weight, and further dried to a thickness of 0.8 mm. The pellets are pressure-molded.

【0015】そして、前記正極容器1の開口部には、絶
縁ガスケット7を介して前記負極容器9が嵌合されてお
り、該正極容器1のかしめ加工により前記正極容器1、
負極容器9内に前記正極集電体2、正極3、セパレータ
4、負極担持体6、金属リチウム7および負極集電体8
が密閉されている。上記の電池を組み立てた後、エージ
ングを行うことにより金属リチウム7を負極担持体6に
ドープさせ、目的の非水溶媒二次電池Aを製作した。
The negative electrode container 9 is fitted in the opening of the positive electrode container 1 via an insulating gasket 7, and the positive electrode container 1 is caulked to form the positive electrode container 1,
In the negative electrode container 9, the positive electrode current collector 2, the positive electrode 3, the separator 4, the negative electrode carrier 6, the metallic lithium 7, and the negative electrode current collector 8 are provided.
Is sealed. After assembling the above battery, the negative electrode carrier 6 was doped with metallic lithium 7 by aging to manufacture the target non-aqueous solvent secondary battery A.

【0016】実施例2 正極体3の結着剤に、最低成膜温度90℃である平均粒
径0.1μm 以下のポリエチレンの一部をメタクリル酸
で置換したアイオノマーの水性ディスパージョンを用い
た以外は、実施例1と同様に非水溶媒二次電池Bを製作
した。
Example 2 As the binder of the positive electrode body 3, except that an aqueous dispersion of an ionomer in which a part of polyethylene having an average particle size of 0.1 μm or less having a minimum film forming temperature of 90 ° C. was replaced with methacrylic acid was used. In the same manner as in Example 1, a non-aqueous solvent secondary battery B was manufactured.

【0017】実施例3 正極体3の結着剤に、最低成膜温度85℃である平均粒
径4μm のエチレン−プロピレン共重合体である熱可塑
性エラストマーの水性ディスパージョンを用いた以外
は、実施例1と同様に非水溶媒二次電池Cを製作した。
Example 3 Example 3 was carried out except that the binder of the positive electrode body 3 was an aqueous dispersion of a thermoplastic elastomer, which was an ethylene-propylene copolymer having a minimum film forming temperature of 85 ° C. and an average particle size of 4 μm. A non-aqueous solvent secondary battery C was manufactured in the same manner as in Example 1.

【0018】比較例1 正極体3を、V25 粉末90gと人造黒鉛10gを混
合した後、粉末状のポリテトラフルオロエチレン5gを
添加し、数分間、混合、混練することによりポリテトラ
フルオロエチレンを繊維化させ、更に、厚さ0.8mmの
ペレット状に加圧成形することにより得た以外は、実施
例1と同様に非水溶媒二次電池Dを製作した。
Comparative Example 1 The positive electrode body 3 was mixed with 90 g of V 2 O 5 powder and 10 g of artificial graphite, 5 g of powdered polytetrafluoroethylene was added, and the mixture was mixed and kneaded for several minutes to obtain polytetrafluoroethylene. A non-aqueous solvent secondary battery D was manufactured in the same manner as in Example 1 except that ethylene was made into fibers and further obtained by pressure molding into pellets having a thickness of 0.8 mm.

【0019】比較例2 正極体3を、V25 粉末90gと人造黒鉛10gを混
合した後、粉末状のポリエチレン5gを添加し、数分
間、混合した後、厚さ0.8mmのペレット状に加圧成形
し、更に120℃の温度下で2時間加熱処理をすること
により得た以外は、実施例1と同様に非水溶媒二次電池
Eを製作した。
Comparative Example 2 The positive electrode body 3 was mixed with 90 g of V 2 O 5 powder and 10 g of artificial graphite, 5 g of powdered polyethylene was added, and the mixture was mixed for several minutes, and then pelletized with a thickness of 0.8 mm. A non-aqueous solvent secondary battery E was manufactured in the same manner as in Example 1 except that it was obtained by subjecting it to pressure molding and further heat treatment at a temperature of 120 ° C. for 2 hours.

【0020】このように製作した非水溶媒二次電池の正
極体について、円盤状ペレットの面方向から加圧した場
合に、正極体が破壊される迄の最大応力を計測すること
により正極体の機械的強度を比較した。また、実施例
1、2および3については加熱処理前の正極体の最大応
力も併せて測定した。結果を表1に示す。
With respect to the positive electrode body of the non-aqueous solvent secondary battery thus manufactured, the maximum stress until the positive electrode body is broken is measured when the positive electrode body is pressed from the surface direction of the disk-shaped pellet, and thus the positive electrode body of the positive electrode body is measured. The mechanical strength was compared. Further, in Examples 1, 2 and 3, the maximum stress of the positive electrode body before the heat treatment was also measured. The results are shown in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】表1から明らかなように、実施例の非水溶
媒二次電池に用いた正極体は、いずれも比較例1のそれ
に比べ、明らかに機械的強度が増加している。また加熱
処理を行うことにより機械的強度が更に増加することが
明白であり、加熱処理後は比較例2と比較しても明らか
に機械的強度が増加している。また、特に実施例3に用
いた熱可塑性エラストマーの水性ディスパージョンを結
着剤に使用した正極体は、他のポリオレフィン系の水性
ディスパージョンを使用した正極体に比較しても、1.
8倍以上の機械的強度を持ち非常に優れている。
As is clear from Table 1, the positive electrode bodies used in the non-aqueous solvent secondary batteries of the Examples clearly have increased mechanical strength as compared with that of Comparative Example 1. Further, it is clear that the heat treatment further increases the mechanical strength, and even after the heat treatment, the mechanical strength is obviously increased as compared with Comparative Example 2. In addition, the positive electrode body using the aqueous dispersion of the thermoplastic elastomer used in Example 3 as the binder is 1.
It has a mechanical strength more than 8 times and is very excellent.

【0023】また、実施例および比較例の非水溶媒二次
電池について、2.7 kΩの定抵抗で2.0Vまで放電
を行い、3.4Vの低電圧で64時間充電する工程を1
サイクルとして、50サイクルまで繰り返し行った。各
サイクルにおける1サイクル目の放電容量に対する放電
容量維持率を測定した結果を図2に示す。図2から明ら
かなように、本実施例の非水溶媒二次電池は、比較例1
および2の非水溶媒二次電池に比べてサイクルの進行に
伴う放電容量の劣化が少なく、充放電サイクル特性が明
らかに優れている。
The non-aqueous solvent secondary batteries of Examples and Comparative Examples were subjected to a step of discharging to 2.0 V with a constant resistance of 2.7 kΩ and charging with a low voltage of 3.4 V for 64 hours.
The cycle was repeated up to 50 cycles. The result of measuring the discharge capacity retention ratio with respect to the discharge capacity at the first cycle in each cycle is shown in FIG. As is clear from FIG. 2, the non-aqueous solvent secondary battery of this example is the same as Comparative example 1.
Compared to the non-aqueous solvent secondary batteries of Nos. 2 and 2, the discharge capacity was less deteriorated as the cycle proceeded, and the charge / discharge cycle characteristics were clearly excellent.

【0024】[0024]

【発明の効果】以上のことから明らかなように、本発明
によれば、正極体の結着剤にポリオレフィン系樹脂の水
性ディスパージョンを使用したことにより、分散性を高
めることができ、機械的強度の優れた正極体を得ること
ができ、その結果、充放電サイクル特性の優れた非水溶
媒二次電池を提供することができる。
As is clear from the above, according to the present invention, the use of an aqueous dispersion of a polyolefin-based resin as a binder for the positive electrode makes it possible to enhance the dispersibility and improve mechanical properties. A positive electrode body having excellent strength can be obtained, and as a result, a non-aqueous solvent secondary battery having excellent charge / discharge cycle characteristics can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の非水溶媒二次電池の断面図である。FIG. 1 is a cross-sectional view of a non-aqueous solvent secondary battery of the present invention.

【図2】実施例および比較例の充放電サイクル数と放電
容量維持率との関係を示す特性図である。
FIG. 2 is a characteristic diagram showing the relationship between the number of charge / discharge cycles and the discharge capacity retention rate in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1 正極容器 2 正極集電体 3 正極 4 セパレータ 5 絶縁ガスケット 6 負極担持体 7 金属リチウム 8 負極集電体 9 負極容器 A 実施例1の電池の測定結果 B 実施例2の電池の測定結果 C 実施例3の電池の測定結果 D 比較例1の電池の測定結果 E 比較例2の電池の測定結果 1 Positive Electrode Container 2 Positive Electrode Current Collector 3 Positive Electrode 4 Separator 5 Insulation Gasket 6 Negative Electrode Carrier 7 Metal Lithium 8 Negative Electrode Current Collector 9 Negative Electrode Container A Measurement Result of Battery of Example 1 B Measurement Result of Battery of Example 2 C Implementation Measurement result of the battery of Example 3 D Measurement result of the battery of Comparative Example 1 E Measurement result of the battery of Comparative Example 2

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質、導電材および結着剤を有す
る正極体を具備する非水溶媒二次電池において、該正極
活物質が金属カルコゲン化合物又はその酸化物であり、
かつ、該結着剤に平均粒径20μm 以下のポリオレフィ
ン系樹脂の水性ディスパージョンを用いたことを特徴と
する非水溶媒二次電池。
1. A non-aqueous solvent secondary battery comprising a positive electrode body having a positive electrode active material, a conductive material and a binder, wherein the positive electrode active material is a metal chalcogen compound or an oxide thereof.
A non-aqueous solvent secondary battery characterized in that an aqueous dispersion of a polyolefin resin having an average particle size of 20 μm or less is used as the binder.
【請求項2】 該ポリオレフィン系樹脂が、エチレン−
プロピレン共重合体からなる熱可塑性エラストマーであ
る請求項1記載の非水溶媒二次電池。
2. The polyolefin resin is ethylene-
The non-aqueous solvent secondary battery according to claim 1, which is a thermoplastic elastomer made of a propylene copolymer.
【請求項3】 該ポリオレフィン系樹脂の水性ディスパ
ージョンの最低成膜温度以上の温度で加熱処理した正極
体を用いる請求項1又は2記載の非水溶媒二次電池。
3. The non-aqueous solvent secondary battery according to claim 1, wherein a positive electrode body heat-treated at a temperature not lower than the minimum film forming temperature of the aqueous dispersion of the polyolefin resin is used.
JP6187149A 1994-08-09 1994-08-09 Nonaqueous solvent secondary battery Abandoned JPH0850894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6187149A JPH0850894A (en) 1994-08-09 1994-08-09 Nonaqueous solvent secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6187149A JPH0850894A (en) 1994-08-09 1994-08-09 Nonaqueous solvent secondary battery

Publications (1)

Publication Number Publication Date
JPH0850894A true JPH0850894A (en) 1996-02-20

Family

ID=16200984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6187149A Abandoned JPH0850894A (en) 1994-08-09 1994-08-09 Nonaqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JPH0850894A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100342050B1 (en) * 1999-08-20 2002-06-27 김순택 Composition comprising anode acitve material of lithium secondary battery and lithium secondary battery comprising anode manufactured using the same
JP2002298852A (en) * 2001-03-22 2002-10-11 Ilion Technology Corp Electrochemical cell having ionomer binder and manufacturing method relating to the same
JP2007207697A (en) * 2006-02-06 2007-08-16 Matsushita Electric Ind Co Ltd Flat type nonaqueous electrolyte solution secondary battery
KR100786452B1 (en) * 1999-02-15 2007-12-17 컨스트럭션 리서치 앤 테크놀로지 게엠베하 Cement additive
WO2008029502A1 (en) 2006-08-29 2008-03-13 Unitika Ltd. Binder for electrode formation, slurry for electrode formation using the binder, electrode using the slurry, secondary battery using the electrode, and capacitor using the electrode

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100786452B1 (en) * 1999-02-15 2007-12-17 컨스트럭션 리서치 앤 테크놀로지 게엠베하 Cement additive
KR100342050B1 (en) * 1999-08-20 2002-06-27 김순택 Composition comprising anode acitve material of lithium secondary battery and lithium secondary battery comprising anode manufactured using the same
JP2002298852A (en) * 2001-03-22 2002-10-11 Ilion Technology Corp Electrochemical cell having ionomer binder and manufacturing method relating to the same
JP2007207697A (en) * 2006-02-06 2007-08-16 Matsushita Electric Ind Co Ltd Flat type nonaqueous electrolyte solution secondary battery
WO2008029502A1 (en) 2006-08-29 2008-03-13 Unitika Ltd. Binder for electrode formation, slurry for electrode formation using the binder, electrode using the slurry, secondary battery using the electrode, and capacitor using the electrode

Similar Documents

Publication Publication Date Title
JP2948205B1 (en) Method for producing negative electrode for secondary battery
KR100609862B1 (en) Lithium secondary cell and method for manufacturing the same
HUT77304A (en) Manganese dioxide positive elektrode for rechargeable cells, and cells containing the same
JP2000195499A (en) Lithium battery
JP3243239B2 (en) Method for producing positive electrode for non-aqueous secondary battery
JP3605256B2 (en) Carbon material for negative electrode of lithium ion secondary battery and lithium ion secondary battery using the carbon material for negative electrode
JP4016438B2 (en) Nonaqueous electrolyte secondary battery
JP2621294B2 (en) Rechargeable battery
JPH0850894A (en) Nonaqueous solvent secondary battery
JPH0324023B2 (en)
JPH10112321A (en) Nonaqueous electrolyte secondary battery and its manufacture
JPH10162811A (en) Electrode material for battery and secondary battery
JP5890715B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4830180B2 (en) Method for producing electrode plate for non-aqueous electrolyte secondary battery
JPH0580791B2 (en)
JP2000164211A (en) Positive electrode material and battery using the same
KR100674524B1 (en) Hydrogen Absorbing Alloy Electrode, Method of Fabricating The Same and Alkaline Storage Battery
JP2002100345A (en) Manufacturing method of positive electrode for nonaqueous secondary battery
JPH065288A (en) Carbon electrode and lithium secondary battery using same electrode
JPH07142092A (en) Nonaqueous solvent secondary battery
JP4594613B2 (en) Electroconductive material for electrode for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP3434557B2 (en) Non-aqueous solvent secondary battery
JPH065287A (en) Carbon electrode and lithium secondary battery using same electrode
JPH113697A (en) Chargeable/dischargeable battery and its manufacture
JPH02239572A (en) Polyaniline battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20050119