JP2000195499A - Lithium battery - Google Patents

Lithium battery

Info

Publication number
JP2000195499A
JP2000195499A JP10368841A JP36884198A JP2000195499A JP 2000195499 A JP2000195499 A JP 2000195499A JP 10368841 A JP10368841 A JP 10368841A JP 36884198 A JP36884198 A JP 36884198A JP 2000195499 A JP2000195499 A JP 2000195499A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
battery
active material
composite sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10368841A
Other languages
Japanese (ja)
Inventor
Hiromitsu Mishima
洋光 三島
Toshihiko Kamimura
俊彦 上村
Nobuyuki Kitahara
暢之 北原
Shinji Umagome
伸二 馬込
Makoto Osaki
誠 大崎
Hisashi Higuchi
永 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10368841A priority Critical patent/JP2000195499A/en
Publication of JP2000195499A publication Critical patent/JP2000195499A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To suppress deposition of lithium during a charging/discharging period, to have a high energy density, and to improve safety and reliability, by composing at least either of a positive electrode and a negative electrode by a composite sintered body of active material and an expanded metal. SOLUTION: A negative electrode composite sintered body 8 is obtained by pressure-molding oxide-based negative electrode active material together with an expanded metal and thereafter by calcining it, and a positive electrode composite sintered body 10 is obtained by pressure molding oxide-based positive electrode active material together with the expanded metal and thereafter by calcining it. Separators 9 are arranged laminatedly for insulation between the negative electrode composite sintered body 8 and the positive electrode composite sintered body 10 and for retention of electrolyte solution. A laminated electrode group is inserted into a battery jar can through the separator 9, and the negative electrode and positive electrode composite sintered bodies 8, 10 are welded to a positive electrode terminal 2 and a negative electrode terminal through a lead terminal 7 respectively, and thereafter the electrolyte solution is injected and the battery jar can and a lid are laser-welded, to thereby obtain a battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム電池に関
し、特に電極を改良したリチウム電池に関する。
The present invention relates to a lithium battery, and more particularly, to a lithium battery having an improved electrode.

【0002】[0002]

【従来の技術】携帯電話やパーソナルコンピュータに代
表される携帯機器の近年の目覚しい発達に伴い、その電
源としての電池の需要も急速に増加している。特に、リ
チウムイオン電池は、原子量が小さく、かつイオン化エ
ネルギーが大きなリチウムを使う電池であることから、
高エネルギー密度を得ることができる電池として盛んに
研究が行われ、現在では携帯機器の電源をはじめとして
広範囲に用いられるに至っている。これらのリチウムイ
オン電池には、大きく分けて円筒型と角型があるが、い
ずれも正極と負極がセパレータに巻回された極群を電槽
缶内に挿入し、そこに有機電解液が注入されて封口され
た構造となっている。
2. Description of the Related Art With the recent remarkable development of portable equipment represented by portable telephones and personal computers, demand for batteries as a power source thereof has been rapidly increasing. In particular, a lithium ion battery is a battery that uses lithium, which has a small atomic weight and a large ionization energy,
Research has been actively conducted on batteries capable of obtaining a high energy density, and now batteries have been widely used, including power supplies for portable devices. These lithium-ion batteries are broadly divided into cylindrical and prismatic types. In each case, the positive electrode and the negative electrode are wound around a separator, and the electrode group is inserted into a battery case and the organic electrolyte is injected into the battery. It is a structure that is sealed.

【0003】上述したリチウムイオン電池では、正極活
物質としてコバルト酸リチウム(LiCoO2 )やマン
ガン酸リチウム(LiMn2 4 )が一般に用いられて
いる。負極活物質には、コークスや炭素繊維などの炭素
材料が用いられるのが一般的である。ここで挙げたLi
CoO2 やLiMn2 4 の充放電電圧は約4Vであ
る。これに対して炭素材料の充放電電圧は0V付近であ
る。したがって、これらの正極活物質と負極活物質を組
み合わせることでリチウムイオン電池は約3.5Vの高
電圧を達成している。また、一般的にリチウムイオン電
池の電極は、これらの正極または負極活物質に有機バイ
ンダー、例えばポリテトラフルオロエチレンやポリフッ
化ビニリデンなどと必要に応じて黒鉛などの導電剤およ
び溶媒を加えて塗液を作製した後、この塗液を特開平1
0―188962号公報などで開示されるエクストルー
ジョン方式やドクターブレード方式などの塗布方法によ
り集電体と呼ばれるアルミニウムあるいは銅製の金属箔
上に塗布して乾燥・裁断することでシート状に作製され
る。また、裁断前に電極の充填密度を向上させるため
に、必要に応じて特開平10―64521号公報で開示
されるようなロールプレス装置により加圧・圧縮される
ことがある。
In the above-mentioned lithium ion battery, lithium cobalt oxide (LiCoO 2 ) or lithium manganate (LiMn 2 O 4 ) is generally used as a positive electrode active material. In general, a carbon material such as coke and carbon fiber is used for the negative electrode active material. Li listed here
The charging and discharging voltage of CoO 2 and LiMn 2 O 4 is about 4V. On the other hand, the charge / discharge voltage of the carbon material is around 0V. Therefore, a lithium ion battery achieves a high voltage of about 3.5 V by combining these positive electrode active materials and negative electrode active materials. Generally, the electrodes of a lithium ion battery are formed by adding an organic binder such as polytetrafluoroethylene or polyvinylidene fluoride and a conductive agent such as graphite and a solvent as necessary to the positive electrode or negative electrode active material. After preparing this coating solution,
It is produced in a sheet shape by applying it on an aluminum or copper metal foil called a current collector by a coating method such as an extrusion method or a doctor blade method disclosed in Japanese Patent Application Publication No. 0-188962 and drying and cutting it. . Further, in order to improve the packing density of the electrode before cutting, the electrode may be pressurized and compressed by a roll press device as disclosed in JP-A-10-64521 as needed.

【0004】しかしながら、集電体上に塗布により形成
された電極には、電池反応に直接は寄与しない粒子同士
を結着するためのバインダーや粒子間の電子伝導性を確
保するための導電剤が体積比で10から40%含まれて
いるため、実質的な活物質が電極内で占める体積は20
から60%にとどまっている。つまり、活物質充填率が
高くならないという問題がある。したがって、塗布型の
電極を用いた場合は電池の容量が小さくなり、結果的に
電池のエネルギー密度が小さいものとなっている。ま
た、コイン形電池のように加圧成形されたペレット状の
電極においても同様で、導電剤やバインダーを含有する
ため活物質充填率を上げられないという問題がある。
[0004] However, the electrode formed by coating on the current collector is provided with a binder for binding particles that do not directly contribute to the battery reaction or a conductive agent for securing electron conductivity between the particles. Since the volume ratio is 10 to 40%, the volume occupied by the substantial active material in the electrode is 20%.
From 60%. That is, there is a problem that the active material filling rate does not increase. Therefore, when the coating type electrode is used, the capacity of the battery is reduced, and as a result, the energy density of the battery is reduced. In addition, the same applies to pressure-formed pellet-shaped electrodes such as coin-type batteries, which also has a problem that the active material filling rate cannot be increased because of containing a conductive agent and a binder.

【0005】かかる問題を解決する方法として、例えば
特開平6−150908号公報、特開平7−28812
6号公報に開示されているように、炭素材料を用いる負
極においてバインダーを用いる代わりに加熱によって炭
素化し、充放電に対して可逆性を有するようになる固形
有機物または各種ピッチ類を活物質保持剤として用いる
ことが提案されている。
As a method for solving such a problem, for example, JP-A-6-150908 and JP-A-7-28812
No. 6, as an active material retainer, a solid organic substance or various pitches that become carbonized by heating instead of using a binder in a negative electrode using a carbon material instead of using a binder and become reversible to charging and discharging are used. It has been proposed to use as

【0006】この炭素負極を作製するには、主たる負極
活物質となる炭素材料と固形有機物または各種ピッチ
類、および溶剤よりなる負極合剤を金属集電体に塗布し
た後、加熱する。この加熱過程で、負極合剤中の固形有
機物または各種ピッチ類は炭化し、活物質同士を結着す
る。この炭素化した固形有機物または各種ピッチ類は、
活物質を結着する働きをするとともに、それ自体充放電
に寄与し、電池容量を増加させる。さらに、この炭素化
した固形有機物または各種ピッチ類は活物質粒子間を三
次元的に集電する役目を果たす。したがって、このよう
な複合焼結体を用いる電池は、結着剤の分が容量損にな
らず、高エネルギー密度化できることになる。
[0006] In order to produce the carbon negative electrode, a carbon material serving as a main negative electrode active material and a negative electrode mixture comprising a solid organic substance or various pitches and a solvent are applied to a metal current collector and then heated. During this heating process, the solid organic matter or various pitches in the negative electrode mixture are carbonized and bind the active materials. This carbonized solid organic matter or various pitches,
It not only functions to bind the active material, but also contributes to charging and discharging itself and increases the battery capacity. Further, the carbonized solid organic substance or various pitches play a role of three-dimensionally collecting current between the active material particles. Therefore, in the battery using such a composite sintered body, the capacity of the binder does not cause a loss in capacity, and the energy density can be increased.

【0007】しかしながら、金属箔集電体上に負極合剤
を塗布し、焼成する複合焼結体作製方法では、加熱過程
で固形有機物あるいは各種ピッチ類が炭素化する際に、
金属箔集電体が炭素層の均一な収縮を阻害し、その結果
炭素層がひび割れしたり、集電体から剥離するといった
問題が生じる。
However, in the method for producing a composite sintered body in which a negative electrode mixture is applied on a metal foil current collector and fired, when solid organic substances or various pitches are carbonized in a heating process,
The metal foil current collector hinders uniform shrinkage of the carbon layer, resulting in problems such as cracking of the carbon layer and separation from the current collector.

【0008】そこで、特開平10−50319号公報で
は集電体にエキスパンドメタルを用いることが提案され
ている。このエキスパンドメタルは柔軟であるため、焼
結過程で生じる炭素層の収縮や充放電にともなった炭素
層の膨張・収縮に追従して変形することができる。従っ
て、炭素層のひび割れや剥離のない負極複合焼結体を得
られることとなる。
Therefore, Japanese Patent Application Laid-Open No. 10-50319 proposes to use an expanded metal as a current collector. Since the expanded metal is flexible, it can be deformed following the contraction of the carbon layer generated during the sintering process and the expansion and contraction of the carbon layer caused by charging and discharging. Therefore, it is possible to obtain a negative electrode composite sintered body without cracking or peeling of the carbon layer.

【0009】[0009]

【発明が解決しようとする課題】負極活物質に炭素材料
を用いるリチウムイオン電池は、炭素材料の充放電電圧
が0V付近であることから高エネルギー密度が期待され
る。さらに、炭素材料複合焼結体を用いるリチウムイオ
ン電池では、電極に無駄な結着剤を含まないことから一
層高エネルギー密度化が期待される。しかしながら、負
極活物質に炭素材料を用いたリチウムイオン電池の場
合、通常の充放電反応においてもエッジ効果によって電
流が集中しやすい負極周縁部にリチウムが析出し、デン
ドライト状に結晶成長して内部短絡を引き起こす可能性
がある。特に、大電流で急速充電した際や、電極にひび
割れなどがあるとリチウムの析出が顕著に起こる。この
現象は、炭素材料中へリチウムイオンが進入する挿入反
応電位とリチウムの析出電位が近いために、電流集中の
起こるエッジ部や電極表面のひび割れによって生じたエ
ッジ部分で挿入と析出が競争反応として同時に起こるた
めと考えられる。従って、電池の充電過程でリチウム金
属が負極表面に析出し内部短絡を引き起こす可能性があ
る炭素材料を負極活物質に用いたリチウムイオン電池
は、十分な安全性、信頼性を有しているとはいえない。
A lithium ion battery using a carbon material as the negative electrode active material is expected to have a high energy density because the charge / discharge voltage of the carbon material is around 0V. Further, in the lithium ion battery using the carbon material composite sintered body, further higher energy density is expected because the electrode does not include a useless binder. However, in the case of a lithium ion battery using a carbon material as the negative electrode active material, lithium precipitates at the periphery of the negative electrode, where current tends to concentrate due to the edge effect even in a normal charge / discharge reaction, and grows into a dendrite-like crystal to short-circuit internally Can cause In particular, when the battery is rapidly charged with a large current or when the electrode has cracks or the like, the precipitation of lithium occurs remarkably. This phenomenon is due to the fact that the insertion reaction potential at which lithium ions enter the carbon material and the deposition potential of lithium are close to each other, so that insertion and deposition are competitive reactions at the edge where current concentration occurs or at the edge caused by cracks on the electrode surface. It is thought that they happen at the same time. Therefore, a lithium ion battery using a carbon material, which has a possibility of causing lithium metal to precipitate on the surface of the negative electrode during the charging process of the battery and causing an internal short circuit, as the negative electrode active material, has sufficient safety and reliability. I can't say.

【0010】そこで、本発明は上述のような従来のリチ
ウムイオン電池の問題点に鑑み、充放電中のリチウムの
析出を抑止し、高エネルギー密度を有し、かつ安全性、
信頼性に優れるリチウム電池を提供することを目的とす
る。
In view of the above-mentioned problems of the conventional lithium ion battery, the present invention suppresses the precipitation of lithium during charging and discharging, has a high energy density, and has high safety.
It is an object to provide a lithium battery having excellent reliability.

【0011】[0011]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明のリチウム電池は、正極と負極との間に電
解質を配設したリチウム電池において、前記正極もしく
は負極の少なくとも一方を活物質とエキスパンドメタル
の複合焼結体で構成した。
In order to achieve the above object, a lithium battery according to the present invention comprises a lithium battery having an electrolyte disposed between a positive electrode and a negative electrode, wherein at least one of the positive electrode and the negative electrode is activated. It was composed of a composite sintered body of the substance and expanded metal.

【0012】上記リチウム電池では、前記活物質が金属
酸化物もしくは金属複合酸化物であることが望ましい。
In the above lithium battery, it is preferable that the active material is a metal oxide or a metal composite oxide.

【0013】[0013]

【作用】上記のように構成すると、有機バインダーや導
電剤を含まない焼結体で電極を形成でき、活物質の充填
率が向上し、電池のエネルギー密度が向上する。また、
一般的に酸化物の充放電電圧は炭素材料の充放電電圧よ
りも貴な電位を示すことから、原理的にリチウムの析出
反応が起こらないので、電池の安全性、信頼性が向上す
る。
With the above construction, an electrode can be formed from a sintered body that does not contain an organic binder or a conductive agent, the filling rate of the active material is improved, and the energy density of the battery is improved. Also,
In general, the charge / discharge voltage of an oxide shows a potential that is more noble than the charge / discharge voltage of a carbon material, and thus, in principle, lithium precipitation reaction does not occur, so that the safety and reliability of the battery are improved.

【0014】[0014]

【発明の実施の形態】以下、本発明のリチウム電池の実
施形態について説明する。図1は、本発明に係る角形リ
チウム電池の構成例を示す一部破断面図、図2は断面図
である。図1および図2において、1は例えばステンレ
スからなる電槽缶、2はステンレス製の正極端子、3は
同じくステンレス製の負極端子、4は正極端子2よび負
極端子3がガラスハーメチックシール6によって取り付
けられたステンレス製の蓋である。5は電極と電槽缶を
絶縁するための樹脂製の絶縁板である。8は酸化物系負
極活物質をエキスパンドメタルとともに加圧成形したの
ち焼成して得られた負極複合焼結体である。10は酸化
物系正極活物質をエキスパンドメタルとともに加圧成形
したのち焼成して得られた正極複合焼結体である。ま
た、9は負極複合焼結体8と正極複合焼結体10の絶縁
と電解液の保持のために積層配置されたセパレータであ
る。上述の負極複合焼結体8と正極複合焼結体10をセ
パレータ9を介して積層した極群を電槽缶1に挿入し、
負極複合焼結体8および正極複合焼体10をそれぞれリ
ード端子7を介して正極端子2および負極端子3に溶接
した後、電解液を注液して電槽缶1と蓋4をレーザー溶
接して、電池とした。ただし、対向する正極と負極の容
量比をほぼ同じとするため極群の外側に配置される2枚
の負極の厚みは、他の負極の約1/2となるように調節
した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the lithium battery of the present invention will be described. FIG. 1 is a partially broken sectional view showing a configuration example of a prismatic lithium battery according to the present invention, and FIG. 2 is a sectional view. 1 and 2, reference numeral 1 denotes a battery case made of, for example, stainless steel, 2 denotes a positive electrode terminal made of stainless steel, 3 denotes a negative electrode terminal also made of stainless steel, 4 denotes a positive electrode terminal 2 and a negative electrode terminal 3 are attached by a glass hermetic seal 6. Stainless steel lid. Reference numeral 5 denotes a resin insulating plate for insulating the electrode and the battery case. Reference numeral 8 denotes a negative electrode composite sintered body obtained by pressing an oxide-based negative electrode active material together with an expanded metal, followed by firing. Reference numeral 10 denotes a positive electrode composite sintered body obtained by pressing an oxide-based positive electrode active material together with an expanded metal, followed by firing. Reference numeral 9 denotes a separator that is stacked and arranged to insulate the negative electrode composite sintered body 8 and the positive electrode composite sintered body 10 and hold the electrolyte. The electrode group obtained by laminating the above-described negative electrode composite sintered body 8 and positive electrode composite sintered body 10 via the separator 9 is inserted into the battery case 1,
After welding the negative electrode composite sintered body 8 and the positive electrode composite sintered body 10 to the positive electrode terminal 2 and the negative electrode terminal 3 via the lead terminals 7, respectively, the electrolytic solution is injected and the battery case 1 and the lid 4 are laser-welded. To make a battery. However, in order to make the capacity ratio of the opposed positive electrode and negative electrode almost the same, the thickness of the two negative electrodes disposed outside the electrode group was adjusted to be about の of the other negative electrodes.

【0015】次に、正極複合焼結体10および負極複合
焼結体8の製造方法を述べる。上述の正極および負極活
物質に用いる酸化物としては、次のような化合物が挙げ
られる。例えば、リチウムマンガン複合酸化物、二酸化
マンガン、リチウムニッケル複合酸化物、リチウムコバ
ルト複合酸化物、リチウムニッケルコバルト複合酸化
物、リチウムバナジウム複合酸化物、リチウムチタン複
合酸化物、酸化チタン、酸化ニオブ、酸化バナジウム、
酸化タングステンなどとそれらの誘導体が挙げられる。
ここで、正極活物質と負極活物質には明確な区別はな
く、2種類の化合物の充放電電位を比較してより貴な電
位を示すものを正極に、より卑な電位を示すものを負極
にそれぞれ用いて任意の電圧の電池を構成することがで
きる。
Next, a method for manufacturing the positive electrode composite sintered body 10 and the negative electrode composite sintered body 8 will be described. Examples of the oxide used for the above-described positive electrode and negative electrode active materials include the following compounds. For example, lithium manganese composite oxide, manganese dioxide, lithium nickel composite oxide, lithium cobalt composite oxide, lithium nickel cobalt composite oxide, lithium vanadium composite oxide, lithium titanium composite oxide, titanium oxide, niobium oxide, vanadium oxide ,
Tungsten oxide and derivatives thereof are given.
Here, there is no clear distinction between the positive electrode active material and the negative electrode active material, and the charge and discharge potentials of the two types of compounds are compared to show a more noble potential as the positive electrode, and the more negative one as the negative electrode. Can be used to form a battery having an arbitrary voltage.

【0016】これら酸化物の複合焼結体は、(1)活物
質を成形助剤を溶解させた水もしくは溶剤に分散させて
スラリーを調製し、このスラリーをエキスパンドメタル
に塗布・乾燥した後、圧縮成形して裁断したものを焼結
させる方法、あるいは(2)活物質粉体を直接あるいは
造粒し、エキスパンドメタルとともにプレス機で加圧成
形した後、焼成させる方法、(3)造粒した粉体をロー
ルプレス機で加圧成形してシート状に加工した後、その
シートにエキスパンドメタルを埋め込み裁断して焼結さ
せる方法、(4)(1)と同様に作製したスラリーを基
材フィルム上に塗布・乾燥して合剤シートを作製し、こ
の合剤シートをエキスパンドメタルの両側に圧接して裁
断した後、焼成する方法などが用いられる。この焼成
は、活物質の焼成温度以下でかつエキスパンドメタルが
変質しない程度の上限温度で行う。(2)、(3)の造
粒は、(1)の方法で述べたスラリーから造粒する湿式
造粒であっても溶剤を用いない乾式造粒であっても構わ
ない。また、(2)の方法では成形助剤を用いても用い
なくてもどちらでも差し支えない。
The composite sintered body of these oxides is prepared by (1) dispersing an active material in water or a solvent in which a molding aid is dissolved to prepare a slurry, applying the slurry to an expanded metal and drying the slurry; (2) a method in which the active material powder is directly or granulated, pressed with an expanded metal by a press machine, and then fired; (3) a method in which granulation is performed. (4) A method in which the powder is pressed into a sheet by a roll press, processed into a sheet, and then the expanded metal is embedded in the sheet and cut and sintered. A method is used in which a mixture sheet is prepared by applying and drying the mixture, and the mixture sheet is pressed against both sides of the expanded metal, cut and fired. This firing is performed at a temperature not higher than the firing temperature of the active material and at an upper limit temperature at which the expanded metal does not deteriorate. The granulation of (2) and (3) may be wet granulation that granulates from the slurry described in the method of (1) or dry granulation without using a solvent. In the method (2), either a molding aid or not may be used.

【0017】ここで使用可能な成形助剤としては、例え
ばポリアクリル酸、カルボキシメチルセルロース、ポリ
フッ化ビニリデン、ポリビニルアルコール、ジアセチル
セルロース、ヒドロキシプロピルセルロース、ポリビニ
ルクロライド、ポリビニルピロリドンなどの1種もしく
は2種以上の混合物が挙げられる。
Examples of the molding aid usable herein include one or more of polyacrylic acid, carboxymethylcellulose, polyvinylidene fluoride, polyvinyl alcohol, diacetylcellulose, hydroxypropylcellulose, polyvinyl chloride, polyvinylpyrrolidone and the like. Mixtures are mentioned.

【0018】エキスパンドメタルの材質としては、例え
ばアルミニウム、ステンレス、銅、ニッケル、チタン、
鉄などが使用可能である。材質の選択は正負極それぞれ
の活物質の充放電電圧範囲により、充電電圧が3V以下
の場合はニッケルもしくは銅が、3V以上の場合はアル
ミニウムもしくはチタンが適している。
As the material of the expanded metal, for example, aluminum, stainless steel, copper, nickel, titanium,
Iron or the like can be used. The choice of material depends on the charge and discharge voltage range of the positive and negative active materials. Nickel or copper is suitable when the charge voltage is 3 V or less, and aluminum or titanium is suitable when the charge voltage is 3 V or more.

【0019】本発明が適用されるリチウム電池は、正極
および負極の活物質が金属酸化物で、少なくとも一方の
電極が複合焼結体で構成されているものであって、一次
電池であっても2次電池であっても差し支えない。ま
た、電解質はイオン伝導性を有する材料であれば液体で
も固体でも用いることができるほか、電池形状は円筒
型、角型、ボタン型、コイン型および扁平型などに限定
されるものではない。以下では、本発明が適用されるリ
チウム電池の正極、負極活物質を除く構成材料について
例を挙げ詳述する。
The lithium battery to which the present invention is applied is one in which the active materials of the positive electrode and the negative electrode are metal oxides and at least one electrode is composed of a composite sintered body. Secondary batteries can be used. The electrolyte may be a liquid or a solid as long as it has ion conductivity, and the shape of the battery is not limited to a cylindrical type, a square type, a button type, a coin type, a flat type and the like. Hereinafter, the constituent materials excluding the positive electrode and the negative electrode active material of the lithium battery to which the present invention is applied will be described in detail with examples.

【0020】電解質には、有機溶媒に所要の電解質塩を
溶解させた有機電解液やイオン伝導性高分子材料に電解
質塩を溶解させた高分子固体電解質、さらにはそれらを
複合化させたゲル電解質、無機材料からなる無機固体電
解質を用いることができる。ここで、上記有機電解液を
電解質に用いた場合、正極10と負極8を隔離するため
のセパレータ9が必要である。
Examples of the electrolyte include an organic electrolyte in which a required electrolyte salt is dissolved in an organic solvent, a solid polymer electrolyte in which an electrolyte salt is dissolved in an ion-conductive polymer material, and a gel electrolyte in which these are combined. An inorganic solid electrolyte made of an inorganic material can be used. Here, when the organic electrolyte is used as an electrolyte, a separator 9 for separating the positive electrode 10 and the negative electrode 8 is required.

【0021】有機電解液に用いる有機溶媒には、例えば
エチレンカーボネート、プロピレンカーボネート、ブチ
レンカーボネート、ジメチルカーボネート、ガンマーブ
チロラクトン、スルホラン、1,2−ジメトキシエタ
ン、1,3−ジメトキシプロパン、ジメチルエーテル、
テトラヒドロフラン、2―メチルテトラヒドロフラン、
炭酸ジメチル、炭酸ジエチルおよびメチルエチルカーボ
ネートから選ばれる1種もしくは2種以上の混合系の溶
媒が挙げられる。電解質塩としては、例えば、LiCl
4 、LiBF4 、LiPF6 、LiCF3 SO3 、L
iN(CF3 SO2 2 、LiN(C2 5 SO2 2
などのリチウム塩を挙げることができる。
The organic solvent used for the organic electrolyte includes, for example, ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, gamma-butyrolactone, sulfolane, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether,
Tetrahydrofuran, 2-methyltetrahydrofuran,
One or a mixture of two or more solvents selected from dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate can be used. As the electrolyte salt, for example, LiCl
O 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , L
iN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2
And the like.

【0022】セパレータ9には、例えばポリオレフィン
繊維製の不織布やポリオレフィン繊維製の微多孔膜を用
いることができる。ここでポリオレフィン繊維として
は、例えばポリプロピレン繊維、ポリエチレン繊維など
を挙げることができる。
As the separator 9, for example, a nonwoven fabric made of polyolefin fiber or a microporous film made of polyolefin fiber can be used. Here, examples of the polyolefin fiber include a polypropylene fiber and a polyethylene fiber.

【0023】イオン伝導性高分子材料としては、例えば
ポリエチレンオキシドに代表されるエチレンオキシド骨
格を有する高分子やプロピレンオキシドに代表されるプ
ロピレンオキシド骨格を有する高分子、またそれらの混
合物や共重合体などが挙げられる。電解質塩としては、
上述の有機電解液と同じものが使用可能である。
Examples of the ion conductive polymer material include a polymer having an ethylene oxide skeleton represented by polyethylene oxide, a polymer having a propylene oxide skeleton represented by propylene oxide, a mixture thereof, and a copolymer. No. As the electrolyte salt,
The same organic electrolyte as described above can be used.

【0024】無機固体電解質としては、例えばLi1.3
Al0.3 Ti1.7 (PO4 3 やLi3.6 Ge0.6
0.4 4 などの結晶質固体電解質、30LiI−41L
2 O−29P2 5 や40Li2 O−35B2 3
25LiNbO3 などの酸化物系非晶質固体電解質、4
5LiI−37Li2 S−18P2 5 や1Li3 PO
4 −63Li2 S−36SiS2 などの硫化物系非晶質
固体電解質などを挙げることができる。
As the inorganic solid electrolyte, for example, Li 1.3
Al 0.3 Ti 1.7 (PO 4 ) 3 or Li 3.6 Ge 0.6 V
0.4 O 4 or other crystalline solid electrolyte, 30LiI-41L
i 2 O-29P 2 O 5 and 40Li 2 O-35B 2 O 3 -
Oxide-based amorphous solid electrolyte such as 25LiNbO 3 , 4
5LiI-37Li 2 S-18P 2 S 5 and 1Li 3 PO
Sulfide-based amorphous solid electrolytes such as 4 -63Li 2 S-36SiS 2 can be cited.

【0025】[0025]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0026】[実施例1]水酸化リチウムと二酸化マン
ガンをLiとMnのモル比が1:2となるように混合
し、この混合物を大気中、900℃で15時間加熱焼成
することによりリチウムマンガン複合酸化物(LiMn
2 4 )を調製し、これを正極活物質とした。次に、水
酸化リチウムと二酸化チタンをLiとTiのモル比が
4:5となるように混合し、この混合物を大気中、85
0℃で15時間加熱焼成することによりリチウムチタン
複合酸化物(Li4 Ti5 12)を調製して負極活物質
とした。
[Example 1] Lithium hydroxide and manganese dioxide were mixed at a molar ratio of Li: Mn of 1: 2, and this mixture was heated and baked at 900 ° C. for 15 hours in the air to obtain lithium manganese. Complex oxide (LiMn
2 O 4 ) was prepared and used as a positive electrode active material. Next, lithium hydroxide and titanium dioxide are mixed so that the molar ratio of Li and Ti is 4: 5, and this mixture is mixed with 85.degree.
By heating and baking at 0 ° C. for 15 hours, a lithium-titanium composite oxide (Li 4 Ti 5 O 12 ) was prepared and used as a negative electrode active material.

【0027】このLiMn2 4 とLi4 Ti5 12
それぞれに成形助剤となるポリビニルアルコール(分子
量500)と水を加え、混練することでスラリーを調製
した。このスラリーをアルミニウム製エキスパンドメタ
ルに塗布したのち乾燥させてシート状に成形したものを
ロールプレスにより圧縮加圧成形して、正極は厚み1.
0mm、負極は厚み0.85mmのシートとした。それ
ぞれのシートを金型で打ち抜き短冊状の成形体を得た。
次に、これら成形体を600℃の大気中で焼成すること
で複合焼結体電極を作製した。作製した正極複合焼結体
10は、幅40mm、高さ75mmで、厚み0.85m
m、負極複合焼結体8は幅40mm、高さ75mmで、
厚み0.7mmであった。
To each of the LiMn 2 O 4 and Li 4 Ti 5 O 12 , a slurry was prepared by adding polyvinyl alcohol (molecular weight: 500) as a molding aid and water and kneading them. The slurry was applied to an aluminum expanded metal, dried and formed into a sheet. The sheet was compression-pressed and formed by a roll press.
The negative electrode was a sheet having a thickness of 0.85 mm. Each sheet was punched with a mold to obtain a strip-shaped molded body.
Next, these compacts were fired in the air at 600 ° C. to produce composite sintered body electrodes. The produced positive electrode composite sintered body 10 has a width of 40 mm, a height of 75 mm, and a thickness of 0.85 m.
m, the negative electrode composite sintered body 8 is 40 mm in width and 75 mm in height,
The thickness was 0.7 mm.

【0028】[比較例1]LiMn2 4 とLi4 Ti
5 12のスラリーをエキスパンドメタルに変えてアルミ
ニウム箔に塗布したこと以外は実施例1と同様にして正
極複合焼結体および負極複合焼結体を作製した。
Comparative Example 1 LiMn 2 O 4 and Li 4 Ti
A positive electrode composite sintered body and a negative electrode composite sintered body were produced in the same manner as in Example 1, except that the 5 O 12 slurry was changed to expanded metal and applied to an aluminum foil.

【0029】上述した実施例1および比較例1のそれぞ
れの方法で正極、負極、各30枚を作製し、目視による
外観検査を行った。
A positive electrode, a negative electrode, and 30 sheets were prepared by the methods of Example 1 and Comparative Example 1, respectively, and visually inspected for appearance.

【0030】表1には、焼成後の電極の外観検査結果を
示す。なお、表中の数字は検査した各30枚の電極中で
各項目に該当した電極の枚数を示している。
Table 1 shows the appearance inspection results of the fired electrodes. The numbers in the table indicate the number of electrodes corresponding to each item among the 30 tested electrodes.

【0031】[0031]

【表1】 [Table 1]

【0032】表1から明らかなように、集電体にエキス
パンドメタルを用いた複合焼結体電極ではひび割れや剥
離が発生しておらず、良好な電極が得られている。これ
に対して、集電体に金属箔を用いた比較例1の電極はす
べての電極でひび割れが発生し、一部の電極では合剤層
の剥離が認められた。合剤層がひび割れたり剥離したり
している電極をそのまま電池に使用すると、対向した部
分に活物質がないところで電極反応が不均一になった
り、充放電を繰り返すうちに合剤層が脱落して容量が減
少するなど電池特性が不安定になる可能性がある。
As is clear from Table 1, in the composite sintered body electrode using the expanded metal as the current collector, no cracking or peeling occurred, and a good electrode was obtained. On the other hand, in the electrode of Comparative Example 1 using the metal foil for the current collector, cracks occurred in all the electrodes, and peeling of the mixture layer was observed in some of the electrodes. If an electrode with a cracked or peeled mixture layer is used for a battery as it is, the electrode reaction becomes uneven where there is no active material in the opposite part, or the mixture layer falls off during repeated charging and discharging. As a result, the battery characteristics may become unstable such as a decrease in capacity.

【0033】このことから合剤層のひび割れや剥離を押
さえ、良好な電池特性を得るためには集電体にエキスパ
ンドメタルを用いることが望ましいことがわかる。
This shows that it is desirable to use an expanded metal for the current collector in order to suppress cracking and peeling of the mixture layer and obtain good battery characteristics.

【0034】[実施例2]実施例1と同様にして、Li
Mn2 4 を活物質に用いて幅40mm、高さ75mm
で、厚み0.85mmの正極複合焼結体10とLi4
5 12を活物質に用いた幅40mm、高さ75mm
で、厚み0.7mmの負極複合焼結体8を作製した。こ
の負極複合焼結体5枚と正極複合焼結体4枚をセパレー
タ9を介して積層した極群を電槽缶1に挿入し、負極複
合焼結体および正極複合焼結体をそれぞれリード端子を
介して負極端子2および正極端子3に溶接した後、電解
液を注液して電槽缶1と蓋4をレーザー溶接して、電池
とした。ただし、極群の外側に配置される2枚の負極の
厚みは、他の負極の約1/2とした。
Example 2 In the same manner as in Example 1, Li
Using Mn 2 O 4 as an active material, width 40 mm, height 75 mm
And a positive electrode composite sintered body 10 having a thickness of 0.85 mm and Li 4 T
40 mm wide and 75 mm high using i 5 O 12 as active material
Thus, a 0.7 mm thick negative electrode composite sintered body 8 was produced. The electrode group in which five negative electrode composite sintered bodies and four positive electrode composite sintered bodies are laminated via the separator 9 is inserted into the battery case 1, and the negative electrode composite sintered body and the positive electrode composite sintered body are respectively connected to the lead terminals. And then welded to the negative electrode terminal 2 and the positive electrode terminal 3, and then the electrolytic solution was injected and the battery case 1 and the lid 4 were laser-welded to obtain a battery. However, the thickness of the two negative electrodes disposed outside the electrode group was set to about の of the other negative electrodes.

【0035】[実施例3]実施例1と同様にして作製し
たLiMn2 4 と導電剤としてのアセチレンブラック
と、結着剤としてのポリテトラフルオロエチレンとを活
物質、導電剤および結着剤の重量比が85:10:5に
なるように混合して混練した後、この混合物をアルミニ
ウム製エキスパンドメタルとともに加圧プレス機により
加圧成形して幅40mm、高さ75mmで、厚み0.8
5mmの正極を作製した。一方、負極は活物質としてL
4 Ti5 12を用いて実施例2の方法で幅40mm、
高さ75mmで、厚み0.7mmに作製した。ただし、
極群の外側の負極2枚は厚み0.4mmとした。
Example 3 LiMn 2 O 4 prepared in the same manner as in Example 1, acetylene black as a conductive agent, and polytetrafluoroethylene as a binder were used as an active material, a conductive agent and a binder. The mixture was kneaded and kneaded so that the weight ratio became 85: 10: 5, and this mixture was pressed with an expanded metal made of aluminum using a pressing machine to form a 40 mm wide, 75 mm high, and 0.8 mm thick.
A 5 mm positive electrode was produced. On the other hand, the negative electrode is L as an active material.
Using i 4 Ti 5 O 12 and the method of Example 2, the width was 40 mm,
It was 75 mm high and 0.7 mm thick. However,
The two negative electrodes outside the electrode group had a thickness of 0.4 mm.

【0036】このようにして作製したテフロンシート正
極と負極複合焼結体を用いて、実施例2と同様の電池を
作製した。
Using the Teflon sheet positive electrode and negative electrode composite sintered body thus produced, a battery similar to that of Example 2 was produced.

【0037】[比較例2]実施例3と同様にしてポリテ
トラフルオロエチレンをバインダーとして、正極活物質
としてLiMn2 4 を用いたテフロンシート正極を作
製した。一方、負極は実施例1と同様にして作製したL
4 Ti5 12とアセチレンブラック、ポリテトラフル
オロエチレンの重量比が80:15:5になるよう混合
して混練した後、エキスパンドメタルとともに加圧プレ
ス機により加圧成形して作製した。作製したテフロンシ
ート正極は幅40mm、高さ75mmで、厚み0.85
mm、テフロンシート負極は幅40mm、高さ75mm
で、厚み0.7mmであった。ただし、極群の外側の負
極2枚は厚み0.4mmとした。
Comparative Example 2 A Teflon sheet positive electrode was prepared in the same manner as in Example 3 using polytetrafluoroethylene as a binder and LiMn 2 O 4 as a positive electrode active material. On the other hand, a negative electrode was prepared in the same manner as in Example 1.
The mixture was mixed and kneaded so that the weight ratio of i 4 Ti 5 O 12 , acetylene black and polytetrafluoroethylene was 80: 15: 5, and then formed by pressing with an expanded metal using a pressing machine. The produced Teflon sheet positive electrode was 40 mm in width, 75 mm in height, and 0.85 in thickness.
mm, Teflon sheet negative electrode width 40mm, height 75mm
And the thickness was 0.7 mm. However, the two negative electrodes outside the electrode group had a thickness of 0.4 mm.

【0038】このようにして作製したテフロンシート正
極と負極を用いて、実施例2と同様の電池を作製した。
Using the Teflon sheet positive electrode and the negative electrode thus produced, a battery similar to that of Example 2 was produced.

【0039】[比較例3]メソフェーズピッチを原料と
する炭素繊維を細かく粉砕し、2800℃の温度で焼成
することにより繊維径が1〜100μmで、繊維長が1
〜100μmの黒鉛系炭素繊維を得た。この炭素繊維を
負極活物質として、活物質と結着剤(スチレンブタジエ
ンゴム)が重量比で95:5重量部になるように混合し
て混練し、この混合物を銅製のエキスパンドメタルとと
もに加圧プレス機により加圧成形して幅40mm、高さ
75mmで、厚み0.5mmの負極を得た。このように
して作製した炭素負極を用いたこと以外は比較例2と同
様にして角形電池を作製した。ただし、電槽缶と極群の
隙間には絶縁板5と同じ絶縁板を配置して隙間を生めて
緊圧がかかるようにした。
[Comparative Example 3] Carbon fibers made from mesophase pitch were finely pulverized and fired at a temperature of 2800 ° C to have a fiber diameter of 1 to 100 µm and a fiber length of 1
A graphite-based carbon fiber having a thickness of 100100 μm was obtained. Using this carbon fiber as a negative electrode active material, the active material and a binder (styrene butadiene rubber) are mixed and kneaded at a weight ratio of 95: 5 parts by weight, and the mixture is pressed with copper expanded metal. A negative electrode having a width of 40 mm, a height of 75 mm and a thickness of 0.5 mm was obtained by press molding with a machine. A prismatic battery was produced in the same manner as in Comparative Example 2 except that the carbon anode produced in this manner was used. However, the same insulating plate as the insulating plate 5 was arranged in the gap between the battery case and the electrode group, so that a gap was created and a pressure was applied.

【0040】上記実施例2、3および比較例2、3で作
製した電池の容量測定を実施した。表2に得られた結果
をまとめて示す。なお、電池の放電容量は、充電終止電
圧を2.8V、電流値を70mAとして定電流充電した
後、1時間放置して同じく電流値70mAで2.0Vま
で定電流放電して求めた。比較例3で作製した電池の放
電容量は、充電終止電圧を4.1V、放電終止電圧を
3.0Vとした以外は実施例の電池と同様にして求め
た。
The capacities of the batteries prepared in Examples 2 and 3 and Comparative Examples 2 and 3 were measured. Table 2 summarizes the results obtained. The discharge capacity of the battery was determined by performing constant current charging at a charging end voltage of 2.8 V and a current value of 70 mA, leaving the battery for 1 hour, and discharging the battery at a constant current of 70 mA to a constant current of 2.0 V. The discharge capacity of the battery manufactured in Comparative Example 3 was determined in the same manner as in the battery of Example except that the charge end voltage was 4.1 V and the discharge end voltage was 3.0 V.

【0041】続いて、実施例2、3および比較例2、3
で作製した電池を用いて充放電サイクル試験を50サイ
クル行い、50サイクル後の容量保持率を求めた。ここ
で容量保持率とは、容量測定で求めた初期容量に対する
50サイクル目の放電容量の割合である。なお、充放電
サイクル試験の充電電流値は、140mAとした。放電
電流値は、容量測定と同じ70mAとした。さらに、容
量保持率を求めた後充電を行い、充電末状態で7日間6
0℃に放置し、放置開始前後の電池の開回路電圧を調査
した。以上の結果を表2に示す。
Subsequently, Examples 2 and 3 and Comparative Examples 2 and 3
A charge / discharge cycle test was performed for 50 cycles using the battery prepared in the above, and the capacity retention after 50 cycles was determined. Here, the capacity retention is a ratio of the discharge capacity at the 50th cycle to the initial capacity obtained by the capacity measurement. The charge current value in the charge / discharge cycle test was 140 mA. The discharge current value was set to 70 mA, which was the same as the capacity measurement. Further, after determining the capacity retention ratio, the battery is charged, and the battery is charged for 6 days for 7 days.
The battery was left at 0 ° C., and the open circuit voltage of the battery before and after the start of the storage was examined. Table 2 shows the above results.

【0042】[0042]

【表2】 [Table 2]

【0043】表2から明らかなように、実施例2、3の
電池は比較例2の電池に比べ大きな初期容量が得られて
いる。これは活物質や集電体は同じであるが、複合焼結
体電極とテフロンシート電極の差により、電極の単位体
積中に占める活物質の割合(活物質充填率)に差が生じ
たためである。つまり、複合焼結体電極には電池反応に
寄与しない導電剤やバインダーが含まれておらず、活物
質の占有体積が増加したことによって電池の初期容量が
増加したといえ、電池の正極もしくは負極のどちらか一
方に複合焼結体を用いることで電池の高エネルギー密度
化が図れることがわかる。ここで、導電剤を添加してい
ない酸化物電極が、導電剤を添加した電極と同等に作動
する理由は不明であるが、成形助剤として添加したポリ
ビニルアルコールが焼結過程で完全には揮発除去され
ず、その一部が炭化して活物質粒子間に残存し、極少量
で良好な導電性ネットワークを形成したためと推定され
る。
As is clear from Table 2, the batteries of Examples 2 and 3 have a larger initial capacity than the battery of Comparative Example 2. This is because the active material and the current collector were the same, but the difference between the composite sintered body electrode and the Teflon sheet electrode caused a difference in the ratio of the active material in the unit volume of the electrode (active material filling rate). is there. In other words, the composite sintered electrode contains no conductive agent or binder that does not contribute to the battery reaction, and it can be said that the initial capacity of the battery has increased due to the increase in the volume occupied by the active material. It can be seen that the use of the composite sintered body for either one of them can increase the energy density of the battery. Here, the reason why the oxide electrode without the addition of the conductive agent operates in the same manner as the electrode with the addition of the conductive agent is unknown, but the polyvinyl alcohol added as a molding aid completely volatilizes during the sintering process. It is presumed that it was not removed and a part thereof was carbonized and remained between the active material particles, and a very small amount formed a good conductive network.

【0044】また、負極活物質に炭素材料を用いた比較
例3の電池は比較例2の電池に比べ大きな初期容量を示
しているものの50サイクル後の容量保持率が81%と
低いほか、放置前後で開回路電圧が約0.8V低下して
いる。これに対して、負極活物質にLi4 Ti5 12
用いた実施例2、3および比較例2の電池はいずれも5
0サイクル後の容量保持率が95%以上で、放置前後の
開回路電圧の低下も10mV程度と小さく良好な電池特
性を示している。
The battery of Comparative Example 3 using a carbon material as the negative electrode active material showed a larger initial capacity than the battery of Comparative Example 2, but had a low capacity retention after 50 cycles of 81% and was left unattended. Before and after the open circuit voltage drops by about 0.8V. On the other hand, the batteries of Examples 2 and 3 and Comparative Example 2 using Li 4 Ti 5 O 12 as the negative electrode active material were all 5
The capacity retention after 0 cycles is 95% or more, and the decrease in open circuit voltage before and after standing is as small as about 10 mV, indicating good battery characteristics.

【0045】炭素負極は導電剤を含有していないため、
比較例2の負極に比べると活物質充填率が高くなり、同
じ正極を使っているにもかかわらず初期容量は大きくな
っている。しかしながら、容量保持率の低下や開回路電
圧の変化が大きく電池特性が不安定である。これは充電
時にデンドライト状に析出したリチウムが正極に到達
し、内部短絡を引き起こしているためと推定される。
Since the carbon anode contains no conductive agent,
The active material filling rate was higher than that of the negative electrode of Comparative Example 2, and the initial capacity was large even though the same positive electrode was used. However, the capacity retention rate decreases and the open circuit voltage changes greatly, and the battery characteristics are unstable. This is presumed to be due to the fact that lithium deposited in the form of dendrite during charging reaches the positive electrode, causing an internal short circuit.

【0046】このように、負極活物質に酸化物を用いた
電池は、充放電中に析出リチウムによる内部短絡が生じ
ることがなく、安全性、信頼性が向上することがわか
る。
As described above, it can be seen that the battery using the oxide as the negative electrode active material does not cause internal short circuit due to the deposited lithium during charging and discharging, and improves the safety and reliability.

【0047】[0047]

【発明の効果】以上のように、本発明のリチウム電池で
は、正極もしくは負極の少なくとも一方を活物質とエキ
スパンドメタルの複合焼結体で構成したことから、電極
中に充放電反応に寄与しないバインダーや導電剤が含ま
れておらず、電極中の活物質充填率が高くなり、結果と
して高エネルギー密度が得られるとともに、正極活物質
および負極活物質に金属酸化物もしくは金属複合酸化物
を用いることで金属リチウムの析出反応を抑止し信頼性
の向上を図ることができる。
As described above, in the lithium battery of the present invention, since at least one of the positive electrode and the negative electrode is composed of the composite sintered body of the active material and the expanded metal, the binder which does not contribute to the charge / discharge reaction in the electrode. And a conductive agent are not contained, the active material filling rate in the electrode is increased, and as a result, a high energy density is obtained, and a metal oxide or a metal composite oxide is used for the positive electrode active material and the negative electrode active material. Thus, the deposition reaction of metallic lithium can be suppressed, and the reliability can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るリチウム電池の一部破断面図であ
る。
FIG. 1 is a partially broken sectional view of a lithium battery according to the present invention.

【図2】本発明に係るリチウム電池の断面図である。FIG. 2 is a sectional view of a lithium battery according to the present invention.

【符号の説明】[Explanation of symbols]

1…電槽缶 2…正極端子 3…負極端子 4…蓋 5…絶縁体 6…ガラスハーメチックシール 7…正極リード端子 8…負極複合焼結体 9…セパレータ 10…正極複合焼結体 DESCRIPTION OF SYMBOLS 1 ... Battery case 2 ... Positive electrode terminal 3 ... Negative electrode terminal 4 ... Lid 5 ... Insulator 6 ... Glass hermetic seal 7 ... Positive electrode lead terminal 8 ... Negative electrode composite sintered compact 9 ... Separator 10 ... Positive composite sintered compact

───────────────────────────────────────────────────── フロントページの続き (72)発明者 馬込 伸二 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 (72)発明者 大崎 誠 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 (72)発明者 樋口 永 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 Fターム(参考) 5H003 AA02 AA10 BA01 BB04 BB05 BB14 BC05 5H014 AA04 BB01 CC01 EE05 EE10 5H017 AA03 AS02 BB04 BB07 BB08 CC01 EE04 EE05 5H029 AJ03 AJ12 AK02 AK03 AL02 AL03 AM03 AM04 AM05 AM07 AM12 BJ02 BJ14 CJ02 CJ22 EJ01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shinji Magome 3-5 Koikodai, Seika-cho, Soraku-gun, Kyoto Prefecture Inside the Central Research Laboratories of Kyocera Corporation (72) Inventor Makoto Osaki 3-chome Koikadai, Soraku-gun, Kyoto Prefecture 5 Kyocera Co., Ltd. Central Research Laboratory (72) Inventor Ei Higuchi 3-chome, Seika-cho, Soraku-gun, Kyoto Pref. BB01 CC01 EE05 EE10 5H017 AA03 AS02 BB04 BB07 BB08 CC01 EE04 EE05 5H029 AJ03 AJ12 AK02 AK03 AL02 AL03 AM03 AM04 AM05 AM07 AM12 BJ02 BJ14 CJ02 CJ22 EJ01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極と負極との間に電解質を配設したリ
チウム電池において、前記正極もしくは負極の少なくと
も一方を活物質とエキスパンドメタルの複合焼結体で構
成したことを特徴とするリチウム電池。
1. A lithium battery having an electrolyte disposed between a positive electrode and a negative electrode, wherein at least one of the positive electrode and the negative electrode is composed of a composite sintered body of an active material and an expanded metal.
【請求項2】 前記活物質が金属酸化物もしくは金属複
合酸化物であることを特徴とする請求項1に記載のリチ
ウム電池。
2. The lithium battery according to claim 1, wherein the active material is a metal oxide or a metal composite oxide.
JP10368841A 1998-12-25 1998-12-25 Lithium battery Pending JP2000195499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10368841A JP2000195499A (en) 1998-12-25 1998-12-25 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10368841A JP2000195499A (en) 1998-12-25 1998-12-25 Lithium battery

Publications (1)

Publication Number Publication Date
JP2000195499A true JP2000195499A (en) 2000-07-14

Family

ID=18492901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10368841A Pending JP2000195499A (en) 1998-12-25 1998-12-25 Lithium battery

Country Status (1)

Country Link
JP (1) JP2000195499A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353309A (en) * 2004-06-08 2005-12-22 Tokyo Institute Of Technology Lithium cell element
US7662509B2 (en) 2004-10-29 2010-02-16 Medtronic, Inc. Lithium-ion battery
US7682745B2 (en) 2004-10-29 2010-03-23 Medtronic, Inc. Medical device having lithium-ion battery
US7740985B2 (en) 2004-10-29 2010-06-22 Medtronic, Inc. Lithium-ion battery
US7807299B2 (en) 2004-10-29 2010-10-05 Medtronic, Inc. Lithium-ion battery
US7858236B2 (en) 2004-10-29 2010-12-28 Medtronic, Inc. Lithium-ion battery
WO2010150679A1 (en) * 2009-06-23 2010-12-29 株式会社 村田製作所 Nonaqueous electrolyte secondary battery
US7883790B2 (en) 2004-10-29 2011-02-08 Medtronic, Inc. Method of preventing over-discharge of battery
JP2011040410A (en) * 2010-10-20 2011-02-24 Sony Corp Nonaqueous electrolyte secondary battery
US7927742B2 (en) 2004-10-29 2011-04-19 Medtronic, Inc. Negative-limited lithium-ion battery
US8105714B2 (en) 2004-10-29 2012-01-31 Medtronic, Inc. Lithium-ion battery
JP2013186972A (en) * 2012-03-06 2013-09-19 Murata Mfg Co Ltd Nonaqueous electrolyte secondary battery
US8980453B2 (en) 2008-04-30 2015-03-17 Medtronic, Inc. Formation process for lithium-ion batteries
US9065145B2 (en) 2004-10-29 2015-06-23 Medtronic, Inc. Lithium-ion battery
US9077022B2 (en) 2004-10-29 2015-07-07 Medtronic, Inc. Lithium-ion battery
US9287580B2 (en) 2011-07-27 2016-03-15 Medtronic, Inc. Battery with auxiliary electrode
US9587321B2 (en) 2011-12-09 2017-03-07 Medtronic Inc. Auxiliary electrode for lithium-ion battery

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353309A (en) * 2004-06-08 2005-12-22 Tokyo Institute Of Technology Lithium cell element
US7879495B2 (en) 2004-10-29 2011-02-01 Medtronic, Inc. Medical device having lithium-ion battery
US7807299B2 (en) 2004-10-29 2010-10-05 Medtronic, Inc. Lithium-ion battery
US7883790B2 (en) 2004-10-29 2011-02-08 Medtronic, Inc. Method of preventing over-discharge of battery
US7927742B2 (en) 2004-10-29 2011-04-19 Medtronic, Inc. Negative-limited lithium-ion battery
US7662509B2 (en) 2004-10-29 2010-02-16 Medtronic, Inc. Lithium-ion battery
US7811705B2 (en) * 2004-10-29 2010-10-12 Medtronic, Inc. Lithium-ion battery
US7858236B2 (en) 2004-10-29 2010-12-28 Medtronic, Inc. Lithium-ion battery
US9077022B2 (en) 2004-10-29 2015-07-07 Medtronic, Inc. Lithium-ion battery
US7875389B2 (en) 2004-10-29 2011-01-25 Medtronic, Inc. Lithium-ion battery
US9065145B2 (en) 2004-10-29 2015-06-23 Medtronic, Inc. Lithium-ion battery
US7740985B2 (en) 2004-10-29 2010-06-22 Medtronic, Inc. Lithium-ion battery
US7682745B2 (en) 2004-10-29 2010-03-23 Medtronic, Inc. Medical device having lithium-ion battery
US7794869B2 (en) 2004-10-29 2010-09-14 Medtronic, Inc. Lithium-ion battery
US7931987B2 (en) 2004-10-29 2011-04-26 Medtronic, Inc. Lithium-ion battery
US8105714B2 (en) 2004-10-29 2012-01-31 Medtronic, Inc. Lithium-ion battery
US8178242B2 (en) 2004-10-29 2012-05-15 Medtronic, Inc. Lithium-ion battery
US8383269B2 (en) 2004-10-29 2013-02-26 Medtronic, Inc. Negative-limited lithium-ion battery
US10615463B2 (en) 2008-04-30 2020-04-07 Medtronic, Inc. Formation process for lithium-ion batteries with improved tolerace to overdischarge conditions
US8980453B2 (en) 2008-04-30 2015-03-17 Medtronic, Inc. Formation process for lithium-ion batteries
US9899710B2 (en) 2008-04-30 2018-02-20 Medtronic, Inc. Charging process for lithium-ion batteries
WO2010150679A1 (en) * 2009-06-23 2010-12-29 株式会社 村田製作所 Nonaqueous electrolyte secondary battery
JP2011040410A (en) * 2010-10-20 2011-02-24 Sony Corp Nonaqueous electrolyte secondary battery
US9287580B2 (en) 2011-07-27 2016-03-15 Medtronic, Inc. Battery with auxiliary electrode
US9587321B2 (en) 2011-12-09 2017-03-07 Medtronic Inc. Auxiliary electrode for lithium-ion battery
JP2013186972A (en) * 2012-03-06 2013-09-19 Murata Mfg Co Ltd Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
EP1347524B1 (en) Positive electrode active material and nonaqueous electrolyte secondary cell
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2000195499A (en) Lithium battery
JP2000123873A (en) Solid electrolyte battery
JP2001015164A (en) Glass-ceramic composite electrolyte and lithium secondary battery
JPH08167429A (en) Rechargeable electrochemical cell and its manufacture
EP1088357A1 (en) Microporous electrode or separator for use in a non-aqueous battery, and method of manufacturing
KR20160141676A (en) Lithium ion secondary battery
JP2001126757A (en) Lithium battery
CN111758179B (en) Positive electrode, electrode group and nonaqueous electrolyte battery
JP2001345100A (en) Carbonaceous particles for negative electrode of lithium secondary cell, preparation process thereof, negative electrode for lithium secondary cell and lithium secondary cell
JP2000164217A (en) Lithium battery
JP2001015115A (en) Lithium secondary battery
JP2003123767A (en) Collector, electrode, and battery
JP2000251938A (en) Manufacture of all solid lithium battery
JPH09274920A (en) Nonaqueous electrolyte battery
JP4193248B2 (en) Gel electrolyte battery
JP2002042785A (en) Lithium battery
JP2001089118A (en) Graphite particle, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery
JP2001283861A (en) Battery electrode and nonaqueous electrolyte battery
JPH10188977A (en) Lithium secondary battery
JPH11329441A (en) Non-aqueous electrolyte secondary cell
JP2000285910A (en) Lithium battery
JP3732654B2 (en) Graphite particles, negative electrode for lithium secondary battery, and lithium secondary battery
JP2000311708A (en) Manufacture of battery formed entirely of solid lithium