JPH02270268A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH02270268A
JPH02270268A JP1091345A JP9134589A JPH02270268A JP H02270268 A JPH02270268 A JP H02270268A JP 1091345 A JP1091345 A JP 1091345A JP 9134589 A JP9134589 A JP 9134589A JP H02270268 A JPH02270268 A JP H02270268A
Authority
JP
Japan
Prior art keywords
lithium
nonaqueous electrolyte
active material
positive electrode
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1091345A
Other languages
Japanese (ja)
Inventor
Yoshinori Toyoguchi
豊口 吉徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1091345A priority Critical patent/JPH02270268A/en
Publication of JPH02270268A publication Critical patent/JPH02270268A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To enhance cycle performance by using lithium or a lithium compound as a negative electrode, a nonaqueous electrolyte containing a lithium salt, and a specific positive active material. CONSTITUTION:Lithium or a lithium compound is used as a negative electrode. A nonaqueous electrolyte containing a lithium salt is used and a compound represented by the formula LixMn2O4 (1.025<=x<=1.185) is used as a positive active material. Generally, spinel has AB2O4 structure like LiMn2O4. Wherein A shows a metal element surrounded by the tetrahedron of oxygen and B shows a metal element surrounded by the octahedron of oxygen. In LixMn2O4, lithium larger than 1 enters the vacant tetrahedron of oxygen in the spinel structure and stability of crystal in charge-discharge is increased. The cycle performance of a nonaqueous electrolyte secondary battery is enhanced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解質二次電池の改良、特に正極活物質
の改良に関わり、電池のサイクル特性の向上を目指すも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the improvement of non-aqueous electrolyte secondary batteries, particularly to the improvement of positive electrode active materials, and aims at improving the cycle characteristics of the batteries.

従来の技術 リチウムまたはリチウム化合物を負極とする非水電解質
二次電池は高電圧で高エネルギー密度となることが期待
され、多くの研究が行なわれている。
BACKGROUND OF THE INVENTION Non-aqueous electrolyte secondary batteries using lithium or lithium compounds as negative electrodes are expected to have high voltage and high energy density, and many studies are being conducted on them.

特に、これら電池の正極活物質としてMnO2やTiS
*がよ(検討されている。最近、タックレイ等によりL
iMn20aが正極活物質となることが報告された(マ
テリアル リサーチ ブレチン1983年18巻461
−472ページ)。LiM n e Osはスピネル構
造をした立方晶の結晶構造であり、電池の正極活物質と
して用いた場合、電池の放電電圧は4ボルト程度の高い
電圧となり、正極活物質として有望と考えられている。
In particular, MnO2 and TiS are used as positive electrode active materials for these batteries.
*Gayo (being considered.Recently, L
It was reported that iMn20a can be used as a positive electrode active material (Material Research Bulletin 1983, Vol. 18, 461).
-472 pages). LiMneOs has a cubic crystal structure with a spinel structure, and when used as a cathode active material in a battery, the battery discharge voltage is as high as 4 volts, and it is considered to be a promising cathode active material. .

発明が解決しようとする課題 しかし、これら正極活物質はサイクル特性に問題があっ
た。つまり充電放電を繰り返すと放電容量の低下が顕著
であった。LiMn20aの正極活物質では、4.5ボ
ルトまで充電し2ボルトまで放電すると4ボルト付近と
2.8ボルト付近の2段の放電曲線となる。これまで、
2.8ボルト付近の2段目の放電に対して充′IIN圧
を3.8ボルトに制限することによりサイクル特性を向
上させる試みがある。しかしこれでは、高エネルギー密
度を達成できない。高エネルギー密度を達成するには、
4.5ボルトまで充電し3ボルトまで放電する1段目の
放電を利用する方が育利である。しかし、1段目の充放
電のサイクル特性は悪く約50サイクル程度で放電容量
は半分に低下した。
Problems to be Solved by the Invention However, these positive electrode active materials had problems in cycle characteristics. In other words, when charging and discharging were repeated, the discharge capacity decreased significantly. In the positive electrode active material of LiMn20a, when it is charged to 4.5 volts and discharged to 2 volts, a two-step discharge curve is formed near 4 volts and near 2.8 volts. Until now,
There has been an attempt to improve the cycle characteristics by limiting the charging IIN pressure to 3.8 volts for the second stage discharge at around 2.8 volts. However, this method cannot achieve high energy density. To achieve high energy density,
It is more advantageous to use the first stage of discharge, which charges to 4.5 volts and discharges to 3 volts. However, the cycle characteristics of the first stage charging and discharging were poor and the discharge capacity was reduced to half after about 50 cycles.

本発明は、非水電解質二次電池のサイクル特性を向上を
目的とし、正極活物質の改良を行なうものである。
The present invention aims to improve the cycle characteristics of non-aqueous electrolyte secondary batteries by improving positive electrode active materials.

課題を解決するための手段 本発明はリチウムまたはリチウム化合物を負極とし、リ
チウム塩を含む排水電解質と、式、LiMn204  
で表わされ、1.025≦X≦1.185である物質を
正極活物質とすることにより、サイクル特性を向上させ
たものである。
Means for Solving the Problems The present invention uses lithium or a lithium compound as a negative electrode, a wastewater electrolyte containing a lithium salt, and the formula: LiMn204.
The cycle characteristics are improved by using, as the positive electrode active material, a material expressed by 1.025≦X≦1.185.

作   用 一般にスピネルは、LiMn204のようにABa O
aの組成を持つ。ここでAは、酸素の4面体に囲まれた
金属元素、Bは、酸素の8面体に囲まれた金属元素であ
る。
Function Generally, spinel is made of ABaO like LiMn204.
It has a composition of a. Here, A is a metal element surrounded by oxygen tetrahedra, and B is a metal element surrounded by oxygen octahedrons.

本発明のLixMn204では、1より大きい分のLi
は、スピネル中の空いている酸素4面体のなかに入ると
考えられる。これにより、充放電における結晶の安定性
が増したと思われる。
In the LixMn204 of the present invention, the LixMn204 is larger than 1.
is thought to fit into the vacant oxygen tetrahedra in spinel. This seems to have increased the stability of the crystal during charging and discharging.

以下に実施例を述べる。Examples will be described below.

実施例 (LiMn204の製法) Li2COaが3モルに対しM n 304を4モルの
割合でよく混合したのち、混合物を大気中で900℃で
10時間加熱し、LiMn204を作った。
Example (Production method of LiMn204) After thoroughly mixing 3 moles of Li2COa and 4 moles of Mn304, the mixture was heated in the air at 900° C. for 10 hours to produce LiMn204.

(LiMn204の製法) LieCOsとM n a Oaを用いて、Li原原子
炉Xモル、Mnn原子炉2モルの割合になるようによく
混合したのち、混合物を大気中で900°Cで10時間
加熱して作った。ここでは、X=1. 01.1. 0
25.1. 05.1. 10.1. 15.1.20
とした。
(Manufacturing method of LiMn204) Using LieCOs and Mna Oa, the mixture was thoroughly mixed in a ratio of X moles for Li nuclear reactor and 2 moles for Mnn reactor, and then the mixture was heated at 900°C in the air for 10 hours. I made it. Here, X=1. 01.1. 0
25.1. 05.1. 10.1. 15.1.20
And so.

(電池の製造) 正極活物質としてのLixMn2047重量部に対し、
導電剤としてのアセチレンブラック2重量部、結着剤と
してのポリ4弗化工チレン樹脂1重量部を混合して正極
合剤とした。正極合剤0. 1ダラムを直径17.5m
mに1トン/cm”でプレス成型して、正極とした。製
造した電池の断面図を第2図に示す。成型した正極1を
ケース2に置く。正極1の上にセパレータ3としての多
孔性ポリプロピレンフィルムを置いた。負極として直径
17.5mm厚さ0.3mmのリチウム板4を、ポリプ
ロピレン製ガスケット6を付けた封口板5に圧着した。
(Manufacture of battery) For 2047 parts by weight of LixMn as a positive electrode active material,
A positive electrode mixture was prepared by mixing 2 parts by weight of acetylene black as a conductive agent and 1 part by weight of polytetrafluoroethylene resin as a binder. Positive electrode mixture 0. 1 duram has a diameter of 17.5m
A positive electrode was formed by press molding at a rate of 1 ton/cm" at a rate of 1 ton/cm. A cross-sectional view of the manufactured battery is shown in FIG. 2. The molded positive electrode 1 is placed in a case 2. A lithium plate 4 having a diameter of 17.5 mm and a thickness of 0.3 mm was press-bonded to a sealing plate 5 equipped with a polypropylene gasket 6 as a negative electrode.

非水電解質として、1モル/1の過塩素酸リチウムを溶
解し、体積比で1対1のプロピレンカーボネートとジメ
トキシエタンの混合溶液を用い、これをセパレータ上お
よび負極上に加えた。その後電池を封口した。X=1.
10の活物質を用いた電池をAとする。
As a non-aqueous electrolyte, a mixed solution of propylene carbonate and dimethoxyethane in a volume ratio of 1:1 in which 1 mol/1 lithium perchlorate was dissolved was added onto the separator and the negative electrode. After that, the battery was sealed. X=1.
Let A be a battery using 10 active materials.

同様に、従来例としてのLiMn2O4を正極活物質と
して用いた電池をBとする。これら電池を、2mAの定
電流で4.5ボルトまで充電し、3ボルトまで放電し、
この充電放電を繰り返した。第1図は、これら電池の各
サイクルでの放電容量をプロットしたものである。
Similarly, a battery B uses LiMn2O4 as a positive electrode active material as a conventional example. These batteries were charged to 4.5 volts with a constant current of 2 mA, discharged to 3 volts,
This charging and discharging process was repeated. FIG. 1 is a plot of the discharge capacity of these batteries at each cycle.

これより本実施例の正極活物質では充放電サイクルを繰
り返しても劣化は小さいことがわかる。
This shows that the positive electrode active material of this example shows little deterioration even after repeated charge/discharge cycles.

また第3図には、代表的な放電特性としてまだ劣化の少
ない第10サイクル目での各電池の放電曲線を示す。こ
れより本発明の 正極活物質は、LiMn20Jと同じ
電位で放電していることがわかる。
Further, FIG. 3 shows the discharge curve of each battery at the 10th cycle, where there is still little deterioration, as a typical discharge characteristic. This shows that the positive electrode active material of the present invention discharges at the same potential as LiMn20J.

1より大きい分のLiは、スピネル中の空いている酸素
4面体のなかに入り、充放電における結晶の安定性が増
したと思われる。
It is thought that the Li in an amount larger than 1 enters the vacant oxygen tetrahedra in the spinel, increasing the stability of the crystal during charging and discharging.

正極活物質のサイクル特性を表わす指数として、第10
サイクル目の放電容量から第50サイクル目の放電容量
を引き、それを第10サイクル目の放電容量で除した値
を用いることにした。すなわち、サイクルによる劣化率
でありこの値が小さいほど良いことになる。第4図は、
LrにM n e 04中のXに対して、その活物質の
サイクル特性としての劣化率をプロットしたものである
。Xが増えるにしたがってサイクル特性が向上した。し
かし、Xが1.10を越えるとサイクル特性は低下し始
める。
The 10th index represents the cycle characteristics of the positive electrode active material.
It was decided to use a value obtained by subtracting the discharge capacity of the 50th cycle from the discharge capacity of the cycle and dividing it by the discharge capacity of the 10th cycle. That is, it is the deterioration rate due to cycles, and the smaller this value is, the better. Figure 4 shows
The deterioration rate as a cycle characteristic of the active material is plotted against X in M n e 04 on Lr. The cycle characteristics improved as X increased. However, when X exceeds 1.10, the cycle characteristics begin to deteriorate.

これより、Xは1.025以上、1.185以下が良い
と思われる。
From this, it seems that X is preferably 1.025 or more and 1.185 or less.

発明の効果 以上述べたように本発明の式、Lii+Mn20zで表
わされ、1.025≦X≦1.185である物質を正極
活物質とすることにより、非水電解質二次電池のサイク
ル特性を向上させることができ、産業上の意義は大きい
Effects of the Invention As described above, the cycle characteristics of a non-aqueous electrolyte secondary battery can be improved by using the material of the present invention as a positive electrode active material, which is expressed by the formula Lii+Mn20z and satisfies 1.025≦X≦1.185. This is of great industrial significance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における非水電解質二次電池
と従来例の電池サイクル特性を比較して示す特性図、第
2図は試験に用いた電池の縦断面図、第3図は電池の放
電特性を示す特性図、第4図はサイクル特性としての劣
化率をり、ixMn204中のXに対してプロットした
グラフである。 130.正極、219.ケース、 309.セパレータ
、 400.リチウム板、5.、、封口板、e、、、ガ
スケット。 代理人の氏名 弁理士 粟野重孝 ほか1名第1図 Ou)       41)       u    
   80     1t)aブイ グ ル老( 第2図 1ど 第 3 図 0        /        Z      
  3       4放電時間(時間) 第4図 LOO1,10r、z。 Lix M?Lz 04の×
Figure 1 is a characteristic diagram that compares the battery cycle characteristics of a non-aqueous electrolyte secondary battery according to an embodiment of the present invention and a conventional example, Figure 2 is a vertical cross-sectional view of the battery used in the test, and Figure 3 is a FIG. 4, a characteristic diagram showing the discharge characteristics of the battery, is a graph in which the deterioration rate as a cycle characteristic is plotted against X in ixMn204. 130. Positive electrode, 219. Case, 309. Separator, 400. Lithium plate, 5. ,, sealing plate, e,, gasket. Name of agent: Patent attorney Shigetaka Awano and one other person (Figure 1) 41) u
80 1t) a Buiguruo (Fig. 2 1 d 3 Fig. 0 / Z
3 4 Discharge time (hours) Figure 4 LOO1, 10r, z. Lix M? Lz 04×

Claims (1)

【特許請求の範囲】 リチウムまたはリチウム化合物を負極とし、リチウム塩
を含む非水電解質と、式 Li_xMn_2O_4 で表わされ、1.025≦X≦1.185 である正極活物質を用いたたことを特徴とする非水電解
質二次電池。
[Claims] Lithium or a lithium compound is used as a negative electrode, a non-aqueous electrolyte containing a lithium salt, and a positive electrode active material represented by the formula Li_xMn_2O_4 and satisfying 1.025≦X≦1.185. Characteristics of non-aqueous electrolyte secondary batteries.
JP1091345A 1989-04-11 1989-04-11 Nonaqueous electrolyte secondary battery Pending JPH02270268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1091345A JPH02270268A (en) 1989-04-11 1989-04-11 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1091345A JPH02270268A (en) 1989-04-11 1989-04-11 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH02270268A true JPH02270268A (en) 1990-11-05

Family

ID=14023832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1091345A Pending JPH02270268A (en) 1989-04-11 1989-04-11 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH02270268A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478672A (en) * 1993-12-24 1995-12-26 Sharp Kabushiki Kaisha Nonaqueous secondary battery, positive-electrode active material
WO1997037934A1 (en) * 1996-04-08 1997-10-16 Duracell, Inc. Method of preparation of lithium manganese oxide spinel
US5716737A (en) * 1995-03-20 1998-02-10 Matsushita Electric Industrial Co. Nonaqueous electrolyte secondary battery, cathode active material and method for producing the same
US5807646A (en) * 1995-02-23 1998-09-15 Tosoh Corporation Spinel type lithium-mangenese oxide material, process for preparing the same and use thereof
JP2009541938A (en) * 2006-06-23 2009-11-26 ボストン−パワー,インコーポレイテッド Lithium ion secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478672A (en) * 1993-12-24 1995-12-26 Sharp Kabushiki Kaisha Nonaqueous secondary battery, positive-electrode active material
US5807646A (en) * 1995-02-23 1998-09-15 Tosoh Corporation Spinel type lithium-mangenese oxide material, process for preparing the same and use thereof
US5716737A (en) * 1995-03-20 1998-02-10 Matsushita Electric Industrial Co. Nonaqueous electrolyte secondary battery, cathode active material and method for producing the same
WO1997037934A1 (en) * 1996-04-08 1997-10-16 Duracell, Inc. Method of preparation of lithium manganese oxide spinel
JP2009541938A (en) * 2006-06-23 2009-11-26 ボストン−パワー,インコーポレイテッド Lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP3067531B2 (en) Positive electrode active material of non-aqueous electrolyte secondary battery and battery using the same
JPS63187569A (en) Nonaqueous secondary battery
JPH07335261A (en) Lithium secondary battery
JP3003431B2 (en) Non-aqueous electrolyte secondary battery
JPH10188977A (en) Lithium secondary battery
JPH02270268A (en) Nonaqueous electrolyte secondary battery
JP2512241B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JP3219352B2 (en) Non-aqueous electrolyte secondary battery
JP2517176B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JPH03108261A (en) Nonaqueous solvent secondary battery
JPH03219571A (en) Nonaqueous electrolyte secondary battery
JPH0770329B2 (en) Non-aqueous electrolyte secondary battery
JP2000090970A (en) Lithium secondary battery
JP3025695B2 (en) Non-aqueous secondary battery
JPH04332480A (en) Nonaqueous secondary battery
JPH02270269A (en) Nonaqueous electrolyte secondary battery
JP2822659B2 (en) Non-aqueous electrolyte secondary battery
JPH0822826A (en) Synthesizing method for positive active material of nonaqueous secondary battery
JPS62290070A (en) Organic electrolyte secondary battery
JPH05307974A (en) Organic electrolyte secondary battery
KR100578865B1 (en) A positive active material for a lithium secondary battery and a lithium secondary battery comprising the same
JP2003115326A (en) Nonaqueous electrolyte secondary battery
JPH0287462A (en) Nonaqueous electrolyte secondary battery and manufacture of positive electrode active substance therefor
JPH03127454A (en) Non-aqueous electrolyte secondary battery
JPH04160758A (en) Nonaqueous electrolyte secondary battery and manufacture thereof