JPH05307974A - Organic electrolyte secondary battery - Google Patents

Organic electrolyte secondary battery

Info

Publication number
JPH05307974A
JPH05307974A JP4136134A JP13613492A JPH05307974A JP H05307974 A JPH05307974 A JP H05307974A JP 4136134 A JP4136134 A JP 4136134A JP 13613492 A JP13613492 A JP 13613492A JP H05307974 A JPH05307974 A JP H05307974A
Authority
JP
Japan
Prior art keywords
case
absorbs
negative pole
separator
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4136134A
Other languages
Japanese (ja)
Other versions
JP3348175B2 (en
Inventor
Hiroaki Yoshida
吉田  浩明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP13613492A priority Critical patent/JP3348175B2/en
Publication of JPH05307974A publication Critical patent/JPH05307974A/en
Application granted granted Critical
Publication of JP3348175B2 publication Critical patent/JP3348175B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve electrochemical stability of an electrolytic liquid by providing a positive pole and a negative pole prepared from a material which absorbs and desorbs lithium ion and using a mixed liquid of sulfolane and ethylene carbonate as a solvent of an electrolytic liquid. CONSTITUTION:A positive pole 6 consisting of mainly a lithium-cobalt composite oxide which absorbs and desorbs lithium ion is set in the inside of a case 1 which works also as a positive pole terminal and is made of a stainless- aluminum-clad steel sheet and a negative pole 3 which is made of a carbon material and absorbs and desorbs lithium ion is brought into contact with a separator while setting a separator 5 of polypropylene impregnated with an organic electrolytic liquid between the poles and the case 1 is sealed by a sealing sheet 2 which is made of the same kind of a material as that of the case 1 and works also as a negative pole terminal while the gap between the case and the sheet 2 is filled with a gasket 4. As the organic electrolytic liquid, a solution prepared by dissolving lithium perchloride in a mixed solvent of sulfolane and ethylene carbonate is used and it is poured in the positive and the negative pole sheets and the separator.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子機器の駆動用電
源,メモリ保持電源あるいは電気自動車用電源としての
高エネルギー密度でかつ高い安全性を有する有機電解液
二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electrolyte secondary battery having high energy density and high safety as a power source for driving electronic equipment, a memory power source or a power source for electric vehicles.

【0002】[0002]

【従来の技術とその課題】電子機器の急激なる小形軽量
化にともない、その電源である電池に対して小形で軽量
かつ高エネルギー密度で、更に繰り返し充放電が可能な
二次電池の開発への要求が高まっている。さらに、近年
の環境問題への関心の高まりとともに電気自動車が注目
を集めつつあり、その電源である電池に対しても小形で
軽量かつ高エネルギー密度で、更に高温下(温度85
℃)での繰り返し充放電が可能な二次電池の開発への要
求が高まっている。これら要求を満たす二次電池とし
て、有機電解液二次電池が最も有望である。
2. Description of the Related Art With the rapid miniaturization and weight reduction of electronic devices, the development of a secondary battery that is smaller and lighter than a battery that is a power source, has a high energy density, and can be repeatedly charged and discharged. The demand is increasing. Furthermore, electric vehicles are attracting attention with the recent increasing concern about environmental problems, and the batteries that are the power sources thereof are small, lightweight, and have high energy density, and can be used at higher temperatures (temperature 85
There is an increasing demand for the development of secondary batteries that can be repeatedly charged and discharged at (° C). Organic electrolyte secondary batteries are the most promising as secondary batteries that meet these requirements.

【0003】有機電解液二次電池の正極活物質には、二
硫化チタンをはじめとしてリチウムコバルト複合酸化
物、スピネル型リチウムマンガン酸化物、五酸化バナジ
ウムおよび三酸化モリブデンなどの種々のものが検討さ
れている。なかでも、リチウムコバルト複合酸化物(Li
xCoO2 )およびスピネル型リチウムマンガン酸化物(Lix
Mn2 O4 ) は、4V(Li/Li+ ) 以上のきわめて貴な電位
で充放電を行うため、正極として用いることで高い放電
電圧を有する電池が実現できる。
Various positive electrode active materials for organic electrolyte secondary batteries such as titanium disulfide, lithium cobalt composite oxide, spinel type lithium manganese oxide, vanadium pentoxide and molybdenum trioxide have been investigated. ing. Among them, lithium cobalt composite oxide (Li
xCoO 2 ) and spinel type lithium manganese oxide (Lix
Since Mn 2 O 4 ) charges and discharges at an extremely noble potential of 4 V (Li / Li + ) or more, a battery having a high discharge voltage can be realized by using it as a positive electrode.

【0004】有機電解液二次電池の負極活物質は、金属
リチウムをはじめとしてリチウムの吸蔵・放出が可能な
Li−Al合金や炭素材料など種々のものが検討されて
いるが、なかでも炭素材料は、安全性が高くかつサイク
ル寿命の長い電池が得られるという利点がある。
Various negative electrode active materials for organic electrolyte secondary batteries, such as metallic lithium, Li-Al alloys and carbon materials capable of absorbing and desorbing lithium, have been investigated. Has the advantage that a battery with high safety and long cycle life can be obtained.

【0005】しかし、正極にリチウムコバルト複合酸化
物( LiCoO2 ),スピネル型リチウムマンガン酸化物(L
ixMn2 O4 ) などを用い、負極に炭素材料を用いた電池
は、高温(温度85℃)下での充放電サイクルの進行に
ともなって放電容量が急激に低下するという問題があっ
た。例えば、プロピレンカーボネイト(PC)と1,2-ジメト
キシエタン(DME) との混合溶媒に過塩素酸リチウム(LiC
lO4 ) を溶解した電解液を用いたコイン電池は、充放電
を繰り返すと放電容量が急激に減少した。これは、正極
によって、電解液が酸化分解されたことに起因するもの
と考えられる。
However, for the positive electrode, lithium cobalt composite oxide (LiCoO 2 ) and spinel type lithium manganese oxide (L
A battery using a carbon material such as ixMn 2 O 4 ) and a negative electrode has a problem that the discharge capacity sharply decreases as the charge / discharge cycle proceeds at high temperature (temperature of 85 ° C.). For example, in a mixed solvent of propylene carbonate (PC) and 1,2-dimethoxyethane (DME), lithium perchlorate (LiC
The coin battery using the electrolytic solution in which lO 4 ) was dissolved showed a rapid decrease in discharge capacity after repeated charging and discharging. It is considered that this is because the electrolytic solution was oxidized and decomposed by the positive electrode.

【0006】最近、このような高電圧の電池系において
実用可能な耐酸化性能に優れた有機電解液として、プロ
ピレンカーボネイト(PC)とジエチルカーボネイト(DEC)
との混合溶媒を用いると、前記の放電容量の低下が抑制
されることが報告された(第32回電池討論会要旨集 p.3
1 (1991))。
Recently, propylene carbonate (PC) and diethyl carbonate (DEC) have been used as organic electrolytes excellent in oxidation resistance that can be practically used in such high voltage battery systems.
It was reported that the use of a mixed solvent of and suppresses the above-mentioned decrease in discharge capacity (Proceedings of the 32nd Battery Symposium p.3
1 (1991)).

【0007】しかし、我々が上記電解液について検討し
た結果、上記有機溶媒の電気化学的安定性が依然不十分
あることがわかった。
However, as a result of our investigation on the above electrolytic solution, it was found that the electrochemical stability of the above organic solvent is still insufficient.

【0008】そこで、電解液の電気化学的安定性をさら
に向上した電解液の開発が求められていた。
Therefore, there has been a demand for the development of an electrolytic solution in which the electrochemical stability of the electrolytic solution is further improved.

【0009】[0009]

【課題を解決するための手段】本発明は、リチウムイオ
ンを吸蔵放出する物質からなる正極と、リチウムイオン
を吸蔵放出する炭素材料を負極として備えた有機電解液
二次電池において、スルホラン(S) とエチレンカーボネ
イト(EC)との混合溶媒を用いることによって、上記問題
点を解決しようとするものである。
Means for Solving the Problems The present invention provides an organic electrolyte secondary battery comprising a positive electrode made of a substance that absorbs and releases lithium ions and a carbon material that absorbs and releases lithium ions as a negative electrode. By using a mixed solvent of ethylene glycol and ethylene carbonate (EC), it is intended to solve the above problems.

【0010】[0010]

【作用】本発明の有機電解液二次電池は、従来の有機電
解液二次電池に比較して高温下で充放電サイクルを繰り
返した場合の放電容量の保持特性が優れているという作
用がある。これは、本発明の有機電解液二次電池に用い
た新しい有機溶媒によって、電解液の分解が抑制された
ことに起因するものと考えられる。
The organic electrolytic solution secondary battery of the present invention has an effect that it has excellent discharge capacity retention characteristics when the charge / discharge cycle is repeated at high temperature, as compared with the conventional organic electrolytic solution secondary battery. .. It is considered that this is because the decomposition of the electrolytic solution was suppressed by the new organic solvent used for the organic electrolytic solution secondary battery of the present invention.

【0011】[0011]

【実施例】以下に、好適な実施例を用いて本発明を説明
する。
The present invention will be described below with reference to preferred embodiments.

【0012】まず、正極活物質のリチウムコバルト複合
酸化物( LiCoO2 )をつぎのように合成した。塩基性炭
酸コバルトを温度650℃で24時間、空気中で熱分解
して四三酸化コバルト( Co3 O4 ) を合成した。炭酸リ
チウムとこの四三酸化コバルトとをリチウム:コバルト
原子比が1:1になるように混合して温度700℃で1
6時間、空気中で熱分解した。
First, a lithium cobalt composite oxide (LiCoO 2 ) as a positive electrode active material was synthesized as follows. Basic cobalt carbonate was pyrolyzed in air at a temperature of 650 ° C. for 24 hours to synthesize cobalt trioxide (Co 3 O 4 ). Lithium carbonate and this cobalt trisodium oxide were mixed at a lithium: cobalt atomic ratio of 1: 1 at a temperature of 700 ° C.
Pyrolysis in air for 6 hours.

【0013】そして、正極板を次のように試作した。前
記の方法で得られたリチウムコバルト複合酸化物82重
量部に対してポリフッ化ビニリデン6.5重量部、グラ
ファイト(ロンザ製SFG6)10重量部、ケッチェンブラ
ック1.5重量部および溶剤としてのN-メチル-2- ピロ
リドンを適量添加してよく混練し正極合剤ペーストを調
製した。このペーストを100メッシュのアルミ金網
(線径0.1mm )に均一に塗布し、温度85℃で10時間
熱風乾燥、次いで温度250℃で30分焼き付けした
後、直径16mmの円板に打ち抜いてリチウムコバルト複合
酸化物電極を試作した。この電極の理論容量は、活物質
( LiCoO2 )1モル当り、0.5モルのリチウムが吸蔵
・放出されるとすると、約18mAh である。
Then, a positive electrode plate was manufactured as follows. 6.5 parts by weight of polyvinylidene fluoride, 10 parts by weight of graphite (SFG6 manufactured by Lonza), 1.5 parts by weight of Ketjenblack and N as a solvent are added to 82 parts by weight of the lithium cobalt composite oxide obtained by the above method. An appropriate amount of -methyl-2-pyrrolidone was added and kneaded well to prepare a positive electrode mixture paste. This paste was evenly applied to a 100-mesh aluminum wire mesh (wire diameter 0.1 mm), dried with hot air at a temperature of 85 ° C for 10 hours, then baked at a temperature of 250 ° C for 30 minutes, and then punched into a disc with a diameter of 16 mm to obtain lithium cobalt. A composite oxide electrode was prototyped. The theoretical capacity of this electrode is about 18 mAh, assuming that 0.5 mol of lithium is occluded and released per mol of the active material (LiCoO 2 ).

【0014】負極板は、次のように試作した。炭素粉末
(熱分解炭素)92重量部に対してポリフッ化ビニリデ
ン8重量部および溶剤としてのN-メチル-2- ピロリドン
を適量添加してよく混練し、負極合剤ペーストを調製し
た。このペーストを100メッシュのSUS304金網
(線径0.1mm )に均一に塗布し、温度85℃で10時間
熱風乾燥、次いで温度250℃で30分焼き付けした
後、直径16mmの円板に打ち抜いて負極板を試作した。こ
の電極の充放電容量は、約18mAh である。
A negative electrode plate was manufactured as follows. A negative electrode mixture paste was prepared by adding 8 parts by weight of polyvinylidene fluoride and N-methyl-2-pyrrolidone as a solvent in appropriate amounts to 92 parts by weight of carbon powder (pyrolytic carbon) and kneading well. This paste was uniformly applied to 100-mesh SUS304 wire mesh (wire diameter 0.1 mm), dried with hot air at a temperature of 85 ° C for 10 hours, then baked at a temperature of 250 ° C for 30 minutes, and then punched out into a disk with a diameter of 16 mm to make a negative electrode plate. Was prototyped. The charge / discharge capacity of this electrode is about 18 mAh.

【0015】また、電解液にはスルホラン(以下ではS
と表記する)とエチレンカーボネイト(以下ではECと
表記する)との混合溶媒(体積比で1:3,1:2,
1:1)に、1モル/lの過塩素酸リチウム( LiCl
O4 )を溶解させた3種の有機電解液(以下では LiClO
4 (1M)/S+EC(1:3),S+EC(1:2),S+EC(1:1)と表記する)を
用いた。これらの電解液は、前記の正,負極板およびセ
パレーターに合計約160マイクロリッターだけ注液し
て用いた。本発明の有機電解液二次電池をそれぞれ
(A),(B)および(C)と呼ぶ。また、比較のため
に従来の電解液である LiClO4 (1M)/PC+DME(1:1), LiC
lO4 (1M)/PC+DEC(1:1), LiClO4 (1M)/PC+EC(1:1), Li
ClO4 (1M)/S+PC(1:1), LiClO4 (1M)/EC , LiClO4 (1
M)/Sを用いた以外は、本発明の有機電解液電池(A)と
同様の構成とした従来の電池を作製した。比較電池をそ
れぞれ(ア),(イ),(ウ),(エ),(オ)および
(カ)と呼ぶ。
The electrolyte solution contains sulfolane (hereinafter, S
Mixed solvent) and ethylene carbonate (hereinafter referred to as EC) (volume ratio of 1: 3, 1: 2,
1: 1) to 1 mol / l lithium perchlorate (LiCl
O 4) was dissolved three organic electrolyte (hereinafter LiClO
4 (1M) / S + EC (1: 3), S + EC (1: 2), S + EC (1: 1)) was used. These electrolytic solutions were used by injecting only about 160 microliters in total into the positive and negative electrode plates and the separator. The organic electrolyte secondary batteries of the present invention are referred to as (A), (B) and (C), respectively. For comparison, the conventional electrolytes, LiClO 4 (1M) / PC + DME (1: 1), LiC
lO 4 (1M) / PC + DEC (1: 1), LiClO 4 (1M) / PC + EC (1: 1), Li
ClO 4 (1M) / S + PC (1: 1), LiClO 4 (1M) / EC, LiClO 4 (1
A conventional battery having the same structure as the organic electrolyte battery (A) of the present invention was prepared except that M) / S was used. The comparative batteries are referred to as (a), (a), (c), (d), (e), and (f), respectively.

【0016】図1は、電池の縦断面図である。この図に
おいて1は、ステンレス−アルミ−クラッド鋼板をプレ
スによって打ち抜き加工した正極端子を兼ねるケース、
2は同種の材料を打ち抜き加工した負極端子を兼ねる封
口板であり、その内壁には負極3が当接されている。5
は有機電解液を含浸したポリプロピレンからなるセパレ
ーター、6は正極であり正極端子を兼ねるケース1の開
口端部を内方へかしめ、ガスケット4を介して負極端子
を兼ねる封口板2の内周を締め付けることにより密閉封
口している。
FIG. 1 is a vertical sectional view of a battery. In this figure, 1 is a case which also functions as a positive electrode terminal obtained by punching a stainless-aluminum-clad steel plate by a press,
Reference numeral 2 denotes a sealing plate that also functions as a negative electrode terminal made by punching the same kind of material, and the negative electrode 3 is in contact with the inner wall thereof. 5
Is a separator made of polypropylene impregnated with an organic electrolytic solution, 6 is a positive electrode, and the opening end of the case 1 that also serves as a positive electrode terminal is caulked inward, and the inner periphery of the sealing plate 2 that also serves as a negative electrode terminal is tightened through the gasket 4. It is hermetically sealed.

【0017】次に、これらの電池を2.0mAの定電流
で、端子電圧が4.1V に至るまで充電して、つづい
て、同じく2.0mAの定電流で、端子電圧が2.7V に
達するまで放電する充放電サイクル寿命試験(温度85
℃)にかけた。
Next, these batteries were charged at a constant current of 2.0 mA until the terminal voltage reached 4.1 V, and then at the same constant current of 2.0 mA, the terminal voltage became 2.7 V. Charge-discharge cycle life test (Temperature 85
℃).

【0018】サイクル試験の結果を、図2にしめす。本
発明の電池(A),(B)および(C)は、充放電サイ
クル数が100回に至るまで放電容量の著しい低下がみ
られない。しかし、比較のための従来の電池(ア),
(イ),(ウ),(エ)および(オ)は、充放電サイク
ルの進行に伴う放電容量の低下が著しい。また、比較電
池(カ)は放電容量の低下は少ないものの放電容量が小
さい。
The results of the cycle test are shown in FIG. In the batteries (A), (B) and (C) of the present invention, the discharge capacity is not significantly decreased until the number of charge / discharge cycles reaches 100 times. However, the conventional battery (a) for comparison,
In (a), (c), (d), and (e), the discharge capacity significantly decreases as the charge and discharge cycle progresses. The comparative battery (f) has a small decrease in discharge capacity, but a small discharge capacity.

【0019】このように、電解液溶媒にSとECとの混
合溶媒を用いた本発明の有機電解液二次電池は従来の有
機電解液二次電池と比較して、充放電サイクルを繰り返
した場合の放電容量の保持特性が著しく向上した。
As described above, the organic electrolytic solution secondary battery of the present invention using the mixed solvent of S and EC as the electrolytic solution solvent is repeatedly charged and discharged as compared with the conventional organic electrolytic solution secondary battery. In this case, the retention characteristic of the discharge capacity was remarkably improved.

【0020】なお、上記実施例では正極活物質としてリ
チウムコバルト複合酸化物を用いる場合を説明したが、
二硫化チタンをはじめとして二酸化マンガン、スピネル
型リチウムマンガン酸化物(LixMn2 O4 ) 、五酸化バナ
ジウムおよび三酸化モリブデンなどの種々のものを用い
ることができる。
In the above embodiments, the case where the lithium cobalt composite oxide is used as the positive electrode active material has been described.
Various materials such as titanium disulfide, manganese dioxide, spinel type lithium manganese oxide (LixMn 2 O 4 ), vanadium pentoxide and molybdenum trioxide can be used.

【0021】上記実施例では、2成分溶媒系において溶
媒中のSの含有量が25,33および50vol%とし
た場合を説明したが、Sの含有量が約10vol%〜約
80vol%の範囲であれば、同様な結果が得られる。
このような有機溶媒に溶解される支持電解質の種類や濃
度も基本的に限定されるものではない。たとえば、 LiA
sF6 ,LiBF4 ,LiPF6 ,LiCF3 SO3 などの1種以上を、
濃度0.5〜2モル/l程度の範囲で用いることができ
る。
In the above embodiment, the case where the content of S in the solvent was 25, 33 and 50 vol% in the two-component solvent system was described, but the content of S is in the range of about 10 vol% to about 80 vol%. If so, similar results are obtained.
The type and concentration of the supporting electrolyte dissolved in such an organic solvent are not basically limited. For example, LiA
One or more of sF 6 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 ,
It can be used in a concentration range of about 0.5 to 2 mol / l.

【0022】さらに、上記実施例ではS+EC混合溶媒
を用いる例を示したが電気化学的に安定な溶媒を混合し
て使用することができる。例としては、トルエン,ベン
ゼンなどがあげられる。
Further, in the above embodiment, an example of using the S + EC mixed solvent has been shown, but an electrochemically stable solvent can be mixed and used. Examples include toluene and benzene.

【0023】なお、前記の実施例に係る電池はいずれも
コイン形電池であるが、円筒形、角形またはペーパー形
電池に本発明を適用しても同様の効果が得られる。
The batteries according to the above-mentioned embodiments are all coin type batteries, but the same effect can be obtained by applying the present invention to cylindrical, prismatic or paper type batteries.

【0024】[0024]

【発明の効果】以上のごとく、本発明の有機電解液二次
電池は、充放電サイクルの進行にともなう放電容量の低
下が少ない。
As described above, in the organic electrolyte secondary battery of the present invention, the decrease in discharge capacity with the progress of charging / discharging cycle is small.

【図面の簡単な説明】[Brief description of drawings]

【図1】非水電解質二次電池の一例であるボタン電池の
内部構造を示した図。
FIG. 1 is a diagram showing an internal structure of a button battery which is an example of a non-aqueous electrolyte secondary battery.

【図2】試験電池のサイクルと放電容量を示した図。FIG. 2 is a diagram showing cycles and discharge capacities of test batteries.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 負極 4 ガスケット 5 セパレーター 6 正極 1 Battery Case 2 Sealing Plate 3 Negative Electrode 4 Gasket 5 Separator 6 Positive Electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを吸蔵放出する物質から
なる正極と、リチウムイオンを吸蔵放出する炭素材料を
負極として備えた有機電解液二次電池において、スルホ
ラン(S) とエチレンカーボネイト(EC)との混合溶媒を電
解液溶媒として用いたことを特徴とする有機電解液二次
電池。
1. An organic electrolyte secondary battery comprising, as a negative electrode, a positive electrode made of a substance that absorbs and releases lithium ions, and a carbon material that absorbs and releases lithium ions as a negative electrode, and comprises a sulfolane (S) and ethylene carbonate (EC). An organic electrolyte secondary battery, wherein a mixed solvent is used as an electrolyte solvent.
JP13613492A 1992-04-28 1992-04-28 Organic electrolyte secondary battery Expired - Lifetime JP3348175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13613492A JP3348175B2 (en) 1992-04-28 1992-04-28 Organic electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13613492A JP3348175B2 (en) 1992-04-28 1992-04-28 Organic electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH05307974A true JPH05307974A (en) 1993-11-19
JP3348175B2 JP3348175B2 (en) 2002-11-20

Family

ID=15168106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13613492A Expired - Lifetime JP3348175B2 (en) 1992-04-28 1992-04-28 Organic electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3348175B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999016144A1 (en) * 1997-09-19 1999-04-01 Mitsubishi Chemical Corporation Non-aqueous electrolyte cell
WO2006059085A1 (en) * 2004-12-02 2006-06-08 Oxis Energy Limited Electrolyte for lithium-sulphur batteries and lithium-sulphur batteries using the same
US7425388B2 (en) 2002-09-06 2008-09-16 Samsung Sdi Co., Ltd. Electrolyte for a lithium battery and a lithium battery comprising the same
US8252465B2 (en) 2001-01-19 2012-08-28 Samsung Sdi Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery comprising same
EP3016196A1 (en) * 2014-10-28 2016-05-04 Samsung SDI Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999016144A1 (en) * 1997-09-19 1999-04-01 Mitsubishi Chemical Corporation Non-aqueous electrolyte cell
US6670078B1 (en) 1997-09-19 2003-12-30 Mitsubishi Chemical Corporation Non-aqueous electrolyte cell with a solvent including a S-O bond
US8252465B2 (en) 2001-01-19 2012-08-28 Samsung Sdi Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery comprising same
US7425388B2 (en) 2002-09-06 2008-09-16 Samsung Sdi Co., Ltd. Electrolyte for a lithium battery and a lithium battery comprising the same
WO2006059085A1 (en) * 2004-12-02 2006-06-08 Oxis Energy Limited Electrolyte for lithium-sulphur batteries and lithium-sulphur batteries using the same
EP3016196A1 (en) * 2014-10-28 2016-05-04 Samsung SDI Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same

Also Published As

Publication number Publication date
JP3348175B2 (en) 2002-11-20

Similar Documents

Publication Publication Date Title
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
JPH07335261A (en) Lithium secondary battery
JP2705529B2 (en) Organic electrolyte secondary battery
JPH07296849A (en) Nonaqueous electrolyte secondary battery
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JP3451781B2 (en) Organic electrolyte secondary battery
JPH08195200A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery provided with this active material
JPH07230824A (en) Nonaqueous electrolyte battery
JP4359977B2 (en) Nonaqueous electrolyte secondary battery
JP3348175B2 (en) Organic electrolyte secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JPH07230825A (en) Nonaqueous electrolyte battery
JP3451601B2 (en) Lithium battery
JPH08180875A (en) Lithium secondary battery
JPH1027627A (en) Lithium secondary battery
JP2845069B2 (en) Organic electrolyte secondary battery
JP2003031266A (en) Flat nonaqueous secondary battery
JP3418715B2 (en) Organic electrolyte secondary battery
JP3663694B2 (en) Non-aqueous electrolyte secondary battery
JP3331608B2 (en) Non-aqueous electrolyte secondary battery
JPH06163078A (en) Nonaqueous electrolytic secondary battery
JP4147448B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP3423169B2 (en) Non-aqueous electrolyte secondary battery
JP2952367B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070913

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120913

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120913

Year of fee payment: 10