JPH0822826A - Synthesizing method for positive active material of nonaqueous secondary battery - Google Patents

Synthesizing method for positive active material of nonaqueous secondary battery

Info

Publication number
JPH0822826A
JPH0822826A JP6153515A JP15351594A JPH0822826A JP H0822826 A JPH0822826 A JP H0822826A JP 6153515 A JP6153515 A JP 6153515A JP 15351594 A JP15351594 A JP 15351594A JP H0822826 A JPH0822826 A JP H0822826A
Authority
JP
Japan
Prior art keywords
lithium
firing
active material
positive electrode
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6153515A
Other languages
Japanese (ja)
Inventor
Shigeo Kobayashi
茂雄 小林
Junichi Yamaura
純一 山浦
Kazuhiro Okamura
一広 岡村
Hiromi Okuno
博美 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6153515A priority Critical patent/JPH0822826A/en
Publication of JPH0822826A publication Critical patent/JPH0822826A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a battery which uses a nonaqueous electrolyte and is made excellent in discharge capacity by improving a method for synthesizing its positive active material. CONSTITUTION:A mixture of at least nickel hydroxide and a lithium salt such as lithium hydroxide is baked at baking temperatures of 400 to 580 deg.C for a baking time of 2-40 hours in an atmosphere where oxygen partial pressure is set at 0.5 to 2 atmospheres. Next, the mixture is baked at 600-780 deg.C for 5 to 20 hours.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池の
正極活物質の合成法に関し、とくにニッケルを主成分と
したリチウムとの複合酸化物からなる正極活物質の合成
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for synthesizing a positive electrode active material for a non-aqueous electrolyte secondary battery, and more particularly to a method for synthesizing a positive electrode active material composed of a nickel-based composite oxide with lithium. Is.

【0002】[0002]

【従来の技術】近年、電子機器のポータブル化、コード
レス化が急速に進んでおり、これらの駆動用電源として
小型、軽量で、高エネルギー密度を有する二次電池の要
望が高い。このような点で非水系電解液二次電池、特に
リチウム二次電池はとりわけ高電圧、高エネルギー密度
を有する電池として期待が大きい。
2. Description of the Related Art In recent years, portable electronic devices and cordless electronic devices have been rapidly developed, and there is a great demand for secondary batteries having small size, light weight, and high energy density as power sources for driving these electronic devices. From this point of view, non-aqueous electrolyte secondary batteries, especially lithium secondary batteries, are particularly expected as batteries having high voltage and high energy density.

【0003】従来、非水電解液電池の正極活物質として
LiCoO2、LiNiO2、LiMn24等が知られて
いる。LiCoO2を用いた電池は既に商品化されてい
る。しかし、LiNiO2は、放電容量が小さいため実
用化には至っていない。LiNiO2は、リチウム塩と
ニッケル塩を焼成し合成して得られる。ここでのニッケ
ル塩にはNi(OH)2、NiCO3が、リチウム塩には
LiOH、LiNO3がそれぞれ用いられている。
Conventionally, LiCoO 2 , LiNiO 2 , LiMn 2 O 4, etc. have been known as positive electrode active materials for non-aqueous electrolyte batteries. Batteries using LiCoO 2 have already been commercialized. However, LiNiO 2 has not been put to practical use because of its small discharge capacity. LiNiO 2 is obtained by firing a lithium salt and a nickel salt and synthesizing them. Ni (OH) 2 and NiCO 3 are used as the nickel salt, and LiOH and LiNO 3 are used as the lithium salt.

【0004】これらの焼成は温度500℃〜1000℃
において1〜60時間熱処理することで行われていた。
最近では、二段階の焼成熱処理を行う合成法が報告され
ている。例えば、「Chemical Express」(Vol.5,p733 1
990)では、第一段階として650℃で12時間焼成を
行い、第二段階として900℃で24時間焼成を行う方
法や、第一段階を600℃で16時間、第二段階を75
0℃で12時間で行う「Chemical Express」(Vol.7,68
9 1992)、さらに「Physical Review B」(Vol.46,p323
6 1992)では第一段階を500℃において数時間、第二
段階を800℃において48時間としている。
These firings are performed at a temperature of 500 ° C to 1000 ° C.
The heat treatment was performed for 1 to 60 hours.
Recently, a synthetic method in which a two-step firing heat treatment is performed has been reported. For example, “Chemical Express” (Vol.5, p733 1
990), a method in which calcination is performed at 650 ° C for 12 hours as the first step, and calcination is performed at 900 ° C for 24 hours as the second step, or the first step is 600 ° C for 16 hours and the second step is 75 hours.
"Chemical Express" (Vol.7,68)
9 1992), and "Physical Review B" (Vol.46, p323
6 1992), the first stage is set to several hours at 500 ° C and the second stage is set to 800 ° C for 48 hours.

【0005】また、焼成時の雰囲気については、「Soli
d State Ionics」(Vol.57,p311 1992)で示されている
酸素雰囲気や、「Journal Solid State Chemical」(Vo
l.102,p542 1993)での空気雰囲気がある。
Regarding the atmosphere during firing, "Soli
d State Ionics ”(Vol.57, p311 1992) and the oxygen atmosphere and“ Journal Solid State Chemical ”(Vo
l.102, p542 1993).

【0006】なお、リチウム二次電池の負極には金属リ
チウムをはじめリチウム合金やリチウムイオンを含む炭
素材が用いられている。
A carbon material containing lithium ion, lithium alloy, or lithium ion is used for the negative electrode of the lithium secondary battery.

【0007】[0007]

【発明が解決しようとする課題】しかし、上記従来の焼
成条件により得られるニッケル複合酸化物は、生成が不
十分である場合や結晶性が低いことがある。そのため、
これを正極活物質に用いた電池は、放電容量が小さいと
いう課題を有している。
However, the nickel composite oxide obtained under the above conventional firing conditions may be insufficiently formed or have low crystallinity. for that reason,
A battery using this as a positive electrode active material has a problem that the discharge capacity is small.

【0008】本発明はこのような課題を解決するもの
で、焼成条件を改良することにより、正極活物質の特性
を向上させ、非水電解液二次電池の放電容量を改善する
ことを目的とする。
The present invention is intended to solve such a problem, and it is an object of the present invention to improve the characteristics of the positive electrode active material by improving the firing conditions and to improve the discharge capacity of the non-aqueous electrolyte secondary battery. To do.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に発明者らは精力的な検討を行った。その結果、本発明
は少なくとも水酸化ニッケルとリチウム塩の混合物を、
少なくとも焼成温度400℃〜580℃で2〜40時
間、焼成温度600℃〜780℃で0.5時間の二段階
の焼成を経て合成されるニッケル酸リチウムを正極活物
質に用いることを見いだした。
Means for Solving the Problems In order to solve the above-mentioned problems, the inventors have made vigorous studies. As a result, the present invention provides a mixture of at least nickel hydroxide and a lithium salt,
It has been found that lithium nickelate synthesized through two-step firing at a firing temperature of 400 ° C. to 580 ° C. for 2 to 40 hours and a firing temperature of 600 ° C. to 780 ° C. for 0.5 hours is used as a positive electrode active material.

【0010】[0010]

【作用】上記の二段階の焼成による正極活物質の合成に
おいて、第一段階の焼成の目的は、ニッケル酸リチウム
を生成することにあり、第二段階の焼成の目的は、ニッ
ケル酸リチウムの結晶性を向上させることにある。
In the synthesis of the positive electrode active material by the above-mentioned two-step firing, the purpose of the first-step firing is to produce lithium nickelate, and the purpose of the second-step firing is the crystal of lithium nickelate. Is to improve the sex.

【0011】第一段階において、焼成温度が400℃以
下では、水酸化リチウムの融点と水酸化ニッケルの分解
温度以下になるため合成は生じにくい。また580℃以
上ではNiOが生成し、正極活物質としてのニッケル酸
リチウムの生成が困難になる。一方、焼成時間による影
響に関しては、2時間以下ではニッケル酸リチウムの生
成反応が十分に進行しないために放電容量が小さくなる
と思われる。逆に、40時間以上ではニッケル酸リチウ
ムのニッケルサイトにリチウムが、またリチウムサイト
にニッケルが入り放電容量に悪影響を及ぼしていると考
えられる。
In the first step, when the firing temperature is 400 ° C. or lower, the melting point of lithium hydroxide and the decomposition temperature of nickel hydroxide are lower than the temperature, and thus the synthesis is difficult to occur. Further, at 580 ° C. or higher, NiO is produced, which makes it difficult to produce lithium nickelate as a positive electrode active material. On the other hand, regarding the effect of the firing time, it is considered that the discharge capacity becomes small in less than 2 hours because the reaction for producing lithium nickelate does not proceed sufficiently. On the contrary, it is considered that, for 40 hours or more, lithium enters the nickel sites of lithium nickelate and nickel enters the lithium sites, which adversely affects the discharge capacity.

【0012】また、第二段階において焼成温度が600
℃以下では結晶化が促進されず、780℃以上では合成
されたニッケル酸リチウムが分解するため放電容量が減
少すると考えられる。焼成時間が0.5時間以下では結
晶成長が不十分であり、逆に20時間以上では第一段階
同様にニッケル酸リチウムのニッケルとリチウムが、そ
れぞれのサイトに異なる金属、すなわちニッケルのサイ
トにリチウムが入り、リチウムのサイトにニッケルが入
るために放電容量の減少が生ずると考えられる。
In the second stage, the firing temperature is 600
It is considered that the crystallization is not promoted at a temperature of 780 ° C or lower and the synthesized lithium nickelate is decomposed at a temperature of 780 ° C or higher, so that the discharge capacity is reduced. If the firing time is 0.5 hours or less, the crystal growth is insufficient, and conversely, if the firing time is 20 hours or more, nickel and lithium in lithium nickelate are different from each other in the same manner as in the first step, that is, lithium is added to the nickel site. It is considered that the discharge capacity decreases because nickel enters the lithium site and nickel enters the lithium site.

【0013】[0013]

【実施例】以下、図面とともに本発明を説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0014】本発明の焼成法の一実施例を次に示す。ニ
ッケル塩として分子式Ni(OH) 2で表される水酸化
ニッケル、リチウム塩として同じく分子式LiOHで表
される水酸化リチウムを、それそれニッケルとリチウム
の化学量論比が1対1になるように配合した。これをミ
キサーを用いて混合し、得られた混合物を図1に示した
焼成温度と焼成時間のプロフィールに従って二段階の焼
成を行った。なお、焼成雰囲気は空気雰囲気とし、第一
段階は焼成温度が550℃で焼成時間は24時間、第二
段階は750℃で5時間とした。焼成後、合成されたニ
ッケル酸リチウムは、塊状になっているので、粉砕し
た。
An example of the firing method of the present invention will be described below. D
Molecular formula Ni (OH) as a nickel salt 2Hydroxylation represented by
Similarly, the nickel and lithium salts are represented by the molecular formula LiOH.
Lithium hydroxide, which is nickel and lithium
Were blended so that the stoichiometric ratio was 1: 1. This
The mixture was mixed using a kiser and the resulting mixture is shown in FIG.
Two-step firing according to firing temperature and firing time profile
It was done. The firing atmosphere is an air atmosphere, and
In the step, the firing temperature is 550 ° C, the firing time is 24 hours, and the second
The stage was 750 ° C. for 5 hours. After firing,
Lithium succinate is lumped, so crush it.
Was.

【0015】次に得られたニッケル酸リチウムからなる
正極活物質を、電池に用いた際の放電容量を評価するた
めに円筒形の試験電池を作成した。
Next, a cylindrical test battery was prepared in order to evaluate the discharge capacity when the obtained positive electrode active material made of lithium nickelate was used in a battery.

【0016】正極は、上記方法によって得られた本発明
のニッケル酸リチウム100重量部に対して、アセチレ
ンブラック4重量部とフッ素樹脂系結着材7重量部を混
合して、正極合材とし、これにカルボキシルメチルセル
ロース水溶液を加えてペースト状にした。これをアルミ
ニウム箔の両面に塗着し、乾燥後圧延して正極板とし
た。
The positive electrode was prepared by mixing 4 parts by weight of acetylene black and 7 parts by weight of a fluororesin-based binder with 100 parts by weight of lithium nickel oxide of the present invention obtained by the above method to prepare a positive electrode mixture. To this, an aqueous solution of carboxymethyl cellulose was added to form a paste. This was applied to both sides of an aluminum foil, dried and rolled to obtain a positive electrode plate.

【0017】一方負極は、コークスを焼成した炭素材1
00重量部に対して、フッ素樹脂系結着剤10重量部を
混合し、これをカルボキシメチルセルロース水溶液に懸
濁させてペースト状にした負極合剤を、銅箔の両面に塗
着した。乾燥後、圧延を行い負極板とした。
On the other hand, the negative electrode is a carbon material 1 obtained by firing coke.
10 parts by weight of a fluororesin-based binder was mixed with 00 parts by weight, and this was suspended in a carboxymethylcellulose aqueous solution to form a paste-like negative electrode mixture, which was applied to both surfaces of the copper foil. After drying, rolling was performed to obtain a negative electrode plate.

【0018】図2にこれらの極板を用いて構成した円筒
形電池の断面図を示す。電池ケース1は耐有機電解液性
のステンレス鋼板を加工したものである。帯状の正極
板、負極板それぞれに正極リード2および負極リード3
を取り付け、ポリプロピレン製のセパレータを介して巻
回し、極板群4を構成した。絶縁リング5を極板群の上
下部に配置し電池ケース内に収納した。正極リードは封
口板6に、負極リードは電池ケースの底部にそれぞれ接
続されている。電解液にはプロピレンカーボネートとエ
チレンカーボネートとの等容積混合溶媒に、過塩素酸リ
チウムを1モル/lの割合で混合したものを用いた。こ
れを電池ケースに所定量注液した後、絶縁パッキング7
を封口板と電池ケースの上部周縁部に配置し、電池ケー
スの口縁をかしめて封口した。
FIG. 2 shows a sectional view of a cylindrical battery constructed by using these electrode plates. The battery case 1 is formed by processing a stainless steel plate having resistance to organic electrolyte. The positive electrode lead 2 and the negative electrode lead 3 are respectively provided on the strip-shaped positive electrode plate and the negative electrode plate.
Was attached and wound via a polypropylene separator to form an electrode plate group 4. The insulating ring 5 was arranged on the upper and lower parts of the electrode plate group and housed in the battery case. The positive electrode lead is connected to the sealing plate 6, and the negative electrode lead is connected to the bottom of the battery case. The electrolyte used was a mixture solvent of equal volumes of propylene carbonate and ethylene carbonate mixed with lithium perchlorate at a ratio of 1 mol / l. After injecting a predetermined amount of this into the battery case, insulative packing 7
Was placed on the sealing plate and the peripheral portion of the upper part of the battery case, and the edge of the battery case was caulked for sealing.

【0019】この試験電池を常温で、充放電電流100
mA、充電終止電圧4.1V、放電終止電圧3.0Vの
条件下で定電流充放電試験を5サイクルまで行った。そ
の後、放電電流100mAで放電試験を同様に常温で行
った。
The test battery was charged at a charge / discharge current of 100 at room temperature.
A constant current charge / discharge test was performed up to 5 cycles under the conditions of mA, end-of-charge voltage 4.1V, and end-of-discharge voltage 3.0V. Then, a discharge test was similarly performed at room temperature with a discharge current of 100 mA.

【0020】図3にこの100mAでの放電性能を示
す。比較品として従来の二段階焼成により合成したニッ
ケル酸リチウムを正極活物質とし、他の構成は本発明品
と同様にした円筒型電池を作成した。比較品の正極活物
質の焼成条件は第一段階は650℃で12時間、第二段
階は900℃で24時間として行った。この電池の放電
特性は図3中に破線で示す。
FIG. 3 shows the discharge performance at 100 mA. As a comparative product, a cylindrical battery was prepared in which lithium nickel oxide synthesized by conventional two-step firing was used as a positive electrode active material, and other configurations were the same as those of the product of the present invention. The firing conditions for the positive electrode active material of the comparative product were 650 ° C. for 12 hours in the first step and 900 ° C. for 24 hours in the second step. The discharge characteristic of this battery is shown by the broken line in FIG.

【0021】本発明による二段階の焼成により合成した
ニッケル酸リチウムを正極活物質に用いた電池の放電容
量は、従来の焼成方法により作成した比較品の放電容量
よりも優れている。
The discharge capacity of a battery using lithium nickel oxide synthesized by two-step firing according to the present invention as a positive electrode active material is superior to that of a comparative product prepared by a conventional firing method.

【0022】さらに、焼成温度および焼成時間について
詳細に検討した。まず、第一段階の焼成温度および焼成
時間を種々変化させ、第二段階は上記の焼成温度750
℃、焼成時間5時間として行った。なお、合成材料に
は、上記と同様に水酸化リチウムと水酸化ニッケルを用
いた。放電性能の評価は、図2に示した円筒型電池を作
成し、評価条件も上記同様とした。図4に第一段階の焼
成温度および焼成時間の変化による放電容量分布を示
す。
Further, the firing temperature and firing time were examined in detail. First, the firing temperature and firing time in the first stage are variously changed, and in the second stage, the above firing temperature 750 is used.
The firing was carried out at a temperature of 5 ° C. for 5 hours. As the synthetic material, lithium hydroxide and nickel hydroxide were used as in the above. For the evaluation of the discharge performance, the cylindrical battery shown in FIG. 2 was prepared, and the evaluation conditions were the same as above. FIG. 4 shows the discharge capacity distribution due to changes in the firing temperature and firing time in the first step.

【0023】図4から明らかなように第一段階の焼成温
度および時間を斜線部領域で示された400℃〜580
℃、2〜40時間の条件で合成されるニッケル酸リチウ
ムを正極活物質に用いることにより、放電容量の優れた
電池を得ることができる。
As is apparent from FIG. 4, the firing temperature and time of the first step are 400 ° C. to 580 indicated by the shaded area.
A battery having excellent discharge capacity can be obtained by using lithium nickel oxide, which is synthesized under conditions of ° C and 2 to 40 hours, as a positive electrode active material.

【0024】つづいて、第一段階での焼成後に施す第二
段階における焼成温度と時間の変化による容量分布を示
す。なお、第一段階の焼成温度および時間は、図1に示
した第一段階と同条件とした。
Next, the capacity distribution due to changes in firing temperature and time in the second stage performed after the firing in the first stage will be shown. The firing temperature and time in the first step were the same as those in the first step shown in FIG.

【0025】第二段階については、図5において斜線部
領域で示した焼成温度600℃〜780℃、焼成時間
0.5〜20時間にて合成されるニッケル酸リチウムを
用いることによって、放電容量に優れた電池を得ること
ができる。
In the second step, the discharge capacity is improved by using lithium nickel oxide synthesized at a firing temperature of 600 ° C. to 780 ° C. and a firing time of 0.5 to 20 hours shown in the shaded area in FIG. An excellent battery can be obtained.

【0026】また、各種リチウム塩を用いた場合の放電
容量を示す。リチウム塩として水酸化リチウム、硝酸リ
チウム、炭酸リチウム、酸化リチウムを用い、またニッ
ケル塩には水酸化ニッケルを用いた。これらをニッケル
とリチウムの化学量論比が1対1になるようにこれらを
混合した。焼成雰囲気は空気雰囲気とし、図1に示した
第一段階を焼成温度550℃で焼成時間24時間、第二
段階を750℃で5時間の焼成条件の下で合成を行っ
た。放電性能の評価は図2に示した円筒型電池を作成
し、図3と同様に評価を行った。
The discharge capacities when various lithium salts are used are shown below. Lithium hydroxide, lithium nitrate, lithium carbonate and lithium oxide were used as the lithium salt, and nickel hydroxide was used as the nickel salt. These were mixed so that the stoichiometric ratio of nickel to lithium was 1: 1. The calcination atmosphere was an air atmosphere, and the synthesis was performed under the calcination conditions of the calcination temperature of 550 ° C. for the first step shown in FIG. 1 for 24 hours and the second step at 750 ° C. for 5 hours. The discharge performance was evaluated by preparing the cylindrical battery shown in FIG. 2 and performing the same evaluation as in FIG.

【0027】図6から明らかなように本発明による焼成
方法では、水酸化リチウムもしくは硝酸リチウムを用い
たときの放電容量が優れていることがわかる。
As is apparent from FIG. 6, the firing method according to the present invention has an excellent discharge capacity when lithium hydroxide or lithium nitrate is used.

【0028】次に、焼成雰囲気の酸素分圧と放電容量と
の関係を示す。リチウム塩およびニッケル塩にはそれぞ
れ水酸化リチウムと水酸化ニッケルを用い、上記同様に
混合した。焼成は、雰囲気中の酸素分圧を種々変化さ
せ、図1に示した本発明による焼成温度、焼成時間プロ
フィールに従い行った。
Next, the relationship between the oxygen partial pressure in the firing atmosphere and the discharge capacity will be shown. Lithium hydroxide and nickel hydroxide were used as the lithium salt and nickel salt, respectively, and mixed in the same manner as above. The firing was performed according to the firing temperature and firing time profile according to the present invention shown in FIG. 1 while changing the oxygen partial pressure in the atmosphere variously.

【0029】図7から、酸素分圧0.5〜2気圧の雰囲
気で焼成した正極活物質を用いた電池の放電容量が優れ
ていることがわかる。
It can be seen from FIG. 7 that the discharge capacity of the battery using the positive electrode active material fired in the atmosphere having an oxygen partial pressure of 0.5 to 2 atm is excellent.

【0030】ところで、本発明におけるニッケル酸リチ
ウムは、リチウムとニッケルの比率が1対1のみを指す
ものでなく、化学量論的に約5%の増減でも同様の効果
が得られる。
By the way, the lithium nickelate in the present invention does not mean that the ratio of lithium to nickel is only 1: 1, but similar effects can be obtained even if the ratio is stoichiometrically increased or decreased by about 5%.

【0031】なお、本発明のニッケル酸リチウムのニッ
ケルの一部がコバルト等の他の金属に置換されても同様
の効果が得られる。例えば、水酸化ニッケルにコバルト
塩を加え、リチウム塩として水酸化リチウムを用いて、
本発明による二段階焼成を施した正極活物質を用いた電
池も、優れた放電容量を示した。特に水酸化ニッケルと
酸化コバルトと水酸化リチウムをそれぞれ8重量部、2
重量部、10重量部の割合で混合し、図1に示した本発
明による条件で焼成を行った。合成された正極活物質は
分子式LiNi0.5CO0.22となり、良好な放電特性
を示した。
Even if a part of nickel in the lithium nickelate of the present invention is replaced with another metal such as cobalt, the same effect can be obtained. For example, adding cobalt salt to nickel hydroxide and using lithium hydroxide as the lithium salt,
The battery using the positive electrode active material subjected to the two-step firing according to the present invention also showed excellent discharge capacity. Especially, 8 parts by weight of nickel hydroxide, cobalt oxide, and lithium hydroxide, respectively, 2
1 part by weight and 10 parts by weight were mixed and fired under the conditions according to the present invention shown in FIG. The synthesized positive electrode active material had a molecular formula of LiNi 0.5 CO 0.2 O 2 and showed good discharge characteristics.

【0032】また、本実施例では焼成温度は、第一段階
と第二段階それぞれにおいて一定に保った。しかし、上
記した本発明の焼成温度と時間の範囲内であれば、それ
ぞれの焼成段階で温度は一定である必要はなく、任意に
変化させても同様の結果を得ることができる。
Further, in this embodiment, the firing temperature was kept constant in each of the first and second stages. However, the temperature does not have to be constant in each firing step as long as it is within the above-mentioned firing temperature and time range of the present invention, and similar results can be obtained by arbitrarily changing the temperature.

【0033】さらに、本実施例の二段階の焼成は、第一
段階と第二段階を連続的に行ったが、第一段階終了後冷
却し、第二段階の焼成を行っても同様な結果が得られ
る。
Further, although the two-step firing of this embodiment was carried out by continuously performing the first step and the second step, the same result can be obtained by cooling after the first step and performing the second step. Is obtained.

【0034】一方、本実施例では負極として、リチウム
が吸着もしくはインターカレートする炭素材を用いた
が、リチウム金属、リチウム合金を用いても同様の効果
が得られる。
On the other hand, in this embodiment, a carbon material capable of adsorbing or intercalating lithium is used as the negative electrode, but the same effect can be obtained by using lithium metal or lithium alloy.

【0035】[0035]

【発明の効果】以上から明らかなように、本発明によれ
ば少なくとも水酸化ニッケルと水酸化リチウム等のリチ
ウム塩の混合物を、酸素を含む雰囲気下において焼成温
度400〜580℃、焼成時間2〜40時間で行う第一
段階の焼成と、600〜780℃で5〜20時間行う第
二段階の焼成によって得られる正極活物質を用いること
で、放電容量に優れた電池を提供することができる。
As is apparent from the above, according to the present invention, at least a mixture of nickel hydroxide and a lithium salt such as lithium hydroxide is fired in an atmosphere containing oxygen at a firing temperature of 400 to 580 ° C. for a firing time of 2 to By using the positive electrode active material obtained by the first-step firing performed for 40 hours and the second-step firing performed at 600 to 780 ° C. for 5 to 20 hours, a battery having excellent discharge capacity can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の二段階焼成の一実施例を示す焼成温度
−焼成時間プロフィール
FIG. 1 Firing temperature-firing time profile showing an example of two-step firing of the present invention

【図2】本発明の実施例における円筒型電池の断面図FIG. 2 is a sectional view of a cylindrical battery according to an embodiment of the present invention.

【図3】本発明および比較品の放電容量を示す図FIG. 3 is a diagram showing discharge capacities of the present invention and a comparative product.

【図4】本発明の第一段階の焼成温度と時間の変化によ
る容量分布を示す図
FIG. 4 is a diagram showing a capacity distribution according to changes in firing temperature and time in the first step of the present invention.

【図5】本発明の第二段階の焼成温度と時間の変化によ
る容量分布を示す図
FIG. 5 is a diagram showing a capacity distribution according to changes in firing temperature and time in the second step of the present invention.

【図6】各種リチウム塩を用いた場合の放電容量を示す
FIG. 6 is a diagram showing the discharge capacity when various lithium salts are used.

【図7】酸素分圧と放電容量の関係を示す図FIG. 7 is a diagram showing the relationship between oxygen partial pressure and discharge capacity.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 正極リード 3 負極リード 4 極板群 5 絶縁リング 6 封口板 7 絶縁パッキング 1 Battery Case 2 Positive Electrode Lead 3 Negative Electrode Lead 4 Electrode Plate Group 5 Insulation Ring 6 Sealing Plate 7 Insulation Packing

フロントページの続き (72)発明者 奥野 博美 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Front page continuation (72) Inventor Hiromi Okuno 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】少なくとも水酸化ニッケルとリチウム塩の
混合物を、二段階の焼成により合成する一般式LiNi
x(1-x)2(M:金属元素 0.8≦x≦1)で表され
る非水電解液二次電池の正極活物質の合成法であって、
その第一段階として400℃〜580℃の温度で2〜4
0時間、第二段階として600℃〜780℃の温度で
0.5〜20時間それぞれ熱処理する非水電解液二次電
池の正極活物質の合成法。
1. A general formula LiNi for synthesizing at least a mixture of nickel hydroxide and a lithium salt by two-step firing.
A method for synthesizing a positive electrode active material of a non-aqueous electrolyte secondary battery represented by x M (1-x) O 2 (M: metallic element 0.8 ≦ x ≦ 1),
As the first stage, 2 to 4 at a temperature of 400 ° C to 580 ° C
A method for synthesizing a positive electrode active material of a non-aqueous electrolyte secondary battery, in which heat treatment is performed for 0 hours at a temperature of 600 ° C. to 780 ° C. for 0.5 hours to 20 hours as a second step.
【請求項2】リチウム塩として水酸化リチウムもしくは
硝酸リチウムを用いる請求項1記載の非水電解液二次電
池の正極活物質の合成法。
2. The method for synthesizing a positive electrode active material of a non-aqueous electrolyte secondary battery according to claim 1, wherein lithium hydroxide or lithium nitrate is used as the lithium salt.
【請求項3】焼成雰囲気の酸素分圧を0.5気圧〜2気
圧に設定した請求項1記載の非水電解液二次電池の正極
活物質の合成法。
3. The method for synthesizing a positive electrode active material of a non-aqueous electrolyte secondary battery according to claim 1, wherein the oxygen partial pressure of the firing atmosphere is set to 0.5 atm to 2 atm.
【請求項4】水酸化ニッケルの一部をマンガン塩もしく
はコバルト塩に置換した請求項1記載の非水電解液二次
電池の正極活物質の合成法。
4. The method for synthesizing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein a part of nickel hydroxide is replaced with a manganese salt or a cobalt salt.
JP6153515A 1994-07-05 1994-07-05 Synthesizing method for positive active material of nonaqueous secondary battery Pending JPH0822826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6153515A JPH0822826A (en) 1994-07-05 1994-07-05 Synthesizing method for positive active material of nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6153515A JPH0822826A (en) 1994-07-05 1994-07-05 Synthesizing method for positive active material of nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JPH0822826A true JPH0822826A (en) 1996-01-23

Family

ID=15564229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6153515A Pending JPH0822826A (en) 1994-07-05 1994-07-05 Synthesizing method for positive active material of nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JPH0822826A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036334A1 (en) * 1999-11-15 2001-05-25 Mitsubishi Chemical Corporation Lithium-manganese composite oxide, positive electrode material for lithium secondary cell, positive electrode and lithium secondary cell, and method for preparing lithium-manganese composite oxide
US8980475B2 (en) 2010-06-25 2015-03-17 Basf Se Process for preparing lithium mixed metal oxides and their use as cathode material
CN105702952A (en) * 2014-12-09 2016-06-22 三星Sdi株式会社 Positive active material for rechargeable lithium battery and rechargeable lithium battery
JP2018193296A (en) * 2017-05-19 2018-12-06 住友金属鉱山株式会社 Production method of lithium nickel composite oxide
JP2020064878A (en) * 2017-11-21 2020-04-23 日立金属株式会社 Manufacturing method for cathode active material for lithium ion secondary battery and thermal treatment device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036334A1 (en) * 1999-11-15 2001-05-25 Mitsubishi Chemical Corporation Lithium-manganese composite oxide, positive electrode material for lithium secondary cell, positive electrode and lithium secondary cell, and method for preparing lithium-manganese composite oxide
US6692665B2 (en) 1999-11-15 2004-02-17 Mitsubishi Chemical Corporation Lithium managanese oxide, cathode material for lithium secondary battery, cathode, lithium secondary battery and process for manufacturing lithium manganese oxide
US8980475B2 (en) 2010-06-25 2015-03-17 Basf Se Process for preparing lithium mixed metal oxides and their use as cathode material
CN105702952A (en) * 2014-12-09 2016-06-22 三星Sdi株式会社 Positive active material for rechargeable lithium battery and rechargeable lithium battery
CN105702952B (en) * 2014-12-09 2021-09-28 三星Sdi株式会社 Positive active material for rechargeable lithium battery and rechargeable lithium battery
US11228034B2 (en) 2014-12-09 2022-01-18 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and rechargeable lithium battery
JP2018193296A (en) * 2017-05-19 2018-12-06 住友金属鉱山株式会社 Production method of lithium nickel composite oxide
JP2020064878A (en) * 2017-11-21 2020-04-23 日立金属株式会社 Manufacturing method for cathode active material for lithium ion secondary battery and thermal treatment device

Similar Documents

Publication Publication Date Title
JP3067531B2 (en) Positive electrode active material of non-aqueous electrolyte secondary battery and battery using the same
US7655358B2 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
JP4959145B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPH08213015A (en) Positive active material for lithium secondary battery and lithium secondary battery
JP4821023B2 (en) Positive electrode for lithium secondary battery and lithium ion battery using the same
JP3613869B2 (en) Non-aqueous electrolyte battery
JP2002358961A (en) Non-aqueous electrolyte secondary battery
US7771875B2 (en) Positive electrodes for rechargeable batteries
JPH09120815A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP4746846B2 (en) Negative electrode active material for lithium ion battery, method for producing the same, and lithium ion battery
KR100307165B1 (en) Positive active material composition for lithium secondary battery and lithium secondary battery comprising the same
JPH0822826A (en) Synthesizing method for positive active material of nonaqueous secondary battery
JPH10302766A (en) Lithium ion secondary battery
JP3793054B2 (en) Nonaqueous electrolyte secondary battery
JP3487941B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte battery
JPH056780A (en) Nonaqueous electrolytic secondary battery
US20030235527A1 (en) Method for producing positive electrode material of Li-Ion secondary battery
JP4040271B2 (en) Lithium secondary battery and method for producing positive electrode active material used therefor
US20030235758A1 (en) Positive electrode material of Li-ion secondary battery
JP2002246024A (en) Lithium secondary battery
US20230040242A1 (en) Irreversible Additive Contained in Cathode Material for Secondary Battery, Cathode Material Including the Same, and Secondary Battery Including Cathode Material
KR100346546B1 (en) A positive electrode plate for a lithium secondary battery
JP3509477B2 (en) Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery
JPH09245795A (en) Positive electrode active material for lithium battery and manufacture thereof
JP2003007297A (en) Positive electrode active material for nonaqueous electrolyte secondary battery