JP3028972B2 - Aluminum-based electroless plating powder, conductive filler and method for producing the same - Google Patents

Aluminum-based electroless plating powder, conductive filler and method for producing the same

Info

Publication number
JP3028972B2
JP3028972B2 JP3155157A JP15515791A JP3028972B2 JP 3028972 B2 JP3028972 B2 JP 3028972B2 JP 3155157 A JP3155157 A JP 3155157A JP 15515791 A JP15515791 A JP 15515791A JP 3028972 B2 JP3028972 B2 JP 3028972B2
Authority
JP
Japan
Prior art keywords
aluminum
powder
electroless plating
plating
conductive filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3155157A
Other languages
Japanese (ja)
Other versions
JPH04354882A (en
Inventor
浩 川上
達志 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP3155157A priority Critical patent/JP3028972B2/en
Publication of JPH04354882A publication Critical patent/JPH04354882A/en
Application granted granted Critical
Publication of JP3028972B2 publication Critical patent/JP3028972B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、アルミニウム又はアル
ミニウム合金からなるアルミニウム系粉末の表面に金属
粒子を被着させた無電解めっき粉末、該アルミニウム系
無電解めっき粉末からなる導電性フィラー、およびこれ
ら材料を効率よく製造するための方法に関する。より詳
しくは、芯材表面に濃密で実質的な連続性の無電解めっ
き皮膜を形成してなるアルミニウム系無電解めっき粉末
およびその製造方法に係わり、さらに発展させて上記無
電解めっき粉末を顔料としてまたは合成樹脂や無機材料
に導電性を付与し得る導電性フィラーとして提供するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electroless plating powder in which metal particles are adhered to the surface of an aluminum powder made of aluminum or an aluminum alloy, a conductive filler made of the aluminum electroless plating powder, and The present invention relates to a method for efficiently producing a material. More specifically, the present invention relates to an aluminum-based electroless plating powder formed by forming a dense and substantially continuous electroless plating film on the surface of a core material and a method for producing the same, and further developed by using the electroless plating powder as a pigment. Alternatively, it is provided as a conductive filler capable of imparting conductivity to a synthetic resin or an inorganic material.

【0002】[0002]

【従来の技術】一般にアルミニウムおよびその合金基材
の表面に接着力の優れた金属被膜を生成させることは、
アルミニウム表面の活性力の強さゆえにかなり困難であ
る。このため通常、触媒付与処理に先立ってジンケート
処理がおこなわれている。しかしながら、ジンケート処
理は前処理工程が長く複雑であるばかりでなく、熟練を
要する処理法であり、また合金の種類によっては適用で
きないものもある。この他に陽極酸化法等の処理もおこ
なわれているが一長一短があり、ジンケート処理法に勝
るものではない。
2. Description of the Related Art In general, forming a metal film having excellent adhesive strength on the surface of aluminum and its alloy base material involves the following steps.
Difficult because of the strength of the aluminum surface. Therefore, a zincate treatment is usually performed prior to the catalyst application treatment. However, the zincate treatment is not only a long and complicated pretreatment step, but also requires skill, and may not be applicable depending on the type of alloy. In addition, treatments such as anodization are also performed, but have advantages and disadvantages and are not superior to zincate treatment.

【0003】アルミニウム系粉末は上記基材に比較し表
面積が異常に大きいため、ジンケート処理を含め従来の
いかなる前処理法を施しても密着性の優れた金属皮膜を
工業的規模で析出することはできない。また、無電解め
っきする場合には、通常、予め調整されためっき液に被
めっき基材を浸漬して予め推測により定められた時間反
応させた後、反応を停止させる方法がとられている。基
材が粉末である場合は一般の成型体に比べ著しく比表面
積が大きいため、めっき反応速度が異常に速い。従っ
て、めっき液のpHや各成分の変動も激しいのでpHの
調節や各成分の補給によりめっき液を安定に保持するこ
とは極めて困難であるのみならず、めっき速度や析出す
る金属組成も安定しない。そのうえ、反応が進むにつれ
て蓄積する反応副生成物の影響により、めっき液は自己
分析を起こし易くなる。自己分解により生成する微細な
金属粒子は粉末表面へ吸着し、密着性の悪い粗雑なめっ
き皮膜を析出する。
[0003] Since the aluminum-based powder has an abnormally large surface area as compared with the above-mentioned base material, it is impossible to deposit a metal film having excellent adhesion on an industrial scale by any conventional pretreatment method including zincate treatment. Can not. In the case of performing electroless plating, a method is generally employed in which a substrate to be plated is immersed in a plating solution that has been adjusted in advance and reacted for a predetermined period of time, and then the reaction is stopped. When the substrate is a powder, the specific reaction surface area is significantly larger than that of a general molded body, so that the plating reaction speed is abnormally high. Therefore, since the pH and various components of the plating solution fluctuate greatly, it is extremely difficult to stably maintain the plating solution by adjusting the pH and replenishing each component, and also the plating rate and the metal composition to be deposited are not stable. . In addition, the plating solution tends to undergo self-analysis due to the effect of reaction by-products that accumulate as the reaction proceeds. Fine metal particles generated by self-decomposition adsorb to the powder surface, and deposit a rough plating film having poor adhesion.

【0004】更に、粉末をめっきする場合に問題になる
のは、凝集した二次粒子にめっきが掛かると、その使用
に際して二次粒子が壊れて未被覆面の露出による被覆の
欠陥が現れる。従って、粉末をめっきする場合には可能
な限り二次粒子の少ない状態になるように良く分散した
ものにめっき被膜を施すことが最も重要な事項となる
が、従来の方法では全く期待できないものであった。
[0004] Further, a problem when plating powder is that when the agglomerated secondary particles are plated, the secondary particles are broken at the time of use and a coating defect appears due to exposure of an uncoated surface. Therefore, when plating a powder, it is the most important matter to apply a plating film to a well-dispersed one so as to have as few secondary particles as possible, but it cannot be expected at all by the conventional method. there were.

【0005】このように粉末をめっきするに際して生じ
る上記の事実に鑑み、本発明者は、予め粉末を水中によ
く分散させた水性懸濁体にし、これに無電解めっき液を
添加することによりめっき皮膜を付与させる方法を開発
し、既に特開昭60−59070 号公報、特開昭60−16779 号
公報、特開昭60−177182号公報、特開昭60−177183号公
報として提案した。この他に有機質芯材に無電解めっき
する方法において、予備処理として貴金属捕捉性表面処
理剤で貴金属イオンを担持させたのち無電解めっきを施
すことにより摩擦下の抵抗性に優れる金属皮膜を形成さ
せる技術も開発した(特開昭61−64882 号公報) 。
[0005] In view of the above-mentioned facts that occur when plating powder, the inventor of the present invention has prepared an aqueous suspension in which the powder is well dispersed in water in advance, and added the electroless plating solution to the aqueous suspension. A method for imparting a film has been developed and has already been proposed as JP-A-60-59070, JP-A-60-16779, JP-A-60-177182, and JP-A-60-177183. In addition, in the method of electroless plating on an organic core material, a metal film having excellent resistance under friction is formed by carrying out electroless plating after supporting a noble metal ion with a noble metal capturing surface treatment agent as a pretreatment. The technology was also developed (JP-A-61-64882).

【0006】[0006]

【発明が解決しようとする課題】上記の開発技術は、予
め建浴しためっき液にめっき材料である粉末を投入して
行なう従来の無電解めっき方法に比べて著しく改良さ
れ、品質の向上が認められたが、なお、アルミニウム系
粉末の場合、要求性能を十分に満足する金属被膜を得る
ことはできない。周知のように無電解めっきをするに
は、その予備処理として被めっき材料表面を塩化パラジ
ウム等を用いて処理し金属パラジウムを触媒核として担
持せしめることが必要であるが、アルミニウム基材の場
合には、苛性ソーダ水溶液による酸化膜の除去、硝酸ま
たはフッ酸−硝酸混液による調整、ジンケート処理を経
て塩化第一錫及び塩化パラジウムの溶液を順次又は同時
に処理した後めっき処理を行なう方法が採られている。
しかしながら、この方法は前記したように処理工程が長
く複雑であり、限られたアルミニウム合金にしか適用で
きない。特に異常に表面積が大きいアルミニウム系粉末
に対する強アルカリ、強酸性のジンケート処理は、反応
が強すぎて溶解が激しく利用することは困難である。
The above-mentioned developed technology is remarkably improved as compared with the conventional electroless plating method in which a powder, which is a plating material, is charged into a plating solution that has been built in advance, and the quality has been improved. However, in the case of an aluminum-based powder, a metal coating that sufficiently satisfies the required performance cannot be obtained. As is well known, in order to perform electroless plating, as a pretreatment, it is necessary to treat the surface of the material to be plated with palladium chloride or the like to support metal palladium as a catalyst core. Is a method of removing an oxide film with an aqueous solution of caustic soda, adjusting with nitric acid or a mixed solution of hydrofluoric acid and nitric acid, sequentially or simultaneously treating a solution of stannous chloride and palladium chloride through a zincate treatment, and then performing a plating process. .
However, this method has a long and complicated processing step as described above, and is applicable only to a limited aluminum alloy. In particular, strong alkali and strong acid zincate treatment of an aluminum-based powder having an unusually large surface area is difficult to utilize because the reaction is so strong that it dissolves violently.

【0007】また、アルミニウム粉末に直接錫パラジウ
ム処理を施し、引きつづき無電解めっきをおこなっても
金属被膜は形成させるが、めっき金属粉末の皮膜は極め
て不均質であって、連続皮膜は形成されず、連続皮膜を
形成するにはかなりの膜厚が要求されることが実験的に
確かめられている。しかも、その皮膜は摩擦下の抵抗性
が弱いうえに、めっき金属粒子が粗となり、瘤状の表面
を形成している。この理由は、めっき反応の律速となる
パラジウム触媒核が粉体表面に不均質に形成され、この
核上に金属が形成され、島状に成長するためと考えられ
る。このような被覆状態は、前述した特開昭61−64882
号の方法によりかなりの改善が図られているものの、基
本的には同様の傾向が現出する。
[0007] Further, a metal film can be formed by directly subjecting aluminum powder to tin-palladium treatment and subsequently performing electroless plating. However, the film of the plated metal powder is extremely heterogeneous and a continuous film cannot be formed. It has been experimentally confirmed that a considerable film thickness is required to form a continuous film. In addition, the film has low resistance under friction and the plated metal particles are coarse, forming a knob-like surface. It is considered that the reason for this is that a palladium catalyst nucleus, which controls the plating reaction, is heterogeneously formed on the powder surface, and a metal is formed on the nucleus and grows in an island shape. Such a coated state is described in the above-mentioned JP-A-61-64882.
Although a significant improvement has been achieved by the method of No. 1, basically the same tendency appears.

【0008】次に、金属被覆粉体を導電性フィラーとし
て利用する場合、第一に掲げられる優位性に比重の軽さ
がある。ところが、金属の皮膜が仮に100mμ以上でなけ
ればならないとすると、実用可能な金属被覆粉体の粒径
は1μm 以上となる。例えば、比重2.7 の各種粒径のア
ルミニウム系粉末に比重8.6 の金属を100mμ被覆した場
合の金属化率( 金属/製品重量比)と比重の関係を示す
と表1のようになる。
Next, when the metal-coated powder is used as the conductive filler, the first advantage is that the specific gravity is light. However, assuming that the metal film must be 100 μm or more, the particle size of a practical metal-coated powder is 1 μm or more. For example, Table 1 shows the relationship between the metallization ratio (metal / product weight ratio) and the specific gravity when an aluminum-based powder having a specific gravity of 2.7 and various particle diameters is coated with a metal having a specific gravity of 8.6 by 100 μm.

【0009】[0009]

【表1】 [Table 1]

【0010】本発明は、従来の欠点である不均質なめっ
き皮膜を改善してより均質で強固な密着性と被覆力を有
するアルミニウム系無電解めっき粉末およびその製造技
術を目的として、鋭意研究を重ねた結果開発に成功した
ものである。
SUMMARY OF THE INVENTION The present invention is directed to an aluminum-based electroless plating powder having improved uniform non-uniform plating film, which is a drawback of the prior art, and having more uniform and strong adhesion and covering power. As a result of repeated efforts, the development was successful.

【0011】[0011]

【課題を解決するための手段】すなわち、本発明により
提供されるアルミニウム系無電解めっき粉末はアルミニ
ウム又はアルミニウム合金粉末の表面に、無電解めっき
法による微細な金属粒子が濃密で実質的な連続膜とし
て沈形成してなるアルミニウム系無電解めっき粉末で
あって、前記連続被膜が、異種金属の多層めっき被膜で
あることを材質的特徴とする。また、本発明により提供
されるアルミニウム系無電解めっき粉末はアルミニウム
又はアルミニウム合金粉末の表面に、無電解めっき法に
よる微細な金属粒子が濃密で実質的な連続被膜として沈
着形成してなるアルミニウム系無電解めっき粉末であっ
て、前記連続被膜が、少なくとも50 mμの膜厚を有する
ことを材質的特徴とする。
Means for Solving the Problems] That is, aluminum-based electroless plating powder provided by the present invention to the surface of an aluminum or aluminum alloy powder, electroless plating substantially dense fine metal particles continuously by the an aluminum-based electroless plating powder obtained by precipitation deposition formed as film
The continuous film is a multi-layer plating film of different metals.
This is a material feature. Also provided by the present invention
Aluminum-based electroless plating powder is aluminum
Or use electroless plating on the surface of aluminum alloy powder
Fine metal particles settle down as a dense and substantially continuous coating.
Aluminum-based electroless plating powder
The continuous coating has a thickness of at least 50 mμ
This is a material feature.

【0012】また、本発明の導電性フィラーは上記の無
電解めっき粉末から構成されるもので、合成樹脂やゴム
等に導電性を付与するために利用される。
The conductive filler of the present invention comprises the above-mentioned electroless plating powder and is used for imparting conductivity to a synthetic resin, rubber or the like.

【0013】更に上記のアルミニウム系無電解めっき粉
末並びに導電性フィラーを製造するための本発明の方法
は、アルミニウム又はアルミウニム合金粉末を金属イオ
ンを捕捉させたのち、これを還元して前記金属を粉末表
面に担持せしめる第1工程(触媒化処理)と、前工程で
処理された芯材粉末を分散させて水性懸濁体を調整し、
これに無電解めっき構成液を少なくとも2液にして無電
解めっき反応を行わせる第2工程(無電解めっき処理)
とからなることを構成上の特徴とするものである。
Further, the above-mentioned method of the present invention for producing the aluminum-based electroless plating powder and the conductive filler is characterized in that aluminum or aluminum alloy powder is trapped by metal ions and then reduced to reduce the metal to powder. A first step (catalyzing treatment) for supporting on the surface, and dispersing the core material powder treated in the previous step to prepare an aqueous suspension,
The second step (electroless plating treatment) in which at least two electroless plating constituent solutions are used and an electroless plating reaction is performed.
The configuration is characterized by the following.

【0014】以下、本発明について詳述する。まず、本
発明に係わる無電解めっき粉末は、前記のようにアルミ
ニウム粉末の表面に無電解めっき法による金属粒子が濃
密で実質的な連続皮膜として沈積被覆されていることを
特徴とする。ここに、濃密というのは、均質で微細な金
属粒子が緻密な状態にあることであって、被膜形成に寄
与しない遊離した金属粒子の付着や、金属粒子が瘤状に
形成されていない状態を指す。また、実質的な連続皮膜
とは、粉末の表面に濃密な状態で一様に覆われて芯材の
表面が殆ど露出していない状態をいう。このような沈積
被覆の状態にあるか否かは、通常の顕微鏡又は電子顕微
鏡の観察によって、視覚的に捕らえることができる。
Hereinafter, the present invention will be described in detail. First, the electroless plating powder according to the present invention is characterized in that metal particles formed by electroless plating are deposited and coated as a dense and substantially continuous film on the surface of an aluminum powder as described above. Here, the term “dense” means that the uniform and fine metal particles are in a dense state, and the adhesion of the free metal particles that do not contribute to the film formation and the state in which the metal particles are not formed in the shape of a bump are described. Point. In addition, a substantially continuous film refers to a state in which the surface of the core material is barely exposed while the surface of the powder is uniformly covered in a dense state. The presence or absence of such a deposited coating can be visually grasped by observation with a normal microscope or an electron microscope.

【0015】本発明に係わるアルミニウム系無電解めっ
き粉末は濃密で実質的な連続皮膜として被覆されている
のに比べ、従来法によるめっきアルミニウムは、金属粒
子が粗くかつ不均質で、いずれも瘤状粒子が存在してい
るのみならず、芯材の露出面が認められて濃密で実質的
な連続皮膜でないことが判る。
[0015] The aluminum-based electroless plating powder according to the present invention is coated as a dense and substantially continuous film, whereas the plated aluminum according to the conventional method has coarse and heterogeneous metal particles, and both have a knob-like shape. Not only the particles are present but also the exposed surface of the core material is recognized, indicating that the film is not a dense and substantially continuous film.

【0016】このように本発明に係わるアルミニウム系
無電解めっき粉末は被覆力が強固であるため、使用にお
ける摩擦下の抵抗性が従来のめっき粉末に比べ著しく大
きい。このことは、芯材の形状や金属の種類あるいは使
用目的によって一様ではないものの、めっき皮膜は可及
的に薄層でありうることを意味する。多くの場合、膜厚
は少なくとも50 mμが有利である。
As described above, since the aluminum-based electroless plating powder according to the present invention has a high covering power, the resistance to friction during use is significantly higher than that of the conventional plating powder. This means that the plating film can be as thin as possible, though not uniform depending on the shape of the core material, the type of metal or the purpose of use. In most cases, a film thickness of at least 50 mμ is advantageous.

【0017】本発明に係わるアルミニウム系無電解めっ
き粉末は、通常は同種金属の単層めっき品であるが、所
望により2種以上の異種金属による多層めっき品とする
こともできる。また、微細なめっき金属粒子は、その種
類やめっき方法によって結晶質又は非結晶質のいずれで
あってもよい。更に、同様の理由から、このめっき金属
は磁性又は非磁性を示すもので有り得る。なお、適用で
きるめっき金属としては、Ni、Cu、Co、Ag、A
u、またはPdが挙げられるが、経済的な面からNiが
最も代表的な物質である。ZnやMnは単独では適用で
きないが、合金として適用可能である。
The aluminum-based electroless plating powder according to the present invention is usually a single-layer plated product of the same kind of metal, but may be a multi-layer plated product of two or more different kinds of metals if desired. The fine plated metal particles may be either crystalline or amorphous depending on the type and plating method. Further, for the same reason, the plated metal may be magnetic or non-magnetic. The applicable plating metals include Ni, Cu, Co, Ag, and A.
Although u or Pd is mentioned, Ni is the most typical substance from the economical aspect. Zn and Mn cannot be applied alone, but can be applied as an alloy.

【0018】本発明のアルミニウム系無電解めっき粉末
は、ゴム、合成樹脂等の導電性フィラーとして有用であ
るが、触媒や顔料その他装飾品としても利用することが
できる。また、顔料や装飾品として利用する場合、本発
明に係わるアルミニウム系無電解めっき粉末を所望の温
度で加熱処理すると、緑、青、紺、赤、黄または紫色の
美麗な着色金属光沢を呈した粉末が得られるのでその適
応性を一層拡大させることができる。
The aluminum-based electroless plating powder of the present invention is useful as a conductive filler such as rubber and synthetic resin, but can also be used as a catalyst, a pigment and other decorative articles. Further, when used as a pigment or decorative article, when the aluminum-based electroless plating powder according to the present invention is heat-treated at a desired temperature, it exhibited a beautiful colored metallic luster of green, blue, navy blue, red, yellow or purple. A powder can be obtained, so that its adaptability can be further expanded.

【0019】次に本発明に係わる無電解めっき粉末の製
造方法につき説明する。アルミニウム又はアルミニウム
合金粉末の形状は特に限定するものではなく、鱗片状、
球状、繊維状、中空状のような芯材の物性に起因する特
定または不特定の粒子形状であってもよい。
Next, a method for producing an electroless plating powder according to the present invention will be described. The shape of the aluminum or aluminum alloy powder is not particularly limited, and is flaky,
Specific or unspecified particle shapes such as spherical, fibrous, and hollow shapes due to the physical properties of the core material may be used.

【0020】これらアルミニウム系粉末は、まず、貴金
属イオンの捕捉能を有する表面処理剤で処理される。こ
の処理法は、特開昭61−64882 号公報記載の方法に従っ
て行うことができる。特に本発明では、アミノ基置換オ
ルガノシラン系カップリング剤、またはアミン系硬化剤
により硬化するエポキシ樹脂で処理した粉末が適用され
る。また、上記において貴金属イオンとは、Au、A
g、Pd、Cuがあるが、PdまたはAgのイオンが特
に好適である。
These aluminum-based powders are first treated with a surface treatment agent having a noble metal ion-capturing ability. This treatment can be performed according to the method described in JP-A-61-64882. In particular, in the present invention, a powder treated with an epoxy resin curable with an amino group-substituted organosilane coupling agent or an amine curing agent is applied. In the above description, the noble metal ions are Au, A
There are g, Pd, and Cu, but Pd or Ag ions are particularly preferred.

【0021】第1工程(触媒化処理)貴金属イオンの捕
捉能を有する表面処理剤を溶解した水又は有機溶媒にア
ルミニウム系粉末を投入し、充分に攪拌して分散させた
のち、分離し乾燥する。用いる表面処理剤の量は、アル
ミニウム系粉末の粒径、形状によって一様ではないが、
多くの場合、粉末の比表面積1m3/g 当たり0.3 〜100m
g が適当である。0.3mg 以下の場合は表面の均一な改質
効果を与えるに不充分であり、100mg以上では改質効果
はあるものの経済的ではない。乾燥は一般の加熱乾燥で
充分であり、100 〜110 ℃にて充分に乾燥する。
First step (catalyzing treatment) Aluminum-based powder is added to water or an organic solvent in which a surface treating agent having a noble metal ion-capturing ability is dissolved, sufficiently stirred and dispersed, then separated and dried. . The amount of the surface treatment agent used is not uniform depending on the particle size and shape of the aluminum-based powder,
Often, the specific surface area of the powder 1 m 3 / g per 0.3 ~100M
g is appropriate. When the amount is less than 0.3 mg, it is insufficient to give a uniform modifying effect on the surface, and when it is more than 100 mg, the modifying effect is not economical. Drying by ordinary heating is sufficient, and drying is sufficiently performed at 100 to 110 ° C.

【0022】次に表面改質した粉末を塩化パラジウムま
たは硝酸銀の希薄な酸性水溶液に分散させて貴金属イオ
ンを捕捉させる。この場合、該溶液濃度は0.05〜0.5g/l
の範囲が好ましい。このような予備処理は、パラジウム
塩について公知であり、通常は、次いで無電解めっき処
理を行なうが、本発明では粉末表面に捕捉した貴金属を
該めっき薬液で用いる還元剤により還元させることが重
要な操作となる。この還元処理は、捕捉処理後の濾別に
つづく水洗処理後に行ってもよいが、次のめっき工程で
調整した水性懸濁体内でめっき処理に先立って行うこと
もできる。
Next, the surface-modified powder is dispersed in a dilute acidic aqueous solution of palladium chloride or silver nitrate to capture noble metal ions. In this case, the solution concentration is 0.05-0.5 g / l
Is preferable. Such a pretreatment is known for palladium salts, and is usually followed by electroless plating. In the present invention, it is important that the noble metal captured on the powder surface is reduced by a reducing agent used in the plating solution. Operation. This reduction treatment may be carried out after the water washing treatment following the filtration after the trapping treatment, or may be carried out prior to the plating treatment in the aqueous suspension prepared in the next plating step.

【0023】還元剤の添加量は粉末の比表面積により異
なるので一様ではないが、懸濁体に対して0.01〜10g/l
が適当である。この場合、錯化剤が存在している方が好
ましいが、必ずしも不可欠なものではない。また、温度
は常温または加温のいずれでもよく特に限定されるもの
ではない。
The addition amount of the reducing agent varies depending on the specific surface area of the powder and is not uniform, but is 0.01 to 10 g / l based on the suspension.
Is appropriate. In this case, the presence of a complexing agent is preferred, but not essential. The temperature may be either room temperature or heated, and is not particularly limited.

【0024】このように本発明では、従来のように、塩
化第一錫−塩化パラジウム処理による触媒核の形成と異
なり、全面均一で原子状の触媒核が形成されるため、こ
れが次の無電解めっき工程の作用と相俟って強固な連続
性めっき皮膜を形成することができる。
Thus, in the present invention, unlike the conventional formation of catalyst nuclei by stannous chloride-palladium chloride treatment, uniform and atomic catalyst nuclei are formed over the entire surface. Together with the function of the plating step, a strong continuous plating film can be formed.

【0025】第2工程(無電解めっき処理)この工程で
重要なことは、無電解めっきするに当たり、凝集のない
粉末の水性懸濁体を調整することである。凝集した粉末
に施されためっき皮膜は、摩擦下の使用にあたり未被覆
面が露出することがあるので、これを避けるため粉末を
充分に分散させておくことが望ましい。なお、同様の理
由で、前工程でも充分な分散処理を行うことが望まし
い。
Second Step (Electroless Plating) The important thing in this step is to prepare an aqueous suspension of powder without aggregation in electroless plating. The uncoated surface of the plating film applied to the agglomerated powder may be exposed upon use under friction. Therefore, it is desirable to sufficiently disperse the powder to avoid this. For the same reason, it is desirable to perform a sufficient dispersion treatment also in the previous step.

【0026】水性懸濁体の分散性はアルミニウム系粉末
の物性によって異なるので、分散方法は適宜所望の手
段、例えば、通常の攪拌から高速攪拌、あるいはコロイ
ドミルまたはホモジナイザーの如き剪断分散装置を用
い、芯材のアグロメレートをできるだけ除去した一次粒
子に近い分散状態の懸濁体を調整することが望ましい。
なお、粉末を分散させるに際し、例えば、界面活性剤等
の分散剤を上記したように必要に応じて用いることがで
きる。懸濁体の濃度は、特に限定する理由はないが、ス
ラリー濃度が低いと、生産性が低下するので経済的では
なく、また、逆に濃度が高くなると粉末の分散性が悪く
なるので粉末の物性に応じ適宜所望のスラリー濃度に設
定すればよく、多くの場合5〜500g/lの範囲にある。ま
た、この懸濁体中の粉末をめっきするに当たり、めっき
が効果的に実施されるべく懸濁体の温度をめっき可能温
度、多くの場合、常温以上にあらかじめ加温しておくこ
とが望ましい。
Since the dispersibility of the aqueous suspension varies depending on the physical properties of the aluminum-based powder, the dispersion method may be appropriately determined by a desired means, for example, from ordinary stirring to high-speed stirring, or using a shearing dispersing apparatus such as a colloid mill or a homogenizer. It is desirable to prepare a suspension in a dispersed state close to primary particles from which agglomerates of the core material have been removed as much as possible.
In dispersing the powder, for example, a dispersant such as a surfactant can be used as necessary as described above. The concentration of the suspension is not particularly limited, but if the slurry concentration is low, the productivity is lowered and thus it is not economical, and if the slurry concentration is high, the dispersibility of the powder becomes poor, so that the powder concentration becomes low. The desired slurry concentration may be appropriately set according to the physical properties, and in many cases, is in the range of 5 to 500 g / l. In plating the powder in the suspension, it is desirable that the temperature of the suspension is preliminarily heated to a plating-possible temperature, in many cases, a normal temperature or higher, so that plating can be performed effectively.

【0027】水性懸濁体の調製は水のみの分散媒でも差
し支えないが、一般には無電解めっき液を構成する成分
の少なくとも1種を含有する水溶液、特に錯化剤の水溶
液で調製することが望ましい。
The aqueous suspension may be prepared using a dispersion medium containing only water, but it is generally prepared using an aqueous solution containing at least one component of the electroless plating solution, particularly an aqueous solution of a complexing agent. desirable.

【0028】上記において、無電解めっき液を構成する
成分の少なくとも1種とは、錯化剤、酸またはアルカリ
剤、界面活性剤を主として指し、必要があればめっき老
化液を用いることができる。また、錯化剤というのはめ
っき金属イオンに対し錯化作用のある化合物であり、例
えばクエン酸、ヒドロキシ酢酸、酒石酸、リンゴ酸、乳
酸、グルコン酸またはそのアルカリ金属塩やアンモニウ
ム塩等のカルボン酸(塩)、グリシン等のアミノ酸、エ
チレンジアミン、アルキルアミン等のアミン類、その他
のアンモニウム塩、EDTAおよびその塩、ピロリン酸
(塩)等のリン酸塩類等が挙げられ、それらは1種また
は2種以上であってもよい。錯化剤の懸濁体における含
有量は、1〜100g/l、望ましくは5〜50g/l の範囲がよ
い。また、懸濁体のpHはめっきする被覆金属、及び用
いる還元剤の種類によって異なる。それらの一例を表2
に示す。
In the above description, at least one of the components constituting the electroless plating solution mainly refers to a complexing agent, an acid or alkali agent, and a surfactant. If necessary, a plating aging solution can be used. Further, the complexing agent is a compound having a complexing effect on plating metal ions, for example, carboxylic acid such as citric acid, hydroxyacetic acid, tartaric acid, malic acid, lactic acid, gluconic acid or alkali metal salts or ammonium salts thereof. (Salts), amino acids such as glycine, amines such as ethylenediamine and alkylamine, other ammonium salts, EDTA and salts thereof, and phosphates such as pyrophosphoric acid (salt). It may be the above. The content of the complexing agent in the suspension is in the range of 1 to 100 g / l, preferably 5 to 50 g / l. The pH of the suspension varies depending on the coating metal to be plated and the type of reducing agent used. Table 2 shows an example of them.
Shown in

【0029】[0029]

【表2】 [Table 2]

【0030】このようにして調製した芯材の水性懸濁体
に、無電解めっき反応を行わせるために、あらかじめ調
製されためっき液を添加する。この場合、該懸濁体に無
電解めっき構成液を少なくとも2液にしてそれぞれ個別
かつ同時に添加してめっき反応を行わせる必要がある。
また、めっき液は、水性懸濁体に入る間もなく反応し液
中の金属イオン及び還元剤が0に近い濃度に保持される
ように添加速度を調節することが肝要である。
To the thus-prepared aqueous suspension of the core material, a plating solution prepared in advance is added to cause an electroless plating reaction. In this case, it is necessary to allow at least two electroless plating constituent solutions to be added to the suspension individually and simultaneously, and to carry out a plating reaction.
In addition, it is important to adjust the addition rate so that the plating solution reacts shortly after entering the aqueous suspension and the metal ions and the reducing agent in the solution are maintained at a concentration close to zero.

【0031】適用できる金属塩としては、例えば、硫酸
ニッケル、塩化ニッケルの如きニッケル塩、硫酸銅、硝
酸銅の如き銅塩、硫酸コバルト塩化コバルトの如きコバ
ルト塩、硝酸銀、シアン化銀の如き銀塩、シアン化金、
塩化金酸の如き金塩、塩化パラジウムの如きパラジウム
塩がある。また、必要に応じ亜鉛、マンガン等の可溶性
塩も合金成分として用いることができ、さらに、これら
の1種または2種以上であってもよい。
Examples of applicable metal salts include nickel salts such as nickel sulfate and nickel chloride, copper salts such as copper sulfate and copper nitrate, cobalt salts such as cobalt sulfate cobalt chloride, and silver salts such as silver nitrate and silver cyanide. , Gold cyanide,
There are gold salts such as chloroauric acid and palladium salts such as palladium chloride. If necessary, a soluble salt such as zinc or manganese can be used as an alloy component, and one or more of these may be used.

【0032】還元剤としては、例えば、次亜リン酸ソー
ダ、水素化ほう素ナトリウム、水素化ほう素カリウム、
ジメチルアミンボラン、ヒドラジン、ホルマリン、糖類
またはロッシェル塩等が用いられる。その他の薬剤とし
ては、上記した錯化剤、pH調節剤、pH緩衝剤あるい
は必要に応じて光沢剤、界面活性剤が用いられる。金属
塩と還元剤の添加すべき配合割合は、それらの組み合わ
せにより異なるため一様ではないが、多くの場合それら
の組み合わせと適正な配合割合は概ね表3のような関係
にあることが望ましい。
Examples of the reducing agent include sodium hypophosphite, sodium borohydride, potassium borohydride,
Dimethylamine borane, hydrazine, formalin, saccharides or Rochelle salt are used. As the other chemicals, the above-mentioned complexing agents, pH adjusters, pH buffering agents or, if necessary, brighteners and surfactants are used. The mixing ratio of the metal salt and the reducing agent to be added varies depending on the combination thereof, and thus is not uniform. However, in many cases, it is desirable that the combination and the appropriate mixing ratio have a relationship generally as shown in Table 3.

【0033】[0033]

【表3】 [Table 3]

【0034】薬剤濃度は各薬剤の飽和濃度まででよく特
に限定しないが、薄い場合は経済的ではないので下限は
実用上から自ずと限定される。薬剤溶液の添加速度は前
記したようにめっき液中の金属イオン及び還元剤濃度が
0に近い状態に保持するように定める必要がある。な
お、当然のことながら必要に応じて撹拌、超音波分散処
理などを与えておくことが望ましく、また、温度も制御
できるように設定しておくことが望ましい。
The drug concentration may be up to the saturation concentration of each drug and is not particularly limited. However, if the concentration is low, it is not economical, so the lower limit is naturally limited from practical use. As described above, the addition rate of the chemical solution needs to be determined so that the concentrations of the metal ions and the reducing agent in the plating solution are close to zero. Needless to say, it is desirable to provide stirring, ultrasonic dispersion treatment, and the like as needed, and it is also desirable to set the temperature so that it can be controlled.

【0035】無電解めっき液は、水性懸濁体に添加して
その容量の大小に応じて希釈されるために、通常のめっ
き液に被めっき基材を浸漬処理してめっき操作を行うの
と異なり、通常のめっき液濃度よりも濃い状態で使用す
ることができる。めっき液を添加することにより速やか
にめっき反応は始まるが、各薬剤が適正な割合で添加さ
れれば添加した金属塩は全て還元され、芯材表面に析出
するので、添加量に応じてめっき皮膜の膜厚を任意に調
節することができる。
Since the electroless plating solution is added to the aqueous suspension and diluted according to the volume of the suspension, the plating operation is performed by immersing the substrate to be plated in a normal plating solution. Differently, it can be used in a state where the concentration is higher than a normal plating solution concentration. The plating reaction starts immediately when the plating solution is added, but if each chemical is added in an appropriate ratio, all the added metal salts are reduced and precipitated on the surface of the core material. Can be arbitrarily adjusted.

【0036】このようにして得た金属被覆粉体は、さら
にその上に異種金属を幾層にも被覆することができる。
この場合、上記のめっき反応終了後、異種金属めっき液
を同様の操作で添加するか、または反応液を一度濾別し
て、新たな懸濁液を調製し改めて異種金属めっき液を添
加することにより遂行される。めっき液の添加終了後、
水素ガスの発生が認められなくなってから、なお暫時攪
拌を続け、反応操作を終了する。次いで常法により分
離、洗浄及び乾燥する。
The thus obtained metal-coated powder can be further coated with several layers of different metals.
In this case, after the completion of the plating reaction, the dissimilar metal plating solution is added by the same operation, or the reaction solution is separated by filtration, a new suspension is prepared, and the dissimilar metal plating solution is added again. Is done. After the addition of the plating solution,
After the generation of hydrogen gas is no longer observed, stirring is continued for a while, and the reaction operation is terminated. Next, separation, washing and drying are performed by a conventional method.

【0037】[0037]

【作用】本発明に係わるアルミニウム系無電解めっき粉
末は、微細な金属粒子が濃密で実質的な連続皮膜として
極めて均質かつ強固に沈積形成されている。したがっ
て、合成樹脂やゴム等に混練連しても剥離するなどの現
象を生じることはなく、良好な導電性能を付与する事が
できるから、そのまま導電性フィラーとして有用可能で
ある。
The aluminum-based electroless plating powder according to the present invention is formed by depositing fine metal particles as a dense and substantially continuous film in a very uniform and strong manner. Therefore, even when kneaded with a synthetic resin or rubber, a phenomenon such as peeling does not occur, and good conductive performance can be imparted. Therefore, it can be used as a conductive filler as it is.

【0038】また、本発明の製造方法によれば、芯材粉
末の表面に捕捉された貴金属キレートが還元されて触媒
核が形成され、これが無電解めっき反応の作用と相俟っ
て上記のような著しく良質の無電解めっき粉末を再現性
よく製造することが可能となる。
Further, according to the production method of the present invention, the noble metal chelate trapped on the surface of the core material powder is reduced to form a catalyst nucleus, which is combined with the action of the electroless plating reaction as described above. It is possible to produce remarkably high quality electroless plating powder with good reproducibility.

【0039】[0039]

【実施例】以下、本発明を実施例に基ずいて説明する。 実施例1〜10 弱アルカリ脱脂剤溶液で脱脂し水洗した平均粒径15μm
の球状アルミニウム粉末100gをアミノシランカップリン
グ剤( チッソ株式会社製、商品名S−330)0.2g/l水溶液
2000mlに投入して約30分間攪拌により充分に分散させた
後、濾過分離し、次いで105 ℃で乾燥してキレート能を
有する表面処理を施した。次いで、0.1g/lの塩化パラジ
ウム及び0.1g/lの塩酸からなる触媒化液2000mlに該粉末
を投入し同様に分散させて10分間攪拌後、濾過、リパル
プ水洗及び濾過して粉末表面にパラジウムイオンを付与
させた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. Examples 1 to 10 Average particle size 15 μm degreased and washed with a weak alkaline degreasing agent solution
100 g of spherical aluminum powder of 0.2 g / l aqueous solution of aminosilane coupling agent (S-330, manufactured by Chisso Corporation)
After pouring into 2000 ml and sufficiently dispersing by stirring for about 30 minutes, the mixture was separated by filtration and then dried at 105 ° C. to give a surface treatment having chelating ability. Next, the powder was poured into a catalyzed liquid (2,000 ml) consisting of 0.1 g / l palladium chloride and 0.1 g / l hydrochloric acid, dispersed in the same manner, stirred for 10 minutes, and then filtered, washed with repulp and washed, and palladium was applied to the powder surface. Ions were provided.

【0040】このアルミニウム粉末をそれぞれ表4に示
す各錯化剤溶液1000mlに投入して充分に分散処理を施
し、温度70℃に保持した水性懸濁体を調製した後、次亜
リン酸ソーダ粉末を各懸濁体に3g投入して攪拌溶解さ
せた。添加間もなく水素ガスが発生し始めるが発泡が終
了したところで触媒化処理を完結させた。引き続き、表
5に示す無電解めっき液をa液およびb液に分けて夫々
128ml を10ml/ 分の添加速度で攪拌しながら各懸濁体に
同時に添加した。
Each of the aluminum powders was put into 1000 ml of each of the complexing agent solutions shown in Table 4 and sufficiently dispersed to prepare an aqueous suspension maintained at a temperature of 70 ° C. Was added to each suspension and dissolved by stirring. Shortly after the addition, hydrogen gas began to be generated, but when the foaming was completed, the catalyzing treatment was completed. Subsequently, the electroless plating solutions shown in Table 5 were separated into solution a and solution b, respectively.
128 ml were added simultaneously to each suspension with stirring at an addition rate of 10 ml / min.

【0041】めっき液の全量を添加後、水素ガスの発生
が停止するまで70℃に保持しながら暫時攪拌を続けた。
次いで、濾過、リパルプ水洗、濾過及び乾燥し各ニッケ
ルめっき被覆のアルミニウム粉末を得た。なお、めっき
反応後の濾液はいずれも無色透明であるところから、添
加しためっき液は全て反応してアルミニウム表面に析出
し、非常に効果的に処理し得た事が判明した。
After the entire amount of the plating solution was added, stirring was continued for a while while maintaining the temperature at 70 ° C. until the generation of hydrogen gas stopped.
Subsequently, the resultant was filtered, washed with repulped water, filtered and dried to obtain aluminum powder coated with nickel plating. In addition, since all the filtrates after the plating reaction were colorless and transparent, it was found that all of the added plating solutions reacted and precipitated on the aluminum surface and could be treated very effectively.

【0042】得られためっきアルミニウム粉末を顕微鏡
でその表面を観察したところ、いずれも微細な金属粒子
による均一かつ平滑な面を有しており、このことから、
濃密で実質的に連続皮膜として沈積被覆していることが
確認された。
Observation of the surface of the obtained plated aluminum powder with a microscope revealed that each had a uniform and smooth surface made of fine metal particles.
It was confirmed that the coating was deposited as a dense and substantially continuous film.

【0043】[0043]

【表4】 [Table 4]

【0044】[0044]

【表5】 [Table 5]

【0045】実施例11 弱アルカリ脱脂剤水溶液で脱脂し、水洗した平均粒径25
μm のフレーク状アルミニウム粉末100gと2g/l エポキ
シ樹脂( セメダイン株式会社製、商品名: セメダイン15
00) および2g/l のエタノール溶液50mlをニーダーを用
いて混練し、80℃で乾燥して表面処理を施した。次い
で、0.1g/lの硝酸銀からなる触媒化液1000mlに該粉末を
投入して15分間攪拌分散させた後、濾過、リパルプ水洗
および濾過して粉末表面に銀イオンを付与させた。該粉
末をEDTA−3Naの50g/l 水溶液1000mlに投入し、
攪拌して充分に分散させ、温度を50℃に加温して水性懸
濁体を調製した後、水素化ほう素ナトリウム粉末0.5gを
水性懸濁体に投入し攪拌溶解させた。添加後間もなく水
素ガスが発生し始めるが、しばらくして発泡が終了した
時点で触媒化処理を完結させた。
Example 11 An average particle size of 25 which was degreased with a weak alkaline degreasing agent aqueous solution and washed with water.
100 g of flake aluminum powder and 2 g / l epoxy resin (Cemedine Co., Ltd., trade name: Cemedine 15
(00) and 50 ml of a 2 g / l ethanol solution were kneaded using a kneader, dried at 80 ° C. and subjected to a surface treatment. Next, the powder was added to 1000 ml of a catalyzed liquid composed of 0.1 g / l of silver nitrate, and the mixture was stirred and dispersed for 15 minutes, and then filtered, washed with repulp, and filtered to give silver ions to the surface of the powder. The powder was poured into 1000 ml of a 50 g / l aqueous solution of EDTA-3Na,
After stirring to sufficiently disperse the mixture and warming the temperature to 50 ° C. to prepare an aqueous suspension, 0.5 g of sodium borohydride powder was charged into the aqueous suspension and dissolved by stirring. Hydrogen gas began to be generated shortly after the addition, but after a while the foaming was completed, the catalyzing treatment was completed.

【0046】次に、196.5g/lの硫酸銅水溶液、202.5g/l
のホルマリン水溶液、157.4g/lの苛性ソーダ水溶液64ml
を夫々個別に3ml/ 分の添加速度で撹拌下の上記懸濁体
に添加した。めっき液の全量を添加後、反応が終了する
まで約15分間同温度に保持しながら攪拌を続けた。以
下、常法により、先の実施例と同様の操作を経て無電解
銅めっきアルミニウム粉末を得た。めっき反応終了後の
濾過液は無色透明であり、また、めっき粉末は微細な銅
金属粒子による濃密で実質的な連続皮膜として沈積され
ためっき製品である事が認められた。
Next, a 196.5 g / l copper sulfate aqueous solution, 202.5 g / l
Formalin solution, 157.4g / l caustic soda solution 64ml
Were added individually to the above suspension under stirring at an addition rate of 3 ml / min. After the total amount of the plating solution was added, stirring was continued while maintaining the same temperature for about 15 minutes until the reaction was completed. Hereinafter, an electroless copper-plated aluminum powder was obtained by a conventional method through the same operation as in the previous example. After the completion of the plating reaction, the filtrate was colorless and transparent, and the plating powder was found to be a plated product deposited as a dense and substantially continuous film of fine copper metal particles.

【0047】実施例12〜19 平均粒径6μm の球状アルミニウム粉末100gを実施例1
と同様にして触媒化処理を行った。次に、5g/l 酒石酸
ソーダ水溶液1000mlに投入して分散させ温度を80℃に加
温した。次亜リン酸ソーダ粉末5gを添加溶解させ、水
素ガス発生に伴う発泡現象が終了したところで、触媒処
理を完結させた。次いで、224g/l硫酸ニッケル(a液)
および226g/l次亜リン酸ソーダと85g/l 苛性ソーダとの
混合液(b液)の各液を表6に示す量に設定して各液共
に10ml/ 分の添加速度で、充分に分散して調製された水
性懸濁体中へ攪拌下で添加した。
Examples 12 to 19 100 g of spherical aluminum powder having an average particle size of 6 μm was prepared.
The catalyst treatment was carried out in the same manner as described above. Next, the mixture was poured into 1000 g of a 5 g / l sodium tartrate aqueous solution and dispersed, and the temperature was raised to 80 ° C. 5 g of sodium hypophosphite powder was added and dissolved, and when the foaming phenomenon accompanying the generation of hydrogen gas was completed, the catalyst treatment was completed. Next, 224 g / l nickel sulfate (solution a)
And 226 g / l of sodium hypophosphite and 85 g / l of caustic soda (liquid b) were set to the amounts shown in Table 6, and each liquid was sufficiently dispersed at an addition rate of 10 ml / min. Was added to the prepared aqueous suspension with stirring.

【0048】全量添加後、水素の発生が停止するまで80
℃に保持しながら攪拌を続けた。ついで常法により回収
作業を行い、夫々表6に示す各添加量の異なるニッケル
被覆めっきアルミニウム粉末を得た。得られためっき品
は、いずれも微細なニッケル粒子による濃密で実質的な
連続皮膜として沈積したものであった。
After the total amount has been added, 80
Stirring was continued while maintaining the temperature. Next, a recovery operation was carried out by a conventional method to obtain nickel-coated plated aluminum powder having different addition amounts as shown in Table 6. Each of the resulting plated articles was deposited as a dense and substantially continuous film of fine nickel particles.

【0049】表6にめっき品の金属化率を化学分析によ
り測定したものとめっき液添加量から求めた計算値を比
較のために示した。表6から、添加した金属イオンがほ
ぼ全量基材表面に析出していることが判る。
Table 6 shows, for comparison, the metallization ratio of the plated product measured by chemical analysis and the calculated value obtained from the amount of the plating solution added. From Table 6, it can be seen that almost all of the added metal ions are precipitated on the substrate surface.

【0050】[0050]

【表6】 [Table 6]

【0051】実施例20 実施例15と同様の芯材に同様の方法でニッケルめっきを
施した。次いで、濾過、リパルプ水洗、および濾過した
後、50g/EDTA−4Na水溶液1000mlに濾過ケーキを
投入して攪拌下でよく分散し、温度を65℃に加温して水
性懸濁体を再び調製した。次いで、14.63g/lシアン化金
カリ水溶液および2.30g/l 水素化ホウ素ナトリウムと1
2.18g/l苛性ソーダの混合水溶液各877ml を夫々20ml/
分の添加速度で攪拌下の上記懸濁体に添加した。全量添
加後、15分間65℃を保持しながら攪拌を続けた。次い
で、常法により濾過、リパルプ水洗、濾過を行った後、
乾燥してめっき粉末を得た。得られためっき粉末は濃密
で実質的な連続皮膜として沈積被覆されたニッケル−金
の二層めっき粉末であった。
Example 20 The same core material as in Example 15 was plated with nickel by the same method. Then, after filtration, repulping water washing and filtration, the filter cake was put into 50 g / 1000 ml of an EDTA-4Na aqueous solution, dispersed well under stirring, and the temperature was raised to 65 ° C. to prepare an aqueous suspension again. . Then 14.63 g / l potassium cyanide aqueous solution and 2.30 g / l sodium borohydride and 1
2.18 g / l caustic soda mixed aqueous solution 877 ml each 20 ml /
The suspension was added to the above suspension with stirring at a rate of 1 minute. After the addition of the entire amount, stirring was continued for 15 minutes while maintaining the temperature at 65 ° C. Next, after performing filtration, repulping water washing, and filtration by a conventional method,
After drying, a plating powder was obtained. The resulting plating powder was a nickel-gold bilayer plating powder deposited and coated as a dense, substantially continuous coating.

【0052】比較例1 弱アルカリ脱脂剤水溶液で脱脂し、水洗して表面を清浄
にした平均粒径15μmの球状アルミニウム粉末100gを常
法にしたがってジンケート処理( 苛性ソーダ水溶液処
理、硝酸処理、ジンケート処理) を試みた。しかし、始
めの苛性ソーダ水溶液処理においてアルミニウム粉末の
溶解が激しいため以後の処理を中止した。
Comparative Example 1 100 g of spherical aluminum powder having an average particle size of 15 μm, degreased with an aqueous solution of a weak alkaline degreasing agent, washed and washed with water, was treated with zincate according to a conventional method (aqueous sodium hydroxide solution treatment, nitric acid treatment, zincate treatment). Tried. However, in the first treatment with the aqueous sodium hydroxide solution, the dissolution of the aluminum powder was so severe that the subsequent treatment was stopped.

【0053】比較例2 弱アルカリ脱脂剤水溶液で脱脂し、水洗して表面を清浄
にした平均粒径25μmのフレーク状アルミニウム粉末を
ジンケート処理を施さず、塩化第一錫5g/l および塩酸
1ml/lからなる水溶液2000mlに投入し攪拌下でよく分散
させて15分間感受性処理を行った。次いで、水洗後、塩
化パラジウム0.1g/lおよび塩酸0.1g/lからなる溶液2000
mlに投入し攪拌下でよく分散させ5分間活性化処理を行
い、アルミニウム表面に触媒核を形成させた。次いで、
実施例11と同様の方法で無電解銅めっきを施した。得ら
れためっき粉末は、粗く密着性の悪い不連続の皮膜で覆
われていた。
Comparative Example 2 Flaky aluminum powder having an average particle diameter of 25 μm, degreased with an aqueous solution of a weak alkaline degreasing agent, washed and washed with water, without zincate treatment, was treated with 5 g / l of stannous chloride and 1 ml of hydrochloric acid. The mixture was poured into 2000 ml of an aqueous solution consisting of 1 l, dispersed well under stirring, and subjected to a sensitivity treatment for 15 minutes. Then, after washing with water, a solution 2000 consisting of 0.1 g / l of palladium chloride and 0.1 g / l of hydrochloric acid
Then, the mixture was put into a ml, dispersed well under stirring, and activated for 5 minutes to form a catalyst nucleus on the aluminum surface. Then
Electroless copper plating was performed in the same manner as in Example 11. The obtained plating powder was covered with a discontinuous film having a coarse and poor adhesion.

【0054】比較例3 弱アルカリ脱脂剤水溶液で脱脂し、水洗して表面を清浄
にした平均粒径15μmの球状アルミニウム粉末を実施例
1同様の方法で触媒化処理を行った。次いで、硫酸ニッ
ケル25g/l 、次亜リン酸ソーダ25g/l 、クエン酸ナトリ
ウム25g/l 酢酸ナトリウム10g/l および酢酸鉛0.001g/l
からなるpH4.5 のめっき液10l を80℃に加温し、この
浴に先の触媒処理を施したアルミニウム粉末を投入し、
攪拌分散させた。なお、反応中溶液のpHは自動調節装
置を用い10g/l苛性ソーダ水溶液の添加により始めのp
Hに保持させた。また、途中反応が停止したら、200g/l
次亜リン酸ソーダ水溶液を少量ずつ添加し、次亜リン酸
ソーダを添加しても発泡しなくなるまで反応を継続させ
た。次いで、濾過、リパルプ水洗、濾過、乾燥してニッ
ケルめっきアルミニウム粉末を得た。得られためっき粉
末は密着性は優れているが、析出金属粒子は粗く、瘤状
の突起物のあるめっき皮膜で覆われていた。なお、めっ
き終了後の濾過液は、明らかに未反応のニッケルイオン
の存在を示す、青色を呈していた。
Comparative Example 3 A spherical aluminum powder having an average particle diameter of 15 μm, degreased with an aqueous solution of a weak alkaline degreasing agent, washed and washed with water, was catalyzed in the same manner as in Example 1. Next, nickel sulfate 25 g / l, sodium hypophosphite 25 g / l, sodium citrate 25 g / l sodium acetate 10 g / l and lead acetate 0.001 g / l
10 liters of a plating solution having a pH of 4.5 and heated to 80 ° C.
The mixture was stirred and dispersed. During the reaction, the pH of the solution was adjusted by adding an aqueous solution of 10 g / l caustic soda using an automatic controller.
H. If the reaction stops halfway, 200g / l
A sodium hypophosphite aqueous solution was added little by little, and the reaction was continued until foaming stopped even when sodium hypophosphite was added. Next, the resultant was filtered, washed with repulped water, filtered and dried to obtain a nickel-plated aluminum powder. Although the obtained plating powder had excellent adhesion, the deposited metal particles were coarse and covered with a plating film having bumps. The filtrate after the completion of plating had a blue color, which clearly indicates the presence of unreacted nickel ions.

【0055】ニッケル皮膜の測定 実施例および比較例で得たニッケルめっき粉末を硝酸水
溶液(1+1)に投入して皮膜を溶解した後、定量分析
して被覆中のニッケルおよびりんを測定した。結果を表
7に示した。
Measurement of Nickel Coating The nickel plating powders obtained in Examples and Comparative Examples were put into an aqueous solution of nitric acid (1 + 1) to dissolve the coating, and the nickel and phosphorus in the coating were measured by quantitative analysis. The results are shown in Table 7.

【0056】[0056]

【表7】 [Table 7]

【0057】導電性の測定 ポリプロピレン21.5g(三菱油化株式会社製、MA−4、
Pホモポリマー)とニッケルめっきアルミニウム粉末試
料28.5g をBRABENDER PRASTOGRAPH を用いて、温度220
℃、30R.P.M の条件で5分間混練したのち取り出し、次
いで熱ロールで板状に伸ばし、さらにホットプレスで厚
さ1mmの板を成型した。成型した板を30×60mmに裁断し
た試験片の電気抵抗値を測定し、比抵抗値を求め、実施
例品および比較例品の導電製の評価を行った。結果を表
8に示す。
Measurement of conductivity 21.5 g of polypropylene (MA-4, manufactured by Mitsubishi Yuka Co., Ltd.)
P homopolymer) and 28.5 g of nickel-plated aluminum powder sample using BRABENDER PRASTOGRAPH at a temperature of 220
After kneading for 5 minutes at 30 ° C. and 30 R.PM, the mixture was taken out, stretched into a plate by a hot roll, and further molded into a 1 mm thick plate by hot pressing. The electrical resistance value of a test piece obtained by cutting the molded plate into 30 × 60 mm was measured, the specific resistance value was obtained, and the product of the example and the comparative example were evaluated for conductivity. Table 8 shows the results.

【0058】[0058]

【表8】 [Table 8]

【0059】表8から明らかなように、比較例品は実施
例品よりニッケルめっき被覆量が著しく多く、膜厚が大
であるにも拘わらず、めっき表面が荒く粗であるため、
効果的な導電性樹脂が得られない。他方、実施例品は何
れも樹脂へ効果的に導電性を付与する。このことから、
本発明に係わるめっき粉末は、何れもめっき皮膜が芯材
表面に濃密で平滑でしかも強固に形成されており、優れ
た導電性フィラーとして適用できることが判った。
As is clear from Table 8, the comparative example product has a remarkably larger nickel plating coverage than the example product, and the plating surface is rough and rough despite the large film thickness.
An effective conductive resin cannot be obtained. On the other hand, all of the products of the examples effectively impart conductivity to the resin. From this,
In any of the plating powders according to the present invention, the plating film was formed densely, smoothly and firmly on the surface of the core material, and was found to be applicable as an excellent conductive filler.

【0060】[0060]

【発明の効果】本発明に係わるアルミニウム系無電解め
っき粉末は、従来のめっき粉末に比べて著しく均一で強
固なめっき皮膜を有している。即ち、瘤状の粒子やめっ
きむらなどのない微細な金属粒子による濃密で実質的な
連続皮膜として沈積被覆されている結合力の大きい無電
解めっき粉末であり、このものは導電性フィラーを始め
多様な用途への適用が期待できる。さらに、本発明に係
わる製造方法によれば、酸又はアルカリに腐食され易い
アルミニウム基材を、それらの薬剤を使用せずに触媒化
処理できるので、特に表面積の大きいアルミニウム系粉
末の処理に最適である。また、従来のようなコロイド状
の触媒核と異なって基材表面に捕捉された金属キレート
が還元されて触媒核を形成しているために、添加方式に
基ずくめっき反応と相俟って、上記の如きめっき粉末を
再現性よく工業的に有利に製造することができる。
The aluminum-based electroless plating powder according to the present invention has an extremely uniform and strong plating film as compared with the conventional plating powder. In other words, it is an electroless plating powder with a large bonding force that is deposited and covered as a dense and substantially continuous film of fine metal particles without bump-like particles or uneven plating. Application to various uses can be expected. Furthermore, according to the production method according to the present invention, an aluminum substrate which is easily corroded by an acid or an alkali can be catalyzed without using such a chemical, and therefore, it is particularly suitable for treating an aluminum-based powder having a large surface area. is there. Also, unlike the conventional colloidal catalyst nuclei, the metal chelates trapped on the substrate surface are reduced to form catalyst nuclei, and in combination with the plating reaction based on the addition method, The plating powder as described above can be industrially advantageously produced with good reproducibility.

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アルミニウム又はアルミニウム合金粉末
の表面に、無電解めっき法による微細な金属粒子が濃密
で実質的な連続被膜として沈着形成してなるアルミニウ
ム系無電解めっき粉末であって、前記連続被膜が、異種
金属の多層めっき被膜であるアルミニウム系無電解めっ
き粉末。
1. An aluminum or aluminum alloy powder
Fine metal particles by electroless plating are dense on the surface of
Aluminum formed by deposition as a substantially continuous coating
An aluminum-based electroless plating powder , wherein the continuous coating is a multilayer plating coating of a dissimilar metal.
【請求項2】 アルミニウム又はアルミニウム合金粉末
の表面に、無電解めっき法による微細な金属粒子が濃密
で実質的な連続被膜として沈着形成してなるアルミニウ
ム系無電解めっき粉末であって、前記連続被膜が、少な
くとも50 mμの膜厚を有するアルミニウム系無電解めっ
き粉末。
2. Aluminum or aluminum alloy powder
Fine metal particles by electroless plating are dense on the surface of
Aluminum formed by deposition as a substantially continuous coating
An aluminum-based electroless plating powder , wherein the continuous film has a thickness of at least 50 mμ.
【請求項3】 アルミニウム又はアルミニウム合金粉末
に貴金属イオンを捕捉させたのち、これを還元して前記
金属を粉末表面に担持せしめる第1工程(触媒化処理)
と、前工程で処理された粉末を分散させて水性懸濁体を
調整し、これに無電解めっき構成液を少なくとも2液に
して無電解めっき反応を行わせる第2工程(無電解めっ
き処理)とからなることを特徴とするアルミニウム系無
電解めっき粉末並びに導電性フィラーの製造方法。
3. A first step in which noble metal ions are captured on aluminum or aluminum alloy powder and then reduced to allow the metal to be supported on the powder surface (catalyzing treatment).
And a second step in which an aqueous suspension is prepared by dispersing the powder treated in the previous step, and the electroless plating reaction is performed by using at least two electroless plating constituent solutions (electroless plating treatment). A method for producing an aluminum-based electroless plating powder and a conductive filler, comprising:
【請求項4】 アルミニウム又はアルミニウム合金粉末
が、実質的に球状、繊維状、中空状、板状、針状の如き
特定形状又は不特定な粒子形状を有する請求項記載の
アルミニウム系無電解めっき粉末並びに導電性フィラー
の製造方法。
4. The aluminum-based electroless plating according to claim 3, wherein the aluminum or aluminum alloy powder has a specific shape such as a substantially spherical shape, a fibrous shape, a hollow shape, a plate shape, or a needle shape or an unspecified particle shape. A method for producing a powder and a conductive filler.
【請求項5】 アルミニウム又はアルミニウム合金粉末
の表面をアミノ基置換オルガノシランカップリング剤
又はアミン系硬化剤により硬化するエポキシ樹脂で処理
し、貴金属捕捉能を付与する請求項記載のアルミニウ
ム系無電解めっき粉末並びに導電性フィラーの製造方
法。
5. The aluminum or aluminum alloy powder amino groups of the surface of the substituted organo silane coupling agent
4. The method for producing an aluminum-based electroless plating powder and a conductive filler according to claim 3 , wherein the aluminum-based electroless plating powder and the conductive filler are treated with an epoxy resin that is cured by an amine-based curing agent to impart a noble metal capturing ability.
【請求項6】 第1工程の触媒化処理を、無電解めっき
反応で用いられる何れかの還元剤を適用して行なう請求
記載のアルミニウム系無電解めっき粉末並びに導電
性フィラーの製造方法。
6. The method for producing an aluminum-based electroless plating powder and a conductive filler according to claim 3 , wherein the catalyzing treatment in the first step is performed by applying any reducing agent used in the electroless plating reaction.
【請求項7】 第2工程における水性懸濁体を、無電解
めっき液を構成する少なくとも1種を含有する水溶液で
調整する請求項記載のアルミニウム系無電解めっき粉
末並びに導電性フィラーの製造方法。
7. The method for producing an aluminum-based electroless plating powder and a conductive filler according to claim 3 , wherein the aqueous suspension in the second step is adjusted with an aqueous solution containing at least one kind constituting an electroless plating solution. .
JP3155157A 1991-05-31 1991-05-31 Aluminum-based electroless plating powder, conductive filler and method for producing the same Expired - Lifetime JP3028972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3155157A JP3028972B2 (en) 1991-05-31 1991-05-31 Aluminum-based electroless plating powder, conductive filler and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3155157A JP3028972B2 (en) 1991-05-31 1991-05-31 Aluminum-based electroless plating powder, conductive filler and method for producing the same

Publications (2)

Publication Number Publication Date
JPH04354882A JPH04354882A (en) 1992-12-09
JP3028972B2 true JP3028972B2 (en) 2000-04-04

Family

ID=15599778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3155157A Expired - Lifetime JP3028972B2 (en) 1991-05-31 1991-05-31 Aluminum-based electroless plating powder, conductive filler and method for producing the same

Country Status (1)

Country Link
JP (1) JP3028972B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0914418A2 (en) * 2008-06-23 2016-03-22 Parker Hannifin Corp EMI shielding materials
KR101308159B1 (en) * 2011-11-01 2013-10-15 성균관대학교산학협력단 Method of forming a high surface-area powder
CN105073307B (en) * 2013-03-28 2019-04-19 东洋铝株式会社 Electroconductive particle, its manufacturing method, the conductive resin composition containing it and electric conductivity coating material

Also Published As

Publication number Publication date
JPH04354882A (en) 1992-12-09

Similar Documents

Publication Publication Date Title
EP1172824B1 (en) Conductive electrolessly plated powder, its producing method, and conductive material containing the plated powder
JPH0696771B2 (en) Electroless plating powder, conductive filler and method for producing the same
JPH07118866A (en) Spherical electroless-plated powder or electrically conductive material having excellent dispersibility and its production
CN109423637A (en) A kind of preparation method of high conductive material
JP3832938B2 (en) Electroless silver plating powder and method for producing the same
US20050227074A1 (en) Conductive electrolessly plated powder and method for making same
JP3028972B2 (en) Aluminum-based electroless plating powder, conductive filler and method for producing the same
JP4063655B2 (en) Conductive electroless plating powder and manufacturing method thereof
US7338686B2 (en) Method for producing conductive particles
JP3905014B2 (en) Conductive electroless plating powder and manufacturing method thereof
JPH02125881A (en) Resin granular particles coated with metallic film
JP2602495B2 (en) Manufacturing method of nickel plating material
JPH0225431B2 (en)
JP2619266B2 (en) Colored electroless plating powder and method for producing the same
JP4261973B2 (en) Method for producing conductive electroless plating powder
JP2632007B2 (en) Manufacturing method of magnetic electroless plating powder
JP2004131800A (en) Conductive electroless plating powder and method for manufacturing the same
JP3417699B2 (en) Conductive electroless plating powder
JPS62207875A (en) Production of metal plated inorganic particles
JP4247039B2 (en) Method for producing conductive electroless plating powder
JP3210096B2 (en) Nickel alloy plated powder and method for producing the same
JPH03253575A (en) Electroless metal plating method
JP2002339077A (en) Electroless plating method for fine particle
JP3389959B2 (en) Manufacturing method of metal coated powder
JPS63159580A (en) Production of metal coated potassium titanate fiber

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 12