JPH02225402A - Antibacterial composition - Google Patents

Antibacterial composition

Info

Publication number
JPH02225402A
JPH02225402A JP4541789A JP4541789A JPH02225402A JP H02225402 A JPH02225402 A JP H02225402A JP 4541789 A JP4541789 A JP 4541789A JP 4541789 A JP4541789 A JP 4541789A JP H02225402 A JPH02225402 A JP H02225402A
Authority
JP
Japan
Prior art keywords
antibacterial
titanium oxide
copper
composition
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4541789A
Other languages
Japanese (ja)
Inventor
Yoshikatsu Mizukami
義勝 水上
Hiroshi Tamemasa
博史 為政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Kanebo Ltd
Original Assignee
Tanaka Kikinzoku Kogyo KK
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK, Kanebo Ltd filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP4541789A priority Critical patent/JPH02225402A/en
Priority to EP19900903399 priority patent/EP0427858A4/en
Priority to PCT/JP1990/000243 priority patent/WO1990009736A1/en
Publication of JPH02225402A publication Critical patent/JPH02225402A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an antibacterial composition exhibiting high antibacterial effect at a low dose, free from non-uniform dispersion caused by precipitation because of its low specific gravity and useful for adding in the production of fiber, film, etc., by attaching a metal having antibacterial activity such as silver or copper to the surface of fine particles of titanium oxide. CONSTITUTION:The objective antibacterial composition is produced by attaching >=1wt.% of a metal having antibacterial activity (preferably silver or copper) to the surface of fine particles of titanium oxide having an average particle diameter of <=1mum. The composition is added in the production of textile product, film, molded plastic article, paint, etc., to impart the product with antibacterial property. It has remarkably large surface area compared with conventional particles composed solely of metallic powder, exhibits considerably improved antibacterial effect even by extremely decreasing the amount of silver and copper and, accordingly, it is relatively inexpensive. Since the carrier is titanium oxide, the specific gravity of the present composition is 1/2-1/3 of that of the conventional agent and, accordingly, non-uniform dispersion can be avoided. It is produced by vacuum evaporation, reducing precipitation, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は抗菌性組成物に係り、繊維製品、フィルム、プ
ラスチックス成型品、ペイント等の製造に際して添加さ
れ、これらの製品に抗菌性をもたらすなめに利用される
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an antibacterial composition, which is added during the production of textile products, films, plastic molded products, paints, etc., and provides antibacterial properties to these products. used for licks.

(従来の技術) 上記のような抗菌性製品を製造するために添加される従
来の抗菌性組成物としては有機系のものと、無機系のも
のとがあり、これらの内で有機系組成物はトリクロロカ
ルバニド、ポリへキサメチレンバイグアニドハイドロク
ロリド、オクタデシルジメチル−3−トリメトキシシリ
ルプロピルアンモニウムクロリド等を主成分とするもの
であり、又無機系組成物の使用例としてはアクリル綿又
は糸に染色工程で硫化銅又は銅を含有せしめたり、(発
明が解決しようとする課題及び発明の目的)従来用いら
れて来た抗菌性組成物の内で有機系組成物は揮発性を有
しており、従って抗菌性製品の製造過程で逸散し易いた
めに製品としての抗菌性の発現が不安定である点及び抗
菌性製品の製造工程で高温下に曝される場合に、マトリ
クスとなるべきポリマーと反応して該ポリマー本来の性
質を著しく阻害することが多い点に課題がある。
(Prior Art) Conventional antibacterial compositions added to produce the above-mentioned antibacterial products include organic and inorganic compositions. The main components are trichlorocarbanide, polyhexamethylene biguanide hydrochloride, octadecyldimethyl-3-trimethoxysilylpropylammonium chloride, etc. Examples of the use of inorganic compositions include acrylic cotton or thread. (Problem to be Solved by the Invention and Purpose of the Invention) Among the antibacterial compositions conventionally used, organic compositions are volatile. Therefore, the expression of antibacterial properties as a product is unstable because it is easily dissipated during the manufacturing process of antibacterial products, and it should be used as a matrix when exposed to high temperatures during the manufacturing process of antibacterial products. The problem is that they often react with polymers and significantly inhibit the original properties of the polymers.

一方、抗菌性金属化合物を主成分としている無機系組成
物は繊維、フィルム等の製造に際して配合され、最終製
品中においては分散された状態を呈しており、この場合
に分散状態にある金属化合物から抗菌作用を有する金属
がイオン化して製品表面に移行して抗菌性を発現する作
用機構となっている。
On the other hand, inorganic compositions containing antibacterial metal compounds as a main component are blended during the production of fibers, films, etc., and are in a dispersed state in the final product. The mechanism of action is that metals that have antibacterial effects are ionized and transferred to the product surface, thereby exhibiting antibacterial properties.

アクリル綿又は糸に染色工程で硫化銅又は銅を含有せし
める方法は工程数も長く、長時間の反応を要するために
高価となる点に課題があった。
The method of incorporating copper sulfide or copper into acrylic cotton or yarn during the dyeing process has problems in that it is expensive because it requires a long number of steps and a long reaction time.

更に、銀粉や銅粉等を用いる場合には比重が高いために
抗菌性製品を製作する迄に沈降を生じ易く、従って取扱
いが不便であるのみならず、大量配合の必要性をもたら
すと云う実用面からの課題があった。
Furthermore, when silver powder, copper powder, etc. are used, due to their high specific gravity, they tend to settle before producing antibacterial products, which is not only inconvenient to handle, but also requires a large amount of compounding. There were issues from the front.

それ故に、本発明の目的は抗菌作用を有する金属の量割
合が相対的に少なく、従って比重が小さく、しかも充分
な抗菌性を有する抗菌性組成物を提供することにある。
Therefore, an object of the present invention is to provide an antibacterial composition which has a relatively small proportion of metals having an antibacterial effect, has a low specific gravity, and has sufficient antibacterial properties.

〈課題を解決し、目的を達成する手段及び作用)本発明
によれば、上記の課題は、抗菌作用を有する金属が、酸
化チタン微粒子の表面に付着せしめられていることを特
徴とする抗菌性組成物により基本的に解決されると共に
、上記の目的が達成される。
(Means and effects for solving the problem and achieving the object) According to the present invention, the above problem is solved by providing an antibacterial product characterized in that a metal having an antibacterial action is attached to the surface of titanium oxide fine particles. The composition basically solves and achieves the above objectives.

即ち、本発明においては比重の小さな酸化チタンを担体
として用いることにより全体としての比重の軽減を図り
、これによって抗菌性製品の製造に際しての取扱いを便
ならしめ、又この担体としての酸化チタンを微粒子とし
て用いることにより付着されるべき抗菌作用を有する金
属の表面積を大になしてイオン化を容易にさせて抗菌性
の向上をもたらすのである。
That is, in the present invention, by using titanium oxide, which has a small specific gravity, as a carrier, the overall specific gravity is reduced, which facilitates handling during the production of antibacterial products. By using the metal as an antibacterial agent, the surface area of the antibacterial metal to be attached is increased and ionization is facilitated, resulting in improved antibacterial properties.

担体としての酸化チタンとしてはルチル型のものであっ
ても、アナターゼ型のものであっても差支えはないが、
その平均粒径は1μ膿又はそれ以下であることが好まし
い、蓋し1本発明による抗菌性組成物が配合されて調製
される最終製品が厚手のプラスチックス成型品等の場合
には酸化チタン微粒子の平均粒径に上記のような制限は
必ずしも存在しないが、最終製品が繊維、フィルム、ペ
イント等の薄手のものとなされる場合には酸化チタン微
粒子の平均粒径が1μ舞以上であると最大粒径も大とな
るので最終製品の表面に凹凸が目立つようになり外観や
品質において低下を来なすからである。殊に、本発明に
よる抗菌性組成物を配合して抗菌性の合成繊維を製造し
ようとする場合には酸化チタン8Ua子として平均粒径
が0.5μ観又はそれ以下のものを泪いるのが好ましい
、Hし、最大粒径lOμ厘以上の酸化チタン粒子が存在
すると紡糸ノズルに口塞りを生じる虞れがあるからであ
る。尚、担体としての酸化チタン微粒子はその平均粒径
が小さい程、これに付着した抗菌作用を有する金属の表
面積が増加し、抗菌性が向上することに留意され度い。
There is no problem whether the titanium oxide used as a carrier is rutile type or anatase type.
The average particle size is preferably 1μ or less, and if the final product prepared by incorporating the antibacterial composition according to the present invention is a thick plastic molded product, titanium oxide fine particles Although the above-mentioned limit does not necessarily exist on the average particle size of titanium oxide fine particles, when the final product is made into a thin product such as fiber, film, or paint, the maximum particle size of titanium oxide fine particles is 1 μm or more. This is because the particle size also becomes large, which causes conspicuous irregularities on the surface of the final product, resulting in a deterioration in appearance and quality. In particular, when blending the antibacterial composition according to the present invention to produce antibacterial synthetic fibers, it is recommended to use titanium oxide particles with an average particle size of 0.5μ or less. This is preferred because the presence of titanium oxide particles having a maximum particle diameter of 10 μm or more may cause the spinning nozzle to become clogged. It should be noted that the smaller the average particle diameter of the titanium oxide fine particles used as a carrier, the more the surface area of the metal having antibacterial action attached to the particles increases, and the antibacterial property improves.

本発明による抗菌性組成物において、抗菌作用を有する
金属としては種々のもの、例えば銀。
In the antibacterial composition according to the invention, various metals having an antibacterial effect may be used, such as silver.

銅、亜鉛、錫、鉛、ビスマス、カドミウム、クロム、水
銀等が考えられるが、抗菌力の程度、保健衛生上等の観
点から銀、銅又はこれらの両者を用いるのが好ましい、
銀又は銅が付着せしめられる量は担体である酸化チタン
微粒子に対して1 wt%以上である。この場合の下限
値は抗菌性能や用途を考慮に入れたものである。即ち、
抗菌性組成物において抗菌性金属の付着量が1vt1未
満であると、その用途に依存して、例えば抗菌性繊維製
品になす場合に所期の抗菌性能をもたらすためには紡糸
原液への抗菌性組成物の配合量を相対的に大にする必要
性が生じるが、紡糸原液に抗菌性組成物を6x又はそれ
以上添加すると紡糸時に糸切れが多くなって生産性が低
下するからである。尚、銀と銅の両者を用いる場合に、
これらの付着量は酸化チタン微粒子に対してそれぞれ0
.5wt%以上である。この場合における下限値の設定
理由は上記と同様である。
Possible materials include copper, zinc, tin, lead, bismuth, cadmium, chromium, mercury, etc., but it is preferable to use silver, copper, or both from the viewpoint of antibacterial activity and hygiene.
The amount of silver or copper deposited is 1 wt% or more based on the titanium oxide fine particles serving as the carrier. In this case, the lower limit value takes into account antibacterial performance and usage. That is,
If the amount of antibacterial metal deposited in the antibacterial composition is less than 1vt1, it depends on the application. It is necessary to relatively increase the amount of the composition blended, but this is because adding 6x or more of the antibacterial composition to the spinning solution increases yarn breakage during spinning and reduces productivity. In addition, when using both silver and copper,
The adhesion amount of these is 0 for titanium oxide fine particles.
.. It is 5wt% or more. The reason for setting the lower limit value in this case is the same as above.

担体としての酸化チタン微粒子に銀又は銅若しくはこれ
らの両者を付着させて本発明による抗菌性組成物を製造
するためには、自体周知の真空蒸着法や還元析出法を用
いることができる。
In order to produce the antibacterial composition of the present invention by attaching silver, copper, or both to titanium oxide fine particles as a carrier, a well-known vacuum evaporation method or a reduction precipitation method can be used.

これらの内で2真空蒸着法は酸化チタン微粒子を蒸着装
置のチャンバー内にセットし、蒸着源(銀、銅又は銀−
鋼合金の切片)をタングステン製バスケットに乗せて上
記のチャンバー内にセットし、該チャンバー内を減圧し
く約2 x 10””Torr程度迄)、次いで上記の
酸化チタン微粒子を振動させながら上記のタングステン
バスケットを加熱して上記の蒸着源金属を蒸発せしめる
ことにより実施することができる。
Among these, two vacuum evaporation methods involve setting titanium oxide fine particles in the chamber of a evaporation device, and using a evaporation source (silver, copper or silver).
A section of the steel alloy) was placed on a tungsten basket and set in the above chamber, and the pressure inside the chamber was reduced to about 2 x 10'' Torr).Then, the titanium oxide fine particles were vibrated while the tungsten was heated. This can be carried out by heating the basket to evaporate the above deposition source metal.

一方、還元析出法は、酸化チタン微粒子を純水中に分散
させ、この分散液とメツキ液とを混合し5次いで、攪拌
しながらこの混合液にメツキ用還元液を添加することに
より実施することができる。
On the other hand, the reduction precipitation method is carried out by dispersing titanium oxide fine particles in pure water, mixing this dispersion with a plating solution, and then adding a reducing solution for plating to this mixed solution while stirring. Can be done.

これらの両方法の内で真空蒸着法は蒸発金属の照射方向
が限定されるために、抗菌性金属を酸化チタン微粒子に
均斉に付着させる目的で酸化チタン微粒子に振動を与え
て転勤させる必要性があり、この場合に粗い粒子が上に
且つ細かい粒子が下になる傾向があり、従って酸化チタ
ン微粒子の粒径が揃っていないと抗菌性金属の付着量に
差が生じるが、一方、還元析出法によれば、分散した状
態の酸化チタン微粒子上に抗菌性金属が析出してゆくの
で均斉な付着が可能であり、付着量の制御も容易なので
、前者よりも後者の方法が好ましい。
Of these two methods, the vacuum evaporation method is limited in the direction of irradiation of the evaporated metal, so it is necessary to vibrate the titanium oxide particles to transfer the antibacterial metal in order to uniformly adhere the antibacterial metal to the titanium oxide particles. In this case, the coarse particles tend to be on top and the fine particles on the bottom, so if the particle sizes of titanium oxide fine particles are not uniform, there will be a difference in the amount of antibacterial metal deposited.On the other hand, reduction precipitation method According to the method, the antibacterial metal is precipitated on the dispersed titanium oxide fine particles, which allows for uniform adhesion, and the amount of adhesion can be easily controlled, so the latter method is preferable to the former.

(実施例等) 次に、本発明による抗菌性組成物の製造例及び使用例(
抗菌性繊維の製造及び抗菌性評価)により、本発明を更
に詳細に説明する。
(Examples, etc.) Next, production examples and usage examples of the antibacterial composition according to the present invention (
The present invention will be explained in more detail with reference to (Manufacturing of antibacterial fibers and evaluation of antibacterial properties).

尚、下記において言及するX及び部は、別段艮1h土 (1)下記の3種類の液を調製した。In addition, X and parts mentioned below are separately specified. (1) The following three types of liquids were prepared.

A)酸化チタン分散液 酸化チタン粉末(平均粒径0.5μm) 65gを純水
300tx1に分散させたもの。
A) Titanium oxide dispersion 65 g of titanium oxide powder (average particle size 0.5 μm) was dispersed in 300 tx1 of pure water.

B)銀メツキ液 硝酸銀20gを純水に溶解して800mjとした後に水
酸化アンモニウムを添加してp)lを11に調整したも
の。
B) Silver plating solution After dissolving 20 g of silver nitrate in pure water to make 800 mJ, ammonium hydroxide was added to adjust p)l to 11.

C)銀メツキ用還元液 酒石酸カリウムナトリウム(4水和物) 100gを純
水により溶解して700+++jとなし、液温を30℃
に保ったもの。
C) Reducing liquid for silver plating Dissolve 100g of potassium sodium tartrate (tetrahydrate) in pure water to make 700+++j, and adjust the liquid temperature to 30°C.
What was kept in.

(2)操作 上記の酸化チタン分散液(A)  に銀メツキ液(B)
を添加して混合し、液温30℃で攪拌しながら上記の銀
メツキ用還元液を添加して攪拌を続けることにより銀イ
オンを完全に還元させ、次いで更に1時間攪拌を継続し
た。
(2) Operation The above titanium oxide dispersion (A) and silver plating solution (B)
was added and mixed, and while stirring at a liquid temperature of 30°C, the above-mentioned reducing solution for silver plating was added and stirring was continued to completely reduce the silver ions, and then stirring was continued for an additional hour.

その後に攪拌を中止し、No、5C濾紙を用いて吸引濾
過し、純水で充分に洗浄し、80℃の空気乾燥機内で1
2時間乾燥することにより所望の抗菌性組成物を得た。
After that, stirring was stopped, filtered by suction using No. 5C filter paper, thoroughly washed with pure water, and dried in an air dryer at 80°C.
The desired antibacterial composition was obtained by drying for 2 hours.

この抗菌性組成物における銀の付着状態をEP!4Aに
て!lt察した処、酸化チタン粉末の表面に銀が均斉に
付着していることが判明した。
EP! The adhesion state of silver in this antibacterial composition! At 4A! Upon inspection, it was found that silver was uniformly attached to the surface of the titanium oxide powder.

化学分析によれば、銀の、付着量は16.3%であった
According to chemical analysis, the amount of silver deposited was 16.3%.

111ユニ1 酸化チタン分散液として酸化チタン粉末を130g、3
25g、680gを用いたこと並びに銀イオンの完全還
元後の攪拌を2時間に亘りill!した以外は、製造例
1と全く同様にして3種類の抗菌性組成物を得た。
111 Uni 1 130g of titanium oxide powder as a titanium oxide dispersion, 3
It was ill! Three types of antibacterial compositions were obtained in exactly the same manner as in Production Example 1 except for the following.

EP!、IA @察によれば、何れの抗菌性組成物にお
いても酸化チタン粉末の表面に銀が均斉に付着しており
、又化学分析によれば、銀の付着量はそれぞれ8.9x
、3.8x及び1.9%であった。
EP! According to IA @Survey, silver is uniformly attached to the surface of titanium oxide powder in all antibacterial compositions, and according to chemical analysis, the amount of silver attached is 8.9x in each case.
, 3.8x and 1.9%.

髭m (1)次の銅メツキ液及び銅メツキ用還元液を調製した
Mustache m (1) The following copper plating solution and reducing solution for copper plating were prepared.

B’)銅メツキ液 硫酸vA(5水和物)34.6g、酒石酸カリウムナト
リウム(4水和物) 173g、及び水酸化ナトリウム
50gを純水により溶解して500!ljとなしたもの
B') Copper plating solution 34.6 g of sulfuric acid vA (pentahydrate), 173 g of potassium sodium tartrate (tetrahydrate), and 50 g of sodium hydroxide were dissolved in pure water to give 500! What was done with lj.

c’)銅メツキ還元液 37%ホルムアルデヒド溶液150sjであって、液温
30℃に保たれたもの。
c') Copper plating reducing solution: 150 sj of 37% formaldehyde solution, kept at a solution temperature of 30°C.

(2)操作 製造例1で調製した酸化チタン分散液(A)に上記の銅
メツキM<B’)を添加して混合し、液温30℃で撹拌
しながら上記の銅メツキ還元液(C゛)を添加して攪拌
を続けることにより銅イオンを完全に還元させ、次いで
更に1時間攪拌を継続した。
(2) Operation Add and mix the above copper plating M<B') to the titanium oxide dispersion (A) prepared in Production Example 1, and mix with the above copper plating reducing solution (C) while stirring at a liquid temperature of 30°C. The copper ions were completely reduced by adding and stirring the mixture, and then stirring was continued for an additional hour.

その後に攪拌を中止し、No、5C濾紙を用いて吸引濾
過し、純水で充分に洗浄し、80℃の空気乾爆機内で1
2時間乾燥することにより所望の抗菌性組成物を得た。
After that, stirring was stopped, suction filtered using No. 5C filter paper, thoroughly washed with pure water, and heated in an air dryer at 80°C for 1 hour.
The desired antibacterial composition was obtained by drying for 2 hours.

この抗菌性組成物における銅の付着状態をEPMAによ
り観察した処、酸化チタン粉末の表面に銅が均斉に付着
していることが判明した。
When the state of copper adhesion in this antibacterial composition was observed by EPMA, it was found that copper was uniformly adhered to the surface of the titanium oxide powder.

化学分析によれば銅の付着量は11.’llであった。According to chemical analysis, the amount of copper deposited is 11. 'll was.

設戎ILi二」 酸化チタン分散液として酸化チタン粉末を130g、3
25g、680gを用いたこと並びに銅イオンの完全還
元後の攪拌を2時間に亘り継続した以外は、製造例5と
全く同様にして3 種層の抗菌性組成物を得た。
130g of titanium oxide powder as a titanium oxide dispersion, 3
A three-layer antibacterial composition was obtained in exactly the same manner as in Production Example 5, except that 25 g and 680 g were used, and stirring was continued for 2 hours after complete reduction of copper ions.

EPMA観察によれば、何れの抗菌性組成物においても
酸化チタン粉末の表面に銅が均斉に付着しており、又・
化学分析によれば、銅の付着量はそれぞれ6.3%、2
.6%及び1.3%であった。
According to EPMA observation, copper was uniformly attached to the surface of the titanium oxide powder in all antibacterial compositions, and
According to chemical analysis, the amount of copper deposited was 6.3% and 2%, respectively.
.. They were 6% and 1.3%.

i思勇ユ 平均粒径0.5μ脂の酸化チタン微粒子を担体とし、A
gを1%付着させた抗菌性組成物20重量部、アクリロ
ニトリル(以下ANと略記する)/アクリル酸メチル(
以下HAと略記する)/メタリルスルホン酸ソーダ= 
90.0/9.0./1.0の組成で分子量5万のアク
リル系重合体(A)2重量部、ジメチルホルムアミド(
以下DMFと暗記する)78重量部をホモミキサーを用
いて約1時間分散した6次いでサンドグラインダーを用
いて上記該抗菌剤予備分散液を約5分間分散した後、連
続的に前記アクリル系重合体(A) 20重量部、DM
F 80重量部よりなる紡糸原液に上記該抗菌性組成物
が上記アクリル系重合体(A)に対して1.0.3.0
.5.1)重、tzとなるようにパイプラインミキサー
を用いて添加混合し、常法に従って湿式紡糸して3デニ
ールの抗菌性アクリル系繊維を得た。
Using titanium oxide fine particles with an average particle size of 0.5μ as a carrier, A
20 parts by weight of an antibacterial composition to which 1% of g.
(hereinafter abbreviated as HA)/sodium methallylsulfonate=
90.0/9.0. 2 parts by weight of an acrylic polymer (A) with a composition of /1.0 and a molecular weight of 50,000, dimethylformamide (
78 parts by weight (hereinafter memorized as DMF) were dispersed for about 1 hour using a homomixer.Then, the antibacterial agent preliminary dispersion was dispersed for about 5 minutes using a sand grinder, and then the acrylic polymer was continuously dispersed. (A) 20 parts by weight, DM
The above-mentioned antibacterial composition is added to the spinning dope consisting of 80 parts by weight of F in a ratio of 1.0.3.0 to the above-mentioned acrylic polymer (A).
.. 5.1) They were added and mixed using a pipeline mixer so that the weight and tz of the fibers were obtained, and the mixture was wet-spun according to a conventional method to obtain a 3-denier antibacterial acrylic fiber.

この繊維の抗菌性評価を後記の第1表に示す。The antibacterial evaluation of this fiber is shown in Table 1 below.

この表によると上記の抗菌性組成物を3、Ox以上添加
することによって良好な抗菌性がもたらされることが判
る。尚、抗菌性の評価は、抗菌性アクリル系繊維を常法
により紡績して30番単糸となした後、丸編みしたもの
を被験体として用い且つ繊維製品衛生加工協議会制定の
抗菌防臭加工製品認定基準「シェークフラスコ法2の方
法により行った(以下の使用例においても同aり。
According to this table, it can be seen that good antibacterial properties can be obtained by adding 3.0x or more of the above antibacterial composition. The antibacterial properties were evaluated by spinning antibacterial acrylic fibers into No. 30 single yarn using a conventional method, and then circularly knitting them. Product Certification Standards: "Conducted using Shake Flask Method 2" (The same applies to the following usage examples.

そして後記の第1.2及び3表において、洗濯回数の右
欄が被検体の菌減少率を示す。
In Tables 1.2 and 3 below, the column to the right of the number of washes indicates the bacterial reduction rate of the test object.

吏肛匠ユ 平均粒径0.5μ■の酸化チタン微粒子を担体とし、A
gを18x付着させた抗菌性組成物を用いて使用例1と
同様の組成、方法で抗菌性アクリル系繊維を得た。
Using titanium oxide fine particles with an average particle size of 0.5μ as a carrier, A
Antibacterial acrylic fibers were obtained using the same composition and method as in Use Example 1 using an antibacterial composition to which 18x of g was attached.

この繊維の抗菌性評価を後記の第1表に示す。The antibacterial evaluation of this fiber is shown in Table 1 below.

この表によると上記の抗菌性組成物を0.2%以上添加
することによって良好な抗菌性がもたらされることが判
る。
According to this table, it can be seen that good antibacterial properties are brought about by adding 0.2% or more of the above antibacterial composition.

使LIL旦 平均粒径0.571mの酸化チタン微粒子を担体とし、
C11を2%付着させた抗菌性組成物を用いて使用例1
と同様の組成、方法で抗菌性アクリル系繊維を得た。
Using LIL titanium oxide fine particles with an average particle size of 0.571 m as a carrier,
Use example 1 using an antibacterial composition with 2% C11 attached
Antibacterial acrylic fibers were obtained using the same composition and method.

この繊維の抗菌性評価を後記の第2表に示す。The antibacterial evaluation of this fiber is shown in Table 2 below.

この表によると上記の抗菌性組成物を3.0%以上添加
することによって良好な抗菌性がもたらされることが判
る。
According to this table, it can be seen that good antibacterial properties are brought about by adding 3.0% or more of the above antibacterial composition.

吏■」二重 平均粒径0.5μ電の酸化チタン微粒子を担体とし、C
uを15%付着させた抗菌性組成物を用いて使用例1と
同様の組成、方法で抗菌性アクリル系繊維を得た。
C
Antibacterial acrylic fibers were obtained using the same composition and method as in Use Example 1 using an antibacterial composition to which 15% of U was attached.

この繊維の抗菌性評価を後記の第2表に示す。The antibacterial evaluation of this fiber is shown in Table 2 below.

この表によると上記の抗菌性組成物を0.2%以上添加
することによって良好な抗菌性がもたらされることが判
る。
According to this table, it can be seen that good antibacterial properties are brought about by adding 0.2% or more of the above antibacterial composition.

え吐1上 平均粒径0.5μ鳳の酸化チタン微粒子を担体とし、A
gを1%、 Cuを1.Xそれぞれ付着させた抗菌性組
成物を用いて使用例1と同様の組成、方法で抗菌性アク
リル系wi雄を得た。
Using titanium oxide fine particles with an average particle size of 0.5μ as a carrier,
g 1%, Cu 1. An antibacterial acrylic wi male was obtained using the same composition and method as in Use Example 1 using the antibacterial compositions attached to each of the antibacterial compositions.

この繊維の抗菌性評価を後記の第3表に示す。The antibacterial evaluation of this fiber is shown in Table 3 below.

この表によると上記の抗菌性組成物を3.0%以上添加
することによって良好な抗菌性がもたらされることが判
る。
According to this table, it can be seen that good antibacterial properties are brought about by adding 3.0% or more of the above antibacterial composition.

炎」隨1 平均粒径0,5μ量の酸化チタン微粒子を担体とし、A
Nを18%、Cuを8xそれぞれ付着させた抗菌性組成
物を用いて使用例1と同様の組成、方法で抗菌性アクリ
ル系繊維を得た。
``Flame'' Part 1 Titanium oxide fine particles with an average particle size of 0.5μ are used as a carrier,
Antibacterial acrylic fibers were obtained using the same composition and method as in Use Example 1 using an antibacterial composition to which 18% of N and 8x of Cu were attached.

この繊維の抗菌性評価を後記の第3表に示す。The antibacterial evaluation of this fiber is shown in Table 3 below.

この表によると上記の抗菌性組成物を0.2%以上添加
することによって良好な抗菌性がもたらされることが判
る。
According to this table, it can be seen that good antibacterial properties are brought about by adding 0.2% or more of the above antibacterial composition.

臭肚匠−1 平均粒径0.カlの酸化チタン微粒子を担体とし、Ag
を5%付着させた抗菌性組成物20重量部、AN/MA
/メタリルスルホン酸ソーダ= 90.0/9.0/1
.0の組成で分子量5万のアクリル系重合体(A)2重
量部、D M、 F 78重量部をホモミキサーを用い
て約1時間分散した9次いでサンドグラインダーを用い
て上記の抗菌性組成物予備分散液を約5分間分散した後
、連続的に前記アクリル系重合体(A) 23重量部、
DMF 77重量部よりなる紡糸原液に上記該抗菌剤が
上記アクリル系重合体(A)  に対して0.3重量%
となるようにバイブラインミキサーを用いて添加混合し
、常法に従って湿式紡糸して3デニールの抗菌性アクリ
ル系繊維を得た。この#iR維の抗菌性評価を後記の第
4表に示す。
Shoufusho-1 Average particle size: 0. Using calcium titanium oxide fine particles as a carrier, Ag
20 parts by weight of an antibacterial composition to which 5% of AN/MA was attached
/Sodium methallylsulfonate = 90.0/9.0/1
.. 2 parts by weight of an acrylic polymer (A) with a molecular weight of 50,000 and 78 parts by weight of DM, F having a composition of 0 were dispersed for about 1 hour using a homomixer.Then, the above antibacterial composition was prepared using a sand grinder. After dispersing the preliminary dispersion liquid for about 5 minutes, 23 parts by weight of the acrylic polymer (A),
The above-mentioned antibacterial agent is added to the spinning stock solution consisting of 77 parts by weight of DMF at 0.3% by weight based on the above-mentioned acrylic polymer (A).
They were added and mixed using a vibrine mixer and wet-spun according to a conventional method to obtain a 3-denier antibacterial acrylic fiber. The antibacterial evaluation of this #iR fiber is shown in Table 4 below.

この表によると、上記の抗菌性繊維は稲々の細菌類に対
して良好な抗菌性を有していることが判(発明の効果) 上述のことから、本発明により次の効果がもたらされる
According to this table, it can be seen that the antibacterial fibers described above have good antibacterial properties against bacteria in rice plants (effects of the invention) From the above, the following effects are brought about by the present invention.

(1)酸化チタン微粒子の表面に銀や銅が付着せしめら
れているので、従来の銀粉や銅粉のみの粒子に比較して
同一粒径、同一重量であっても、その表面積が飛躍的に
大になる。
(1) Since silver and copper are attached to the surface of titanium oxide fine particles, the surface area is dramatically increased compared to conventional particles of silver powder or copper powder only, even if they have the same particle size and weight. Become big.

(2)従って銀や銅の使用量が従来品に比較してはるか
に少なくても、抗菌効果が著しく向上し、従って本発明
による抗菌性組成物は従来品よりも相対的に廉価に供給
することができる。
(2) Therefore, even if the amount of silver and copper used is much lower than that of conventional products, the antibacterial effect is significantly improved, and therefore, the antibacterial composition of the present invention can be supplied at a relatively lower price than conventional products. be able to.

(3)本発明の抗菌性組成物は担体が酸化チタンである
ため、銀や銅に比較して全体としての比重が約1/2−
1/3であるので、これを使用して抗菌性製品を製造す
る場合に、沈降による偏分数を抑制乃至阻止することが
できる。
(3) Since the carrier of the antibacterial composition of the present invention is titanium oxide, the overall specific gravity is about 1/2 compared to silver or copper.
Since it is 1/3, when using this to manufacture antibacterial products, it is possible to suppress or prevent uneven fraction due to sedimentation.

Claims (5)

【特許請求の範囲】[Claims] (1)抗菌作用を有する金属が、酸化チタン微粒子の表
面に付着せしめられていることを特徴とする抗菌性組成
物。
(1) An antibacterial composition characterized in that a metal having an antibacterial effect is attached to the surface of titanium oxide fine particles.
(2)抗菌作用を有する金属が銀及び銅の少くとも一方
であることを特徴とする、請求項(1)に記載の抗菌性
組成物。
(2) The antibacterial composition according to claim (1), wherein the metal having an antibacterial effect is at least one of silver and copper.
(3)酸化チタン微粒子の平均粒径が1μm又はそれ以
下であることを特徴とする、請求項(1)又は(2)に
記載の抗菌性組成物。
(3) The antibacterial composition according to claim (1) or (2), wherein the titanium oxide fine particles have an average particle size of 1 μm or less.
(4)抗菌作用を有する金属の付着量が酸化チタン微粒
子に対して1wt%以上であることを特徴とする、請求
項(1)−(3)の何れか一つに記載の抗菌性組成物。
(4) The antibacterial composition according to any one of claims (1) to (3), wherein the amount of the metal having an antibacterial effect attached is 1 wt% or more based on the titanium oxide fine particles. .
(5)抗菌作用を有する金属が銀と銅の両者であって、
その付着量が酸化チタン微粒子に対してそれぞれ0.5
wt%以上であることを特徴とする、請求項(1)−(
4)の何れか一つに記載の抗菌性組成物。
(5) The metals having antibacterial effects are both silver and copper,
The adhesion amount is 0.5 for each titanium oxide fine particle.
Claim (1)-(wt% or more)
The antibacterial composition according to any one of 4).
JP4541789A 1989-02-28 1989-02-28 Antibacterial composition Pending JPH02225402A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP4541789A JPH02225402A (en) 1989-02-28 1989-02-28 Antibacterial composition
EP19900903399 EP0427858A4 (en) 1989-02-28 1990-02-27 Antibacterial or conductive composition and applications thereof
PCT/JP1990/000243 WO1990009736A1 (en) 1989-02-28 1990-02-27 Antibacterial or conductive composition and applications thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4541789A JPH02225402A (en) 1989-02-28 1989-02-28 Antibacterial composition

Publications (1)

Publication Number Publication Date
JPH02225402A true JPH02225402A (en) 1990-09-07

Family

ID=12718688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4541789A Pending JPH02225402A (en) 1989-02-28 1989-02-28 Antibacterial composition

Country Status (1)

Country Link
JP (1) JPH02225402A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026333A (en) * 1988-03-17 1990-01-10 Ishihara Sangyo Kaisha Ltd Antibacterial powder and production thereof
JPH04231062A (en) * 1990-09-18 1992-08-19 Create Medic Kk Antimicrobial medical product
JPH04231063A (en) * 1990-09-18 1992-08-19 Create Medic Kk Antimicrobial composition
JPH08268820A (en) * 1995-03-14 1996-10-15 Johnson Matthey Plc Bactericidal composition
JPH10237362A (en) * 1997-02-26 1998-09-08 Catalysts & Chem Ind Co Ltd Electrodeposition coating material and electrodeposition coating
JPH11349423A (en) * 1998-02-19 1999-12-21 Daido Steel Co Ltd Antibacterial and deodorant material and its production
JP2000041713A (en) * 1998-07-31 2000-02-15 Akira Fujishima Antimicrobial fastening parts and their manufacture
JP2009108448A (en) * 2007-10-31 2009-05-21 Jgc Catalysts & Chemicals Ltd Deodorizing and antimicrobial fiber
JP2010083775A (en) * 2008-09-30 2010-04-15 Kumamoto Univ Antimicrobial deodorant for human and animal
US8486433B2 (en) 2004-05-07 2013-07-16 Jgc Catalysts And Chemicals Ltd. Antibacterial deodorant
CN105401245A (en) * 2015-12-25 2016-03-16 罗莱生活科技股份有限公司 Method for preparing copper oxide antibiosis fibers
WO2020191854A1 (en) * 2019-03-27 2020-10-01 江苏弘盛新材料股份有限公司 Antibacterial nylon 6 and preparation method thereof
CN113016823A (en) * 2021-02-02 2021-06-25 南京师范大学 Preparation method of photo-thermal antibacterial near-infrared bimetallic nanoparticles
WO2024034147A1 (en) * 2022-08-12 2024-02-15 株式会社進め Disinfectant, anti-infective textile material, anti-infective textile product, production method, and production device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026333A (en) * 1988-03-17 1990-01-10 Ishihara Sangyo Kaisha Ltd Antibacterial powder and production thereof
JPH04231062A (en) * 1990-09-18 1992-08-19 Create Medic Kk Antimicrobial medical product
JPH04231063A (en) * 1990-09-18 1992-08-19 Create Medic Kk Antimicrobial composition
JPH08268820A (en) * 1995-03-14 1996-10-15 Johnson Matthey Plc Bactericidal composition
JPH10237362A (en) * 1997-02-26 1998-09-08 Catalysts & Chem Ind Co Ltd Electrodeposition coating material and electrodeposition coating
JPH11349423A (en) * 1998-02-19 1999-12-21 Daido Steel Co Ltd Antibacterial and deodorant material and its production
JP2000041713A (en) * 1998-07-31 2000-02-15 Akira Fujishima Antimicrobial fastening parts and their manufacture
US8486433B2 (en) 2004-05-07 2013-07-16 Jgc Catalysts And Chemicals Ltd. Antibacterial deodorant
JP2009108448A (en) * 2007-10-31 2009-05-21 Jgc Catalysts & Chemicals Ltd Deodorizing and antimicrobial fiber
JP2010083775A (en) * 2008-09-30 2010-04-15 Kumamoto Univ Antimicrobial deodorant for human and animal
CN105401245A (en) * 2015-12-25 2016-03-16 罗莱生活科技股份有限公司 Method for preparing copper oxide antibiosis fibers
WO2020191854A1 (en) * 2019-03-27 2020-10-01 江苏弘盛新材料股份有限公司 Antibacterial nylon 6 and preparation method thereof
CN113016823A (en) * 2021-02-02 2021-06-25 南京师范大学 Preparation method of photo-thermal antibacterial near-infrared bimetallic nanoparticles
WO2024034147A1 (en) * 2022-08-12 2024-02-15 株式会社進め Disinfectant, anti-infective textile material, anti-infective textile product, production method, and production device
JP2024025437A (en) * 2022-08-12 2024-02-26 株式会社進め Disinfectant, anti-infective textile material, anti-infective textile product, manufacturing method, and manufacturing equipment

Similar Documents

Publication Publication Date Title
JPH02225402A (en) Antibacterial composition
WO1990009736A1 (en) Antibacterial or conductive composition and applications thereof
KR20090131847A (en) Antibiotic polymer and method for preparing the same
CN111732789A (en) Antibacterial master batch and preparation method and application thereof
JPH02268104A (en) Antimicrobial composition
KR100535916B1 (en) Manufacturing method of antimicrobial fiber using nano silver powder
CN100999815A (en) Loading pressure sputtering mfg. process of antobiosis textile material and its products
JP2001247336A (en) Glass composition for imparting antimicrobial properties, antimicrobial polymer composite material using the same and formed bodies of antimicrobial polymer composite material
JPH02268103A (en) Antimicrobial composition
Gao et al. Construct the multifunction of cotton fabric by synergism between nano ZnO and Ag
CN109183181A (en) A kind of graphene conductive polyester fiber with antibiotic effect
JP2001011734A (en) Antimicrobial polyamide fiber
JPH04194074A (en) Processing of cloth having antibacterial and deodorizing property
KR100872737B1 (en) Manufacturing method of synthetic fibers with anti-bacterial property containing nanoparticles
JPH02268105A (en) Antimicrobial composition
JPH04338129A (en) Glass composition for synthetic resin additive
JPH0381209A (en) Antimicrobial agent and film
JPH10259531A (en) Antimicrobial cellulose acetate yarn and its production
JPH03213509A (en) Production of antimicrobial fiber
JPH0497912A (en) Production of titanium oxide fine particle coated with silver
JPH07196424A (en) Antimicrobial agent consisting of complex particle or hollow particle
JPH06100403A (en) Antimicrobial and mildewproofing composition
JPH054816A (en) Antibacterial titania
JPH0494009A (en) Conductive compound
KR102609452B1 (en) Antibacterial melt-blown non-woven fabric and Manufacturing method thereof