JPH02268103A - Antimicrobial composition - Google Patents

Antimicrobial composition

Info

Publication number
JPH02268103A
JPH02268103A JP1087001A JP8700189A JPH02268103A JP H02268103 A JPH02268103 A JP H02268103A JP 1087001 A JP1087001 A JP 1087001A JP 8700189 A JP8700189 A JP 8700189A JP H02268103 A JPH02268103 A JP H02268103A
Authority
JP
Japan
Prior art keywords
antibacterial
titanium oxide
silver
antimicrobial
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1087001A
Other languages
Japanese (ja)
Inventor
Yoshikatsu Mizukami
義勝 水上
Hiroshi Tamemasa
博史 為政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Kanebo Ltd
Original Assignee
Tanaka Kikinzoku Kogyo KK
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK, Kanebo Ltd filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP1087001A priority Critical patent/JPH02268103A/en
Priority to EP19900903399 priority patent/EP0427858A4/en
Priority to PCT/JP1990/000243 priority patent/WO1990009736A1/en
Publication of JPH02268103A publication Critical patent/JPH02268103A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject composition having improved processability in production of antimicrobial product and antimicrobial property with small specific gravity as a whole and large surface area of metallic compound having antimicrobial action by adhering the metallic compound onto the surface of fine particle of titanium oxide. CONSTITUTION:Fine particles of titanium oxide preferably having <=1mum averaged particle diameter are used as carriers and a metallic compound having antimicrobial properties, preferably silver oxide, silver chloride and/or copper oxide is adhered on the surface of the carrier having small specific gravity in an amount of >=1wt.% to said carrier. Respectively >=0.5wt.% are used in a case of using the both of silver compound and copper compound to reduce specific gravity. Said compound is added to fiber product, film, plastic molded product or paint, etc., in production of same product to suppress or inhibit deviated dispersing by sedimentation in producing antimicrobial product and to make easy to handle, and simultaneously make ionization easy by enlarging the surface area of said metallic compound to afford antimicrobial composition having exceedingly improved antimicrobial properties in lower cost than conventional product.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は抗菌性組成物に係り、繊維製品、フィルム、プ
ラスチックス成型品、ペイント等の製造に際して添加さ
れ、これらの製品に抗菌性をもたらすために利用される
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an antibacterial composition, which is added during the production of textile products, films, plastic molded products, paints, etc., and provides antibacterial properties to these products. used for.

(従来の技術) 上記のような抗菌性製品を製造するために添加される従
来の抗菌性組成物としては有機系のものと、無機系のも
のとがあり、これらの内で有機系組成物はトリクロロカ
ルバニド、ポリへキサメチレンバイグアニドハイドロク
ロリド、オクタデシルジメチル−3−トリメトキシシリ
ルプロピルアンモニウムクロリド等を主成分とするもの
であり、又無機系組成物の使用例としてはアクリル綿又
は糸に染色工程で硫化銅又は銅を含有せしめたり、銀粉
や銅粉を添加するものであった。
(Prior Art) Conventional antibacterial compositions added to produce the above-mentioned antibacterial products include organic and inorganic compositions. The main components are trichlorocarbanide, polyhexamethylene biguanide hydrochloride, octadecyldimethyl-3-trimethoxysilylpropylammonium chloride, etc. Examples of the use of inorganic compositions include acrylic cotton or thread. In the dyeing process, copper sulfide or copper was added, or silver powder or copper powder was added.

(発明が解決しようとする課題及び発明の目的)従来用
いられて来た抗菌性組成物の内で有機系組成物は揮発性
を有しており、従って抗菌性製品の製造過程で逸散し易
いなめに製品としての抗菌性の発現が不安定である点及
び抗菌性製品の製造工程で高温下に曝される場合に、マ
トリクスとなるべきポリマーと反応して該ポリマー本来
の性質を著しく阻害することが多い点に課題がある。
(Problems to be Solved by the Invention and Objectives of the Invention) Among the antibacterial compositions that have been used conventionally, organic compositions are volatile and therefore do not escape during the manufacturing process of antibacterial products. Because it is easy to lick, the expression of antibacterial properties as a product is unstable, and when exposed to high temperatures during the manufacturing process of antibacterial products, it reacts with the polymer that is to be the matrix, significantly inhibiting the original properties of the polymer. The problem is that there are many things to do.

一方、抗菌性金属化合物を主成分としている無機系組成
物は繊維、フィルム等の製造に際して配合され、最終製
品中においては分散された状態を呈しており、この場合
に分散状態にある金属化合物から抗菌作用を有する金属
がイオン化して製品表面に移行して抗菌性を発現する作
用機構となっている。
On the other hand, inorganic compositions containing antibacterial metal compounds as a main component are blended during the production of fibers, films, etc., and are in a dispersed state in the final product. The mechanism of action is that metals that have antibacterial effects are ionized and transferred to the product surface, thereby exhibiting antibacterial properties.

アクリル綿又は糸に染色工程で硫化銅又は銅を含有せし
める方法は工程数も長く、長時間の反応を要するために
高価となる点に課題があった。
The method of incorporating copper sulfide or copper into acrylic cotton or yarn during the dyeing process has problems in that it is expensive because it requires a long number of steps and a long reaction time.

更に、銀粉や銅粉等を用いる場合には比重が高いために
抗菌性製品を製作する迄に沈降を生じ易く、従って取扱
いが不便であるのみならず、大量配合の必要性をもたら
すと云う実用面からの課題があった。
Furthermore, when silver powder, copper powder, etc. are used, due to their high specific gravity, they tend to settle before producing antibacterial products, which is not only inconvenient to handle, but also requires a large amount of compounding. There were issues from the front.

それ故に、本発明の目的は抗菌作用を有する金属の量割
合が相対的に少なく、従って比重が小さく、しかも充分
な抗菌性を有する抗菌性組成物を提供することにある。
Therefore, an object of the present invention is to provide an antibacterial composition which has a relatively small proportion of metals having an antibacterial effect, has a low specific gravity, and has sufficient antibacterial properties.

(課題を解決し、目的を達成する手段及び作用)本発明
によれば、上記の課題は、抗菌作用を有する金属化合物
が、酸化チタン微粒子の表面に付着せしめられているこ
とを特徴とする抗菌性組成物により基本的に解決される
と共に、上記の目的が達成される。
(Means and effects for solving the problem and achieving the object) According to the present invention, the above-mentioned problem is solved by using an antibacterial method characterized in that a metal compound having an antibacterial effect is attached to the surface of titanium oxide fine particles. The above objectives are basically solved and achieved by the sexual composition.

即ち、本発明においては比重の小さな酸化チタンを担体
として用いることにより全体としての比重の軽減を図り
、これによって抗菌性製品の製造に際しての取扱いを便
ならしめ、又この担体としての酸化チタンを微粒子とし
て用いることにより付着されるべき抗菌作用を有する金
属化合物の表面積を大になしてイオン化を容易にさせて
抗菌性の向上をもならすのである。
That is, in the present invention, by using titanium oxide, which has a small specific gravity, as a carrier, the overall specific gravity is reduced, which facilitates handling during the production of antibacterial products. By using it as an antibacterial agent, the surface area of the metal compound having an antibacterial effect to be attached is increased, ionization is facilitated, and antibacterial properties are improved.

担体としての酸化チタンとしてはルチル型のものであっ
ても、アナターゼ型のものであっても差支えはないが、
その平均粒径は1μm又はそれ以下であることが好まし
い、!!シ、本発明による抗菌性組成物が配合されて調
製される最終製品が厚手のプラスチックス成型品等の場
合には酸化チタン微粒子の平均粒径に上記のような制限
は必ずしも存在しないが、最終製品が繊維、フィルム、
ペイント等の薄手のものとなされる場合には酸化チタン
微粒子の平均粒径が1μm以上であると最大粒径も大と
なるので最終製品の表面に凹凸が目立つようになり外観
や品質において低下を来たすからである。殊に、本発明
による抗菌性組成物を配合して抗菌性の合成繊維を製造
しようとする場合には酸化チタン微粒子として平均粒径
が0.5μm又はそれ以下のものを用いるのが好ましい
、l!し、最大粒径10μm以上の酸化チタン粒子が存
在すると紡糸ノズルに口塞りを生じる虞れがあるからで
ある。尚、担体としての酸化チタン微粒子はその平均粒
径が小さい程、これに付着した抗菌作用を有する金属化
合物の表面積が増加し、抗菌性が向上することに留意さ
れ度い。
There is no problem whether the titanium oxide used as a carrier is rutile type or anatase type.
Preferably, the average particle size is 1 μm or less! ! If the final product prepared by blending the antibacterial composition according to the present invention is a thick plastic molded product, etc., the above-mentioned limit on the average particle size of the titanium oxide fine particles does not necessarily exist. Products include fibers, films,
When used in thin products such as paint, if the average particle size of the titanium oxide fine particles is 1 μm or more, the maximum particle size will also be large, resulting in noticeable unevenness on the surface of the final product and a decrease in appearance and quality. Because it is coming. In particular, when it is intended to produce antibacterial synthetic fibers by blending the antibacterial composition according to the present invention, it is preferable to use titanium oxide fine particles having an average particle size of 0.5 μm or less. ! However, if titanium oxide particles with a maximum particle size of 10 μm or more are present, there is a risk that the spinning nozzle will become clogged. It should be noted that the smaller the average particle diameter of the titanium oxide fine particles used as a carrier, the more the surface area of the metal compound with antibacterial action attached thereto increases, and the antibacterial property improves.

本発明による抗菌性組成物において、抗菌作用を有する
金属化合物としては種々のもの、例えば銀、銅、亜鉛、
錫、鉛、ビスマス、カドミウム、クロム、水銀等の化合
物が考えられるが、抗菌力の程度、保健衛生上等の観点
から酸化銀、塩化銀、酸化銅又はこれらの2種以上を用
いるのが好ましい、銀又は銅が付着せしめられる量は担
体である酸化チタン微粒子に対して金属として1wt%
以上である。この場合の下限値は抗菌性能や用途を考慮
に入れたものである。即ち、抗菌性組成物において抗菌
性金属化合物の付着量が金属として1wtJ未満である
と、その用途に依存して、例えば抗菌性繊維製品になす
場合に所期の抗菌性能をもたらすためには紡糸原液への
抗菌性組成物の配合量を相対的に大にする必要性が生じ
るが、紡糸原液に抗菌性組成物を6x又はそれ以上添加
すると紡糸時に糸切れが多くなって生産性が低下するか
らである、尚、銀化合物と銅化合物の両者を用いる場合
に、これらの付着量は酸化チタ・ン微粒子に対してそれ
ぞれ金属として0.5wt%以上である。この場合にお
ける下限値の設定理由は上記と同様である。
In the antibacterial composition according to the present invention, there are various metal compounds having antibacterial activity, such as silver, copper, zinc,
Compounds such as tin, lead, bismuth, cadmium, chromium, and mercury can be considered, but it is preferable to use silver oxide, silver chloride, copper oxide, or two or more of these from the viewpoint of antibacterial activity and hygiene. , the amount of silver or copper deposited is 1wt% as a metal based on the titanium oxide fine particles that are the carrier.
That's all. In this case, the lower limit value takes into account antibacterial performance and usage. That is, if the amount of the antibacterial metal compound deposited in the antibacterial composition is less than 1 wtJ as a metal, depending on the application, for example, when making an antibacterial textile product, in order to provide the desired antibacterial performance, spinning is necessary. It is necessary to relatively increase the amount of antibacterial composition added to the spinning stock solution, but if 6x or more of the antibacterial composition is added to the spinning stock solution, yarn breakage will increase during spinning and productivity will decrease. Furthermore, when both a silver compound and a copper compound are used, the amount of these deposited is 0.5 wt % or more as a metal, respectively, based on the titanium oxide fine particles. The reason for setting the lower limit value in this case is the same as above.

担体としての酸化チタン微粒子に銀化合物又は銅化合物
若しくはこれらの両者を付着させて本発明による抗菌性
組成物を製造するためには、自体周知の真空蒸着法や還
元析出法を用いることができる。
In order to produce the antibacterial composition according to the present invention by attaching a silver compound, a copper compound, or both to titanium oxide fine particles as a carrier, a well-known vacuum evaporation method or a reduction precipitation method can be used.

これらの内で、真空蒸着法は酸化チタン微粒子を蒸着装
置のチャンバー内にセットし、蒸着源(銀、銅又は銀−
鋼合金の切片)をタングステン製バスケットに乗せて上
記のチャンバー°内にセットし、該チャンバー内を減圧
しく約2 x 10−’Torr程度迄)、次いで上記
の酸化チタン微粒子を振動させながら上記のタングステ
ンバスケットを加熱して上記の蒸着源金属を蒸発せしめ
、ついでこのものを酸化又は塩化物化処理することによ
り実施することができる。
Among these, the vacuum evaporation method involves setting titanium oxide fine particles in the chamber of a evaporation device and using a evaporation source (silver, copper or silver-
A piece of steel alloy) was placed on a tungsten basket and set in the above chamber, and the pressure inside the chamber was reduced to about 2 x 10 Torr), and then the titanium oxide fine particles were vibrated and heated as described above. This can be carried out by heating a tungsten basket to evaporate the above deposition source metal, and then subjecting it to oxidation or chloride treatment.

一方、還元析出法は、酸化チタン微粒子を純水中に分散
させ、この分散液とメツキ液とを混合し、次いで、攪拌
しながらこの混合液にメツキ用還元液を添加して金属を
該酸化チタン微粒子に付着させたのち、酸化又は塩化物
化処理することにより実施することができる。
On the other hand, in the reduction precipitation method, titanium oxide fine particles are dispersed in pure water, this dispersion liquid is mixed with a plating liquid, and then a reducing liquid for plating is added to this mixed liquid while stirring to remove the metal from the oxidized metal. This can be carried out by adhering it to titanium fine particles and then subjecting it to oxidation or chloride treatment.

これらの両方法の内で真空蒸着法は蒸発金属の照射方向
が限定されるために、金属を酸化チタン微粒子に均斉に
付着させる目的で酸化チタン微粒子に振動を与えて転動
させる必要性があり、この場合に粗い粒子が上に且つ細
かい粒子が下になる傾向があり、従って酸化チタン微粒
子の粒径が揃っていないと金属の付着量に差が生じるが
、−方、還元析出法によれば、分散した状態の酸化チタ
ン微粒子上に金属が析出してゆくので均斉な付着が可能
であり、付着量の制御も容易なので、前者よりも後者の
方法が好ましい。
Of these two methods, the vacuum evaporation method is limited in the direction of irradiation of the evaporated metal, so it is necessary to vibrate and roll the titanium oxide particles in order to uniformly attach the metal to the titanium oxide particles. In this case, the coarse particles tend to be on top and the fine particles on the bottom, so if the particle sizes of titanium oxide fine particles are not uniform, there will be a difference in the amount of metal deposited. For example, since the metal is deposited on the titanium oxide fine particles in a dispersed state, uniform deposition is possible, and the amount of deposition can be easily controlled, so the latter method is preferable to the former method.

(実施例等) 次に、本発明による抗菌性組成物の製造例及び使用例(
抗菌性繊維の製造及び抗菌性評価)により、本発明を更
に詳細に説明する。
(Examples, etc.) Next, production examples and usage examples of the antibacterial composition according to the present invention (
The present invention will be explained in more detail with reference to (Manufacturing of antibacterial fibers and evaluation of antibacterial properties).

尚、下記において言及するX及び部は、別設の定めがな
い限り重量基準によるものである。
Note that X and parts referred to below are based on weight unless otherwise specified.

臀1jLユ (1)下記の3種類の液を調製した。Buttocks 1jL Yu (1) The following three types of liquids were prepared.

A)酸化チタン分散液 酸化チタン粉末(平均粒径0.5μm) 65gを純水
300mjに分散させたもの。
A) Titanium oxide dispersion 65 g of titanium oxide powder (average particle size 0.5 μm) was dispersed in 300 mj of pure water.

B)銀メツキ液 硝酸銀20gを純水に溶解して800+ajとした後に
水酸化アンモニウムを添加してPHを11に調整したも
の。
B) Silver plating solution: 20 g of silver nitrate was dissolved in pure water to give a pH of 800+aj, and then ammonium hydroxide was added to adjust the pH to 11.

C)銀メツキ用還元液 酒石酸カリウムナトリウム(4水和物) 100gを純
水により溶解して700mjとなし、液温を30℃に保
ったもの。
C) Reducing liquid for silver plating 100 g of potassium sodium tartrate (tetrahydrate) was dissolved in pure water to make 700 mj, and the liquid temperature was maintained at 30°C.

(2)操作 上記の酸化チタン分散液(A)  に銀メツキ液(B)
を添加して混合し、液温30’Cで攪拌しながら上記の
銀メツキ用還元液を添加して攪拌を続けることにより銀
イオンを完全に還元させ、次いで更に1時間攪拌を継続
しな。
(2) Operation The above titanium oxide dispersion (A) and silver plating solution (B)
was added and mixed, and while stirring at a liquid temperature of 30'C, the above-mentioned reducing solution for silver plating was added and stirring was continued to completely reduce the silver ions, and then stirring was continued for an additional hour.

その後に攪拌を中止し、No、5C濾紙を用いて吸引濾
過し、純水で充分に洗浄し、ついで希塩酸(IN) 3
00mj中に濾紙上の粉末を移し入れ攪拌して反応させ
濾過し、純水洗浄して、黄色の容器に入れて80℃の空
気乾燥機内で12時間乾燥することにより所望の抗菌性
組成物を得た。
After that, stirring was stopped, suction filtration was performed using No. 5C filter paper, and the mixture was washed thoroughly with pure water, and then diluted with dilute hydrochloric acid (IN) 3
The desired antibacterial composition is obtained by transferring the powder on the filter paper into a 00mJ, stirring, reacting, filtering, washing with pure water, placing in a yellow container and drying in an air dryer at 80°C for 12 hours. Obtained.

この抗菌性組成物における銀の付着状態をEPMAにて
!!察しな処、酸化チタン粉末の表面に銀の塩化物が均
斉に付着していることが判明した。
Check the state of silver adhesion in this antibacterial composition using EPMA! ! Unexpectedly, it was discovered that silver chloride was uniformly attached to the surface of the titanium oxide powder.

化学分析によれば、銀としての付着量は16.3%であ
った。
According to chemical analysis, the amount of deposited silver was 16.3%.

製1j[に」よ 酸化チタン分散液として酸化チタン粉末を241.3g
、410.6g、1257.3g  を用いたこと並び
に銀イオンの完全還元後の攪拌を2時間に亘り継続した
以外は、製造例1と全く同様にして3種類の抗菌性組成
物を得た。
241.3g of titanium oxide powder as a titanium oxide dispersion
, 410.6 g, and 1257.3 g were used, and stirring was continued for 2 hours after complete reduction of silver ions, but three types of antibacterial compositions were obtained in exactly the same manner as in Production Example 1.

EPMA観察によれば、何れの抗菌性組成物においても
酸化チタン粉末の表面に銀の塩化物が均斉に付着してお
り、又化学分析によれば、銀としての付着量はそれぞれ
5.0%、3.0%及び1−.0%であった。
According to EPMA observation, silver chloride was uniformly attached to the surface of the titanium oxide powder in all antibacterial compositions, and according to chemical analysis, the amount of silver attached was 5.0% in each case. , 3.0% and 1-. It was 0%.

また、製造例2〜4で得た酸化チタン粉末の表面に銀の
塩化物を付着したものを、それぞれ1/2の量づつ取り
、水酸化ナトリウム水溶液(IN> 300mj中に移
し入れ攪拌して反応させ、濾過し、純水洗浄して褐色の
容器に入れて60℃空気乾燥機内で12時間乾燥した。
In addition, 1/2 of each of the titanium oxide powders obtained in Production Examples 2 to 4 with silver chloride adhered to the surface was taken and transferred into an aqueous sodium hydroxide solution (IN > 300mj) and stirred. The reaction mixture was filtered, washed with pure water, placed in a brown container, and dried in an air dryer at 60° C. for 12 hours.

ここで得た粉末をEPMAlfll 察によれば、何れ
も酸化チタン粉末の表面の銀の塩化物が酸化物に変わっ
ており、又化学分析によれば、銀としての付着量はそれ
ぞれ変化なかった。
According to EPM Alfll examination of the powders obtained here, the silver chloride on the surface of the titanium oxide powder had changed to oxide, and chemical analysis showed that the amount of deposited silver did not change in each case.

11匠j (1)次の銅メツキ液及び銅メツキ用還元液を調製した
11 Takumi j (1) The following copper plating solution and reducing solution for copper plating were prepared.

B’)銅メツキ液 硫酸ff1(5水和物)34.6g、酒石酸カリウムナ
トリウム(4水和物) 173g、及び水酸化ナトリウ
ム50gを純水により溶解して500mjとなしたもの
B') Copper plating solution 34.6 g of sulfuric acid ff1 (pentahydrate), 173 g of potassium sodium tartrate (tetrahydrate), and 50 g of sodium hydroxide were dissolved in pure water to make 500 mJ.

C’)銅メツキ還元液 37%ホルムアルデヒド溶液150mjであって、液温
30℃に保たれたもの。
C') Copper plating reducing solution: 150 mj of 37% formaldehyde solution, kept at a liquid temperature of 30°C.

(2)操作 製造例1で調製した酸化チタン分散液(A)に上記の銅
メツキ液(B′)を添加して混合し、液温30℃で攪拌
しながら上記の銅メツキ還元液(C゛)を添加して攪拌
を続けることにより銅イオンを完全に還元させ、次いで
更に1時間攪拌を継続した。
(2) Operation Add the above copper plating solution (B') to the titanium oxide dispersion (A) prepared in Production Example 1 and mix. While stirring at a liquid temperature of 30°C, the above copper plating reducing solution (C The copper ions were completely reduced by adding and stirring the mixture, and then stirring was continued for an additional hour.

その後に攪拌を中止し、No、5C濾紙を用いて吸引濾
過し、純水で充分に洗浄し、80℃の空気乾燥機内で1
2時間乾燥し、400℃の空気中で熱処理を行うことに
より酸化チタン表面に銅の酸化物が均斉に付着した所望
の抗菌性組成物を得た。
After that, stirring was stopped, filtered by suction using No. 5C filter paper, thoroughly washed with pure water, and dried in an air dryer at 80°C.
By drying for 2 hours and heat-treating in air at 400°C, a desired antibacterial composition in which copper oxide was uniformly adhered to the surface of titanium oxide was obtained.

この抗菌性組成物における銅の付着状態をEPMAによ
り観察した処、酸化チタン粉末の表面に銅の酸化物が均
斉に付着していることが判明した。
When the state of copper adhesion in this antibacterial composition was observed by EPMA, it was found that copper oxide was uniformly adhered to the surface of the titanium oxide powder.

化学分析によれば銅としての付着量は11.9%であっ
た。
According to chemical analysis, the amount of deposited copper was 11.9%.

裂i殊」L二」− 酸化チタン分散液として酸化チタン粉末を166.1g
、282.6g、865.3gを用いたこと並びに銅イ
オンの完全還元後の攪拌を2時間に亘り継続した以外は
、製造例5と全く同様にして3 種類の抗菌性組成物を
得た。
166.1g of titanium oxide powder as a titanium oxide dispersion
Three types of antibacterial compositions were obtained in exactly the same manner as in Production Example 5, except that , 282.6 g, and 865.3 g were used, and stirring was continued for 2 hours after complete reduction of copper ions.

EPMA観察によれば、何れの抗菌性組成物においても
酸化チタン粉末の表面に銅の酸化物が均斉に付着してお
り、又化学分析によれば、銅としての付着量はそれぞれ
5,0%、3.0%及び1.0%であった。
According to EPMA observation, copper oxide was uniformly attached to the surface of the titanium oxide powder in all antibacterial compositions, and according to chemical analysis, the amount of copper attached was 5.0% in each case. , 3.0% and 1.0%.

使JJLL 平均粒径0.5μ重の酸化チタン微粒子を担体とし、塩
化銀を銀として10%付着させた抗菌性組成物201重
量部、アクリロニトリル(以下ANと略記する)/アク
リル酸メチル(以下)4Aと略記する)/メタリルスル
ホン酸ソーダ= 90.0/9.0/160の組成で分
子量5万のアクリル系重合体(A)2重量部、ジメチル
ホルムアミド(以下DMFと略記する)78重量部をホ
モミキサーを用いて約1時間分散した0次いでサンドグ
ラインダーを用いて上記該抗菌剤予備分散液を約5分間
分散した後、連続的に前記アクリル系重合体(A) 2
0重量部、DMF 80重量部よりなる紡糸原液に上記
該抗菌性組成物が上記アクリル系重合体(A) 4::
対しr 1.0.0.5.0.1重量%となるようにパ
イプラインミキサーを用いて添加混合し、常法に従って
湿式紡糸して3デニールの抗菌性アクリル系繊維を得た
201 parts by weight of an antibacterial composition made of titanium oxide fine particles with an average particle size of 0.5μ as a carrier and 10% silver chloride attached as silver, acrylonitrile (hereinafter abbreviated as AN)/methyl acrylate (hereinafter). 2 parts by weight of acrylic polymer (A) with a composition of 90.0/9.0/160 and a molecular weight of 50,000, 78 parts by weight of dimethylformamide (hereinafter abbreviated as DMF) After dispersing the antibacterial agent predispersion for about 5 minutes using a sand grinder, the acrylic polymer (A) 2 was dispersed for about 1 hour using a homomixer.
The above antibacterial composition is added to the spinning stock solution consisting of 0 parts by weight and 80 parts by weight of DMF, and the acrylic polymer (A) 4::
They were added and mixed using a pipeline mixer so that r was 1.0.0.5.0.1% by weight, and wet-spun according to a conventional method to obtain a 3-denier antibacterial acrylic fiber.

この繊維の抗菌性評価を後記の第1表に示す。The antibacterial evaluation of this fiber is shown in Table 1 below.

この表によると上記の抗菌性組成物を0.5%以上添加
することによって良好な抗菌性がもたらされることが判
る。尚、抗菌性の評価は、抗菌性アクリル系繊維を常法
により紡績して30番単糸となした後、丸編みしたもの
を被験体として用い且つ繊維製品衛生加工協議会制定の
抗菌防臭加工製品認定基準「シェークフラスコ法」の方
法により行った(以下の使用例においても同様)。
According to this table, it can be seen that adding 0.5% or more of the above-mentioned antibacterial composition brings about good antibacterial properties. The antibacterial properties were evaluated by spinning antibacterial acrylic fibers into No. 30 single yarn using a conventional method, and then circularly knitting them. This was carried out using the product certification standard "shake flask method" (the same applies to the following usage examples).

そして後記の第1.2及び3表において、洗濯回数の右
欄が被検体の菌減少率を示す。
In Tables 1.2 and 3 below, the column to the right of the number of washes indicates the bacterial reduction rate of the test object.

丸肚漣ユ 平均粒径0.5μmの酸化チタン微粒子゛を担体とし、
酸化銀を銀として5%付着させた抗菌性組成物を用いて
使用例1と同様の組成、方法で抗菌性アクリル系繊維を
得た。
Using fine titanium oxide particles with an average particle size of 0.5 μm as a carrier,
Antibacterial acrylic fibers were obtained using the same composition and method as in Use Example 1 using an antibacterial composition to which 5% silver oxide was attached.

この繊維の抗菌性評価を後記の第1表に示す。The antibacterial evaluation of this fiber is shown in Table 1 below.

この表によると上記の抗菌性組成物を0.7%以上添加
することによって良好な抗菌性がもたらされることが判
る。
According to this table, it can be seen that good antibacterial properties are brought about by adding 0.7% or more of the above antibacterial composition.

吏11ユ 平均粒径0.5μ重の酸化チタン微粒子を担体とし、酸
化銅を銅として5%付着させた抗菌性組成物を用いて使
用例1と同様の組成、方法で抗菌性アクリル系繊維を得
な。
Antibacterial acrylic fibers were prepared using the same composition and method as in Use Example 1 using an antibacterial composition in which 5% copper oxide was attached to a carrier of titanium oxide fine particles with an average particle diameter of 0.5μ. Don't get it.

この繊維の抗菌性評価を後記の第2表に示す。The antibacterial evaluation of this fiber is shown in Table 2 below.

この表によると上記の抗菌性組成物を0.7%以上添加
することによって良好な抗菌性がもたらされることが判
る。
According to this table, it can be seen that good antibacterial properties are brought about by adding 0.7% or more of the above antibacterial composition.

臭肚涯1 平均粒径0.5μmの酸化チタン微粒子を担体とし、塩
化銀を銀として5%、酸化銅を銅としてIXそれぞれ付
着させた抗菌性組成物を用いて使用例1と同様の組成、
方法で抗菌性アクリル系繊維を得た。
1. The same composition as in Use Example 1 using an antibacterial composition in which 5% silver chloride as silver and IX copper oxide as copper were attached to titanium oxide fine particles with an average particle size of 0.5 μm as a carrier. ,
Antibacterial acrylic fibers were obtained by this method.

この繊維の抗菌性評価を後記の第2表に示す。The antibacterial evaluation of this fiber is shown in Table 2 below.

この表によると上記の抗菌性組成物を0.6%以上添加
することによって良好な抗菌性がもたらされることが判
る。
According to this table, it can be seen that good antibacterial properties are brought about by adding 0.6% or more of the above antibacterial composition.

吏肚昨j 平均粒径0.5μ鳳の酸化チタン微粒子を担体とし、酸
化銀を銀として3% 、酸化銅を銅として5Xそれぞれ
付着させた抗菌性組成物を用いて使用例1と同様の組成
、方法で抗菌性アクリル系繊維を得た。
The same procedure as in Example 1 was carried out using an antibacterial composition in which titanium oxide fine particles with an average particle size of 0.5μ were used as a carrier, and 3% silver oxide and 5x copper oxide were attached to the antibacterial composition. Antibacterial acrylic fibers were obtained using the composition and method.

この繊維の抗菌性評価を後記の第3表に示す。The antibacterial evaluation of this fiber is shown in Table 3 below.

この表によると上記の抗菌性組成物を0.5%以上添加
することによって良好な抗菌性がもたらされることが判
る。
According to this table, it can be seen that adding 0.5% or more of the above-mentioned antibacterial composition brings about good antibacterial properties.

丸肚隨1 平均粒径0.5μmの酸化チタン微粒子を担体とし、塩
化銀を銀として3%、酸化銀を銀として3Xそれぞれ付
着させた抗菌性組成物を用いて使用例1と同様の組成、
方法で抗菌性アクリル系繊維を得た。
Marubeni 1 The same composition as in Use Example 1 using an antibacterial composition in which 3% silver chloride as silver and 3X silver oxide were attached to titanium oxide fine particles with an average particle size of 0.5 μm as a carrier. ,
Antibacterial acrylic fibers were obtained by this method.

この繊維の抗菌性評価を後記の第3表に示す。The antibacterial evaluation of this fiber is shown in Table 3 below.

この表によると上記の抗菌性組成物を0.6%以上添加
することによって良好な抗菌性がもたらされることが判
る。
According to this table, it can be seen that good antibacterial properties are brought about by adding 0.6% or more of the above antibacterial composition.

i肚λユ 平均粒径0.5μmの酸化チタン微粒子゛を担体とし、
塩化銀を銀として5%付着させた抗菌性組成物20重量
部、AN/MA/メタリルスルホン酸ソーダ= 90.
0/9.0/1.0の組成で分子量5万のアクリル系重
合体(A)2重量部、D M F 78重量部をホモミ
キサーを用いて約1時間分散した0次いでサンドグライ
ンダーを用いて上記の抗菌性組成物予備分散液を約5分
間分散した後、連続的に前記アクリル系重合体(A) 
23重量部、D)4F 77重量部よりなる紡糸原液に
上記該抗菌剤が上記アクリル系重合体(A)  に対し
て0.3重量Xとなるようにパイプラインミキサーを用
いて添加混合し、常法に従って湿式紡糸して3デニール
の抗菌性アクリル系繊維を得た。この繊維の抗菌性評価
を後記の第4表に示す。
Titanium oxide fine particles with an average particle diameter of 0.5 μm are used as a carrier,
20 parts by weight of antibacterial composition with 5% silver chloride deposited, AN/MA/sodium methallylsulfonate = 90.
2 parts by weight of an acrylic polymer (A) with a composition of 0/9.0/1.0 and a molecular weight of 50,000 and 78 parts by weight of DMF were dispersed for about 1 hour using a homomixer. Then, using a sand grinder. After dispersing the antibacterial composition preliminary dispersion for about 5 minutes, the acrylic polymer (A) was continuously dispersed.
Using a pipeline mixer, add and mix the above antibacterial agent to a spinning stock solution consisting of 23 parts by weight and 77 parts by weight of D)4F so that the amount of the antibacterial agent is 0.3 weight X based on the acrylic polymer (A), A 3-denier antibacterial acrylic fiber was obtained by wet spinning according to a conventional method. The antibacterial evaluation of this fiber is shown in Table 4 below.

この表によると、上記の抗菌性繊維は種々の細菌類に対
して良好な抗菌性を有していることが判る。
According to this table, it can be seen that the antibacterial fibers described above have good antibacterial properties against various bacteria.

(発明の効果) 上述のことから、本発明により次の効果がもたらされる
(Effects of the Invention) From the above, the present invention provides the following effects.

(1)酸化チタン微粒子の表面に銀の化合物や銅の化合
物が付着せしめられているので、従来の銀粉や銅粉のみ
の粒子に比較して同一粒径、同一重量であっても、その
表面積が飛躍的に大になる。
(1) Since silver compounds and copper compounds are attached to the surface of titanium oxide fine particles, their surface area is higher than that of conventional particles made only of silver powder or copper powder, even if they have the same particle size and weight. becomes exponentially larger.

(2〉従って銀や銅の使用量が従来品に比較してはるか
に少なくても、抗菌効果が著しく向上し、従って本発明
による抗菌性組成物は従来品よりも相対的に廉価に供給
することができる。
(2) Therefore, even if the amount of silver and copper used is much lower than that of conventional products, the antibacterial effect is significantly improved, and therefore, the antibacterial composition of the present invention can be supplied at a relatively lower price than conventional products. be able to.

(3)本発明の抗菌性組成物は担体が酸化チタンである
ため、銀や銅に比較して全体としての比重が約1/2−
1/3であるので、これを使用して抗菌性製品を製造す
る場合に、沈降による偏分数を抑制乃至阻止することが
できる。
(3) Since the carrier of the antibacterial composition of the present invention is titanium oxide, the overall specific gravity is about 1/2 compared to silver or copper.
Since it is 1/3, when using this to manufacture antibacterial products, it is possible to suppress or prevent uneven fraction due to sedimentation.

Claims (5)

【特許請求の範囲】[Claims] (1)抗菌作用を有する金属化合物が、酸化チタン微粒
子の表面に付着せしめられていることを特徴とする抗菌
性組成物。
(1) An antibacterial composition characterized in that a metal compound having an antibacterial effect is attached to the surface of titanium oxide fine particles.
(2)抗菌作用を有する金属化合物が、酸化銀、塩化銀
および酸化銅の少くとも一種であることを特徴とする、
請求項(1)に記載の抗菌性組成物。
(2) characterized in that the metal compound having an antibacterial effect is at least one of silver oxide, silver chloride and copper oxide;
The antibacterial composition according to claim (1).
(3)酸化チタン微粒子の平均粒径が1μm又はそれ以
下であることを特徴とする、請求項(1)又は(2)に
記載の抗菌性組成物。
(3) The antibacterial composition according to claim (1) or (2), wherein the titanium oxide fine particles have an average particle size of 1 μm or less.
(4)抗菌作用を有する金属化合物の付着量が酸化チタ
ン微粒子に対して金属として1wt%以上であることを
特徴とする、請求項(1)−(3)の何れか一つに記載
の抗菌性組成物。
(4) The antibacterial agent according to any one of claims (1) to (3), characterized in that the amount of the metal compound having an antibacterial effect attached is 1 wt% or more as metal based on the titanium oxide fine particles. sexual composition.
(5)抗菌作用を有する金属化合物が銀化合物と銅化合
物の両者であつて、その付着量が酸化チタン微粒子に対
してそれぞれ0.5wt%以上であることを特徴とする
、請求項(1)−(4)の何れか一つに記載の抗菌性組
成物。
(5) Claim (1) characterized in that the metal compound having an antibacterial effect is both a silver compound and a copper compound, and the adhesion amount of each is 0.5 wt% or more based on the titanium oxide fine particles. - The antibacterial composition according to any one of (4).
JP1087001A 1989-02-28 1989-04-07 Antimicrobial composition Pending JPH02268103A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1087001A JPH02268103A (en) 1989-04-07 1989-04-07 Antimicrobial composition
EP19900903399 EP0427858A4 (en) 1989-02-28 1990-02-27 Antibacterial or conductive composition and applications thereof
PCT/JP1990/000243 WO1990009736A1 (en) 1989-02-28 1990-02-27 Antibacterial or conductive composition and applications thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1087001A JPH02268103A (en) 1989-04-07 1989-04-07 Antimicrobial composition

Publications (1)

Publication Number Publication Date
JPH02268103A true JPH02268103A (en) 1990-11-01

Family

ID=13902645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1087001A Pending JPH02268103A (en) 1989-02-28 1989-04-07 Antimicrobial composition

Country Status (1)

Country Link
JP (1) JPH02268103A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04231062A (en) * 1990-09-18 1992-08-19 Create Medic Kk Antimicrobial medical product
JPH04231063A (en) * 1990-09-18 1992-08-19 Create Medic Kk Antimicrobial composition
JPH06227925A (en) * 1993-01-28 1994-08-16 Kenji Nakamura Antimicrobial porous capsule and its production
JPH08268820A (en) * 1995-03-14 1996-10-15 Johnson Matthey Plc Bactericidal composition
KR100429164B1 (en) * 1996-05-20 2004-08-25 삼성아토피나주식회사 Production of inorganic antimicrobial agent by treating waste supported silver catalyst with dilute nitric acid to melt silver from catalyst while keeping silver chloride which is supported on carrier intact and production of antimicrobial resin composition having low toxicity and high antibacterial potency using inorganic antimicrobial agent
JP2006523628A (en) * 2003-04-18 2006-10-19 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Compound
WO2006133857A1 (en) * 2005-06-16 2006-12-21 Imperial Chemical Industries Plc Anti-microbial paint films
JP2010505887A (en) * 2006-10-12 2010-02-25 エヌエム テック ナノマテリアルズ マイクロディバイス テクノロジー リミテッド Materials, items and products comprising compositions having antimicrobial properties
JP2013032530A (en) * 2004-04-29 2013-02-14 Bacterin Internatl Inc Antimicrobial coating for inhibition of bacterial adhesion and biofilm formation

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04231062A (en) * 1990-09-18 1992-08-19 Create Medic Kk Antimicrobial medical product
JPH04231063A (en) * 1990-09-18 1992-08-19 Create Medic Kk Antimicrobial composition
JPH06227925A (en) * 1993-01-28 1994-08-16 Kenji Nakamura Antimicrobial porous capsule and its production
JPH08268820A (en) * 1995-03-14 1996-10-15 Johnson Matthey Plc Bactericidal composition
KR100429164B1 (en) * 1996-05-20 2004-08-25 삼성아토피나주식회사 Production of inorganic antimicrobial agent by treating waste supported silver catalyst with dilute nitric acid to melt silver from catalyst while keeping silver chloride which is supported on carrier intact and production of antimicrobial resin composition having low toxicity and high antibacterial potency using inorganic antimicrobial agent
JP2006523628A (en) * 2003-04-18 2006-10-19 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Compound
JP2013032530A (en) * 2004-04-29 2013-02-14 Bacterin Internatl Inc Antimicrobial coating for inhibition of bacterial adhesion and biofilm formation
US9763453B2 (en) 2004-04-29 2017-09-19 Bacterin International, Inc. Antimicrobial coating for inhibition of bacterial adhesion and biofilm formation
WO2006133857A1 (en) * 2005-06-16 2006-12-21 Imperial Chemical Industries Plc Anti-microbial paint films
JP2010505887A (en) * 2006-10-12 2010-02-25 エヌエム テック ナノマテリアルズ マイクロディバイス テクノロジー リミテッド Materials, items and products comprising compositions having antimicrobial properties

Similar Documents

Publication Publication Date Title
CN108589266B (en) Preparation method of nano metal particle/metal organic framework composite antibacterial cellulose fiber
WO1990009736A1 (en) Antibacterial or conductive composition and applications thereof
JPH02225402A (en) Antibacterial composition
AU2005280443A1 (en) Antimicrobial silver compositions
JPH02268103A (en) Antimicrobial composition
JPH02268104A (en) Antimicrobial composition
EP2274470B1 (en) Method of manufacturing natural or synthetic fibres containing silver nano-particles
JP4074032B2 (en) Antibacterial polyamide fiber
Gao et al. Construct the multifunction of cotton fabric by synergism between nano ZnO and Ag
JPH04194074A (en) Processing of cloth having antibacterial and deodorizing property
JPH08133918A (en) Inorganic antimicrobial agent
JPH02268105A (en) Antimicrobial composition
CN112042673B (en) Silver fulvate antibacterial agent, preparation method and application thereof, and nylon material
JPH04231062A (en) Antimicrobial medical product
JPH0497912A (en) Production of titanium oxide fine particle coated with silver
CN110845762B (en) Nano metal-stearate composite material and preparation method and application thereof
JPH10259531A (en) Antimicrobial cellulose acetate yarn and its production
JP3687191B2 (en) Antibacterial / antifungal PAN-based polymer particles, emulsion thereof, and method for producing the same
JP2002104823A (en) Anti-bacteria.anti-mildew agent
US20050199094A1 (en) Method of producing metal-containing particles
JPH054816A (en) Antibacterial titania
JPH0494009A (en) Conductive compound
KR20070082729A (en) Preparation method for silver colloid
KR20040043920A (en) Silver colloid and preparation method thereof
WO2024060307A1 (en) Preparation method for antibacterial nanocomposite material and use thereof