JP2010083775A - Antimicrobial deodorant for human and animal - Google Patents

Antimicrobial deodorant for human and animal Download PDF

Info

Publication number
JP2010083775A
JP2010083775A JP2008252403A JP2008252403A JP2010083775A JP 2010083775 A JP2010083775 A JP 2010083775A JP 2008252403 A JP2008252403 A JP 2008252403A JP 2008252403 A JP2008252403 A JP 2008252403A JP 2010083775 A JP2010083775 A JP 2010083775A
Authority
JP
Japan
Prior art keywords
antibacterial
deodorizing
titanium oxide
deodorant
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008252403A
Other languages
Japanese (ja)
Other versions
JP5483853B2 (en
Inventor
Hirofumi Kai
広文 甲斐
Mary Ann Suico
アン スイコ メリー
Atsushi Tanaka
田中  敦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumamoto University NUC
JGC Catalysts and Chemicals Ltd
Original Assignee
Kumamoto University NUC
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumamoto University NUC, JGC Catalysts and Chemicals Ltd filed Critical Kumamoto University NUC
Priority to JP2008252403A priority Critical patent/JP5483853B2/en
Publication of JP2010083775A publication Critical patent/JP2010083775A/en
Application granted granted Critical
Publication of JP5483853B2 publication Critical patent/JP5483853B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antimicrobial deodorant for human and animal, having excellent deodorant performance, deodorization performance and antimicrobial performance. <P>SOLUTION: The antimicrobial deodorant for human and animal includes an amorphous titanium oxide-based fine particle supporting one or more antimicrobial deodorant components selected from silver, copper, zinc, tin, cobalt, nickel and manganese and an antimicrobial deodorant protein obtained by bringing the fine particle into contact with a human or animal epithelial cell. Especially preferably the antimicrobial deodorant component is silver and the antimicrobial deodorant protein is a lysozyme protein. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はヒトまたは動物用防臭抗菌剤に関する。
さらに詳しくは、消臭抗菌成分を担持した抗菌機能と消臭機能とを併せ持つ無定型酸化チタン系微粒子をヒト上皮細胞または動物上皮細胞と直接接触させると細菌細胞壁を構成する多糖類を分解できる酵素であるリゾチーム蛋白質を生成し、このため抗菌性能に優れ、細菌を死滅させたり、細菌の増殖を抑制できることから臭気成分の発生を防止あるいは抑制することができる極めて高い防臭性能、抗菌性能を発揮するヒトまたは動物用防臭抗菌剤に関する。
The present invention relates to a deodorizing antibacterial agent for humans or animals.
More specifically, an enzyme capable of degrading a polysaccharide constituting a bacterial cell wall when amorphous titanium oxide microparticles having both an antibacterial function and a deodorizing function supporting a deodorizing antibacterial component are brought into direct contact with human epithelial cells or animal epithelial cells. Lysozyme protein is produced, and thus has excellent antibacterial performance, and can exhibit the extremely high deodorizing and antibacterial performance that can prevent or suppress the generation of odorous components because it can kill bacteria or suppress the growth of bacteria It relates to a deodorizing antibacterial agent for humans or animals.

技術背景Technical background

従来、シリカゲル、複合酸化物、酸化チタン等の粉末、あるいはコロイド粒子に抗菌性を有する銀、銅、亜鉛等の金属成分を担持した抗菌性組成物が知られている。   Conventionally, an antibacterial composition in which a metal component such as silver, copper, or zinc having antibacterial properties is supported on a powder of silica gel, composite oxide, titanium oxide, or colloidal particles is known.

例えば、本願出願人は無機酸化物コロイド粒子に抗菌性金属成分を付着せしめた抗菌剤(特開平6−80527号公報:特許文献1)あるいはメタ珪酸アルミン酸マグネシウムに抗菌性を有する金属イオンをイオン交換した抗菌剤(特開平3−275627号公報:特許文献2)を開示している。
抗菌効果の持続性および抗菌物質の安定性を改善する目的で、抗菌性の金属イオンをゼオライトあるいはアルミノ珪酸塩に担持した抗菌性組成物も知られている(特開平1−283204号公報:特許文献3)。
For example, the applicant of the present application ionizes an antibacterial agent in which an antibacterial metal component is attached to inorganic oxide colloidal particles (Japanese Patent Laid-Open No. 6-80527: Patent Document 1) or metal ions having antibacterial properties in magnesium metasilicate aluminate. An exchanged antibacterial agent (JP-A-3-275627: Patent Document 2) is disclosed.
An antibacterial composition in which an antibacterial metal ion is supported on zeolite or aluminosilicate for the purpose of improving the durability of the antibacterial effect and the stability of the antibacterial substance is also known (Japanese Patent Laid-Open No. 1-283204: Patent). Reference 3).

また、本願出願人は、金属成分と該金属成分以外の無機酸化物とから構成される無機酸化物微粒子であって、前記無機酸化物が酸化チタンとシリカおよび/またはジルコニアとを含んでなり、該酸化チタンが結晶性酸化チタンである抗菌性消臭剤を開示している(特開2005−318999号公報:特許文献4)。
さらに、本願出願人は、抗菌性金属成分と該抗菌性金属成分以外の無機酸化物とから構成される微粒子を配合した化粧料(スキンパウダー)がイソ吉草酸等の悪臭を消臭できることを開示している。(特開2002−145717号公報:特許文献5)
これら従来の消臭抗菌組成物は、食器、まな板、箸、食品包装材料等の生活用品、インテリア家具、カーテン、壁、襖、障子、タイル、カーペット、ソファー等の生活環境用品、あるいは化粧品等に用いられている。
The applicant of the present invention is an inorganic oxide fine particle composed of a metal component and an inorganic oxide other than the metal component, and the inorganic oxide comprises titanium oxide and silica and / or zirconia. An antibacterial deodorant in which the titanium oxide is crystalline titanium oxide is disclosed (Japanese Patent Laid-Open No. 2005-318999: Patent Document 4).
Further, the applicant of the present application discloses that a cosmetic (skin powder) containing fine particles composed of an antibacterial metal component and an inorganic oxide other than the antibacterial metal component can deodorize malodor such as isovaleric acid. is doing. (Japanese Patent Laid-Open No. 2002-145717: Patent Document 5)
These conventional deodorant antibacterial compositions can be used in household goods such as tableware, cutting boards, chopsticks, food packaging materials, interior furniture, curtains, walls, bags, shoji, tiles, carpets, sofas, and other living environment goods, or cosmetics. It is used.

近年、ヒトあるいはペット等について、清潔志向、衛生志向が高まり、具体的には、汗、体臭、口臭、加齢臭、足臭、脇の下臭等臭気の発生部位を除菌したり、発生する臭気を抑制したり除去することが求められている。
本発明者等は鋭意検討した結果、消臭抗菌成分として銀を担持した無定型の酸化チタン微粒子をヒト上皮細胞と直接接触させると防臭性能および抗菌性能を有するリゾチウム蛋白質が生成することを見出して本発明を完成するに至った。
In recent years, there has been an increase in cleanliness and hygiene consciousness for humans and pets. Specifically, odor generation sites such as sweat, body odor, bad breath, aging odor, foot odor and armpit odor have been sterilized or generated. It is required to suppress or remove the above.
As a result of intensive studies, the present inventors have found that amorphous titanium oxide microparticles carrying silver as a deodorizing antibacterial component are directly brought into contact with human epithelial cells to produce a lysozyme protein having deodorizing performance and antibacterial performance. The present invention has been completed.

特開平6−80527号公報JP-A-6-80527 特開平3−275627号公報JP-A-3-275627 特開平1−283204号公報Japanese Patent Laid-Open No. 1-283204 特開2005−318999号公報JP 2005-318999 A 特開2002−145717号公報JP 2002-145717 A

本発明は、細菌細胞壁を構成する多糖類を分解できる酵素であり防臭機能と抗菌機能とを併せ持つ防臭抗菌性蛋白質を効率的に生成することができ、消臭性能、防臭性能および抗菌性能に優れたヒトまたは動物用防臭抗菌剤を提供することを目的としている。   The present invention is an enzyme capable of degrading a polysaccharide constituting a bacterial cell wall, can efficiently produce a deodorizing and antibacterial protein having both a deodorizing function and an antibacterial function, and is excellent in deodorizing performance, deodorizing performance and antibacterial performance. Another object is to provide a deodorizing antibacterial agent for humans or animals.

本発明に係るヒトまたは動物用防臭抗菌剤は、銀、銅、亜鉛、錫、コバルト、ニッケル、マンガンから選ばれる1種または2種以上の消臭抗菌成分が担持された無定型酸化チタン系微粒子と、該微粒子をヒトまたは動物上皮細胞と接触させて生成した防臭抗菌性蛋白質とからなることを特徴としている。
前記防臭抗菌性蛋白質がリゾチーム蛋白質であることが好ましい。
前記消臭抗菌成分が銀であることが好ましい。
前記酸化チタン系微粒子の平均粒子径が2〜300nmの範囲にあることが好ましい。
前記消臭抗菌成分が担持された無定型酸化チタン系微粒子中の前記消臭抗菌成分の担持量が、酸化物として0.1〜20重量%の範囲にあることが好ましい。
The deodorizing antibacterial agent for humans or animals according to the present invention is amorphous titanium oxide fine particles carrying one or more deodorizing antibacterial components selected from silver, copper, zinc, tin, cobalt, nickel, and manganese. And a deodorizing and antibacterial protein produced by bringing the microparticles into contact with human or animal epithelial cells.
It is preferable that the deodorizing antibacterial protein is a lysozyme protein.
The deodorizing antibacterial component is preferably silver.
The average particle diameter of the titanium oxide-based fine particles is preferably in the range of 2 to 300 nm.
The loading amount of the deodorizing antibacterial component in the amorphous titanium oxide-based fine particles on which the deodorizing antibacterial component is supported is preferably in the range of 0.1 to 20% by weight as an oxide.

本発明によれば、細菌細胞壁を構成する多糖類を分解できる酵素であり、防臭機能と抗菌機能とを併せ持つ防臭抗菌性蛋白質を効率的に生成することができ、消臭性能、防臭性能および抗菌性能に優れたヒトまたは動物用防臭抗菌剤を提供することができる。
According to the present invention, an enzyme capable of degrading a polysaccharide constituting a bacterial cell wall, and can efficiently produce a deodorizing and antibacterial protein having both a deodorizing function and an antibacterial function. It is possible to provide a human or animal deodorant antibacterial agent having excellent performance.

以下に、本発明に係るヒトまたは動物用防臭抗菌剤について具体的に説明する。
ヒトまたは動物用防臭抗菌剤
本発明に係るヒトまたは動物用防臭抗菌剤は、銀、銅、亜鉛、錫、コバルト、ニッケル、マンガンから選ばれる1種または2種以上の消臭抗菌成分が担持された無定型酸化チタン系微粒子と、該微粒子をヒトまたは動物上皮細胞と接触させて生成した防臭抗菌性蛋白質とからなることを特徴としている。
The human or animal deodorant antibacterial agent according to the present invention will be specifically described below.
Human or Animal Deodorant Antibacterial Agent The human or animal deodorant antibacterial agent according to the present invention carries one or more deodorant antibacterial components selected from silver, copper, zinc, tin, cobalt, nickel, and manganese. It is characterized by comprising amorphous titanium oxide-based fine particles and deodorant antibacterial proteins produced by contacting the fine particles with human or animal epithelial cells.

無定型酸化チタン系微粒子
本発明に用いる無定型酸化チタン系微粒子としては無定型酸化チタン微粒子、無定型酸化チタン以外の酸化物を含む無定型酸化チタン微粒子が挙げられる。無定型酸化チタン以外の酸化物を含む無定型酸化チタン微粒子の酸化チタン以外の酸化物としてはシリカおよび/またはジルコニアが挙げられる。
この時の無定型酸化チタン系微粒子中の酸化チタンの含有量は50重量%以上、さらには70〜98重量%の範囲にあることが好ましい。
無定型酸化チタン系微粒子中の酸化チタンの含有量が50重量%未満の場合は、後述する防臭抗菌性蛋白質であるリゾチーム蛋白質の生成が不充分となり、充分な防臭性能、抗菌性能、消臭性能が得られないことがある。
Amorphous Titanium Oxide Fine Particles Amorphous titanium oxide fine particles used in the present invention include amorphous titanium oxide fine particles and amorphous titanium oxide fine particles containing oxides other than amorphous titanium oxide. Silica and / or zirconia is mentioned as oxides other than titanium oxide of amorphous titanium oxide fine particles containing oxides other than amorphous titanium oxide.
At this time, the content of titanium oxide in the amorphous titanium oxide fine particles is preferably 50% by weight or more, and more preferably in the range of 70 to 98% by weight.
When the content of titanium oxide in the amorphous titanium oxide fine particles is less than 50% by weight, the production of lysozyme protein, which is the deodorizing antibacterial protein described later, becomes insufficient, and sufficient deodorizing performance, antibacterial performance, and deodorizing performance. May not be obtained.

シリカを含むことによって、無定型酸化チタン系微粒子分散液の安定性が向上し、また耐光性、耐候性が向上する傾向がある。また、ジルコニアを含むことによって無定型酸化チタン系微粒子分散液の安定性が向上し、また耐光性、耐候性が向上する傾向があり、抗菌成分の種類によっては変色を抑制することができる。
上記した無定型酸化チタン系微粒子は、本願出願人の一人の出願による特開昭63−185820号公報、特開2005−318999号公報等に開示した方法に準じて得ることができる。重要な点は、無定型酸化チタン系微粒子を結晶化させないことであり、例えば酸化チタン系微粒子の酸化チタンの含有量、平均粒子径等によっても異なるが、水熱処理する際に、結晶化しない範囲で低温、短時間処理することが好ましい。
By including silica, the stability of the amorphous titanium oxide-based fine particle dispersion is improved, and light resistance and weather resistance tend to be improved. Further, the inclusion of zirconia improves the stability of the amorphous titanium oxide-based fine particle dispersion, and also tends to improve light resistance and weather resistance, and discoloration can be suppressed depending on the type of antibacterial component.
The above-described amorphous titanium oxide-based fine particles can be obtained according to the methods disclosed in JP-A-63-185820, JP-A-2005-318999, etc. filed by one applicant of the present application. The important point is that the amorphous titanium oxide-based fine particles are not crystallized. For example, it varies depending on the titanium oxide content of the titanium oxide-based fine particles, the average particle diameter, etc. It is preferable to perform the treatment at a low temperature for a short time.

無定型酸化チタン系微粒子は、平均粒子径が概ね2〜300nm、さらには5〜200nmの範囲にあることが好ましい。
無定型酸化チタン系微粒子の平均粒子径が2nm未満の場合は、無定型酸化チタン系微粒子が凝集する傾向があり、消臭性能、抗菌性能が不充分となり、同時に防臭抗菌性蛋白質の生成能が不充分となることから能臭性能、抗菌性能が不充分となることがある。
無定型酸化チタン系微粒子の平均粒子径が300nmを越えると、粒子の有効な外部表面積の低下により消臭性能、抗菌性能が低下し、さらにヒトまたは動物細胞との接触効率が低下することから防臭抗菌性蛋白質生成能が不充分となり、防臭性能、抗菌性能が不充分となることがある。
なお、本発明において無定型酸化チタン系微粒子に代えて、アナタース型酸化チタン等の結晶性酸化チタン系微粒子を用いたのでは十分な防臭性能、抗菌性能が得られ難い。
The amorphous titanium oxide-based fine particles preferably have an average particle diameter in the range of 2 to 300 nm, more preferably 5 to 200 nm.
If the average particle size of the amorphous titanium oxide fine particles is less than 2 nm, the amorphous titanium oxide fine particles tend to aggregate, resulting in insufficient deodorant performance and antibacterial performance, and at the same time, ability to produce deodorant antibacterial proteins. Insufficient odor performance and antibacterial performance may be insufficient.
If the average particle diameter of the amorphous titanium oxide fine particles exceeds 300 nm, the deodorizing performance and antibacterial performance are lowered due to the reduction of the effective external surface area of the particles, and the contact efficiency with human or animal cells is further reduced. The ability to produce antibacterial proteins may be insufficient, and the deodorization performance and antibacterial performance may be insufficient.
In the present invention, it is difficult to obtain sufficient deodorizing performance and antibacterial performance by using crystalline titanium oxide-based fine particles such as anatase-type titanium oxide instead of amorphous titanium oxide-based fine particles.

消臭抗菌成分
消臭抗菌成分としては銀、銅、亜鉛、錫、コバルト、ニッケル、マンガンから選ばれる1種または2種以上の抗菌成分を含むことが好ましい。なかでも銀は高い防臭抗菌性蛋白質生成能を有しているので好適に用いることができる。
このような消臭抗菌成分はイオン、酸化物、水酸化物等の化合物またはこれらの混合物のいずれの形態で存在していてもよい。抗菌性の観点からはイオンの形態が好ましく、酸化物であれば消臭性に優れ、加えて防臭性、抗菌性を有する防臭抗菌性蛋白質生成能に優れるため極めて防臭性能、抗菌性能に優れた防臭抗菌剤が得られる。
また、消臭抗菌成分は無定型酸化チタン系微粒子の表層に存在するか、無定型酸化チタン系微粒子の内部まで比較的均一に分布していることが好ましい。
Deodorant and antibacterial component The deodorant and antibacterial component preferably contains one or more antibacterial components selected from silver, copper, zinc, tin, cobalt, nickel, and manganese. Among these, silver can be suitably used because it has a high ability to produce deodorant and antibacterial proteins.
Such deodorizing antibacterial components may be present in any form of compounds such as ions, oxides and hydroxides, or mixtures thereof. From the viewpoint of antibacterial properties, the ionic form is preferable, and if it is an oxide, it is excellent in deodorizing properties, and in addition, it has excellent deodorizing and antibacterial protein producing ability having deodorizing properties and antibacterial properties, so it has extremely excellent deodorizing performance and antibacterial performance. A deodorizing antibacterial agent is obtained.
Further, it is preferable that the deodorizing antibacterial component is present on the surface layer of the amorphous titanium oxide-based fine particles or is relatively uniformly distributed to the inside of the amorphous titanium oxide-based fine particles.

消臭抗菌成分の担持方法
消臭抗菌成分を無定型酸化チタン系微粒子に担持する方法としては、例えば本願出願人の出願による特開2005−318999号公報に開示した方法に準じて製造することができる。
具体的には、例えば、負の電荷を有する無定型酸化チタン微粒子が分散した分散液に、消臭抗菌性成分の金属塩水溶液を添加する方法が挙げられる。
前記金属塩水溶液はアミン錯塩水溶液が好ましい。アミン錯塩水溶液を用いると無定型酸化チタン系微粒子分散液の安定性を低下させたり、ゲル化させることなく長期にわたって安定な防臭抗菌剤を製造することができる。安定性が低下した防臭抗菌剤、ゲル化した防臭抗菌剤は用途が制限されたり、抗菌性能、防臭性能が不充分となることがある。
Method for supporting the deodorant antibacterial component As a method for supporting the deodorant antibacterial component on the amorphous titanium oxide fine particles, for example, it can be produced according to the method disclosed in Japanese Patent Application Laid-Open No. 2005-318999 filed by the applicant of the present application. it can.
Specifically, for example, a method of adding a metal salt aqueous solution of a deodorizing antibacterial component to a dispersion in which amorphous titanium oxide fine particles having a negative charge are dispersed may be mentioned.
The metal salt aqueous solution is preferably an amine complex salt aqueous solution. When an amine complex aqueous solution is used, a stable deodorizing antibacterial agent can be produced over a long period of time without lowering the stability of the amorphous titanium oxide fine particle dispersion or gelling. Deodorant antibacterial agents with reduced stability and gelled deodorant antibacterial agents may have limited applications, or may have insufficient antibacterial and deodorant performances.

好適なアミン錯塩水溶液は、例えば、酸化亜鉛、酸化銀あるいは酸化銅などをアンモニア水に溶解することによって、亜鉛、銀あるいは銅等のアンミン錯塩水溶液を調製することができる。
なお、前記した方法での消臭抗菌成分の担持に際し、水を分散媒とする無定型酸化チタン系微粒子分散液の濃度は酸化物として5重量%以下、好ましくは、0.5重量%〜3重量%の範囲にあることが好ましい。
前述の方法で得られた水を分散媒とする消臭抗菌成分を担持した無定型酸化チタン系微粒子分散液は、公知の方法、例えば限外濾過膜を用いて、所望の濃度に調整される。
また、上記消臭抗菌成分を担持した無定型酸化チタン系微粒子分散液の分散媒である水は公知の方法により有機溶媒と置換して、有機溶媒を分散媒とする分散液とすることも可能である。
As a suitable aqueous solution of an amine complex salt, for example, an aqueous solution of an ammine complex salt such as zinc, silver or copper can be prepared by dissolving zinc oxide, silver oxide, copper oxide or the like in ammonia water.
In carrying the deodorant antibacterial component by the above-described method, the concentration of the amorphous titanium oxide fine particle dispersion using water as a dispersion medium is 5 wt% or less, preferably 0.5 wt% to 3 wt% as an oxide. It is preferably in the range of wt%.
The amorphous titanium oxide-based fine particle dispersion carrying a deodorizing antibacterial component using water as a dispersion medium obtained by the above-described method is adjusted to a desired concentration using a known method, for example, an ultrafiltration membrane. .
In addition, water, which is a dispersion medium of the amorphous titanium oxide-based fine particle dispersion carrying the deodorant antibacterial component, can be replaced with an organic solvent by a known method to obtain a dispersion using the organic solvent as a dispersion medium. It is.

消臭抗菌成分の担持された無定型酸化チタン系微粒子(以下、消臭抗菌成分担持微粒子と云うことがある。)中の消臭抗菌成分の含有量は酸化物として0.1〜20重量%、さらには1〜15重量%の範囲にあることが好ましい。
消臭抗菌成分の含有量が0.1重量%よりも少ない場合には充分な抗菌性能、消臭性能、防臭抗菌剤生成能、防臭抗菌性能が得られにくい。
消臭抗菌成分の含有量が20重量%よりも多い場合には、さらに防臭抗菌性能が向上することもなく、むしろ消臭抗菌成分が凝集するためかこれら性能が低下する場合がある。
The content of the deodorizing antibacterial component in the amorphous titanium oxide-based fine particles carrying the deodorizing antibacterial component (hereinafter sometimes referred to as the deodorizing antibacterial component-carrying fine particles) is 0.1 to 20% by weight as an oxide. Further, it is preferably in the range of 1 to 15% by weight.
When the content of the deodorizing antibacterial component is less than 0.1% by weight, it is difficult to obtain sufficient antibacterial performance, deodorizing performance, deodorizing antibacterial agent generation ability, and deodorizing antibacterial performance.
When the content of the deodorizing antibacterial component is more than 20% by weight, the deodorizing antibacterial performance is not further improved, but rather the performance may be lowered due to aggregation of the deodorizing antibacterial component.

本発明の防臭抗菌剤の平均粒子径は前記無定型酸化チタン系微粒子と実質的に同じで、2〜300nmさらには5〜200nmの範囲にあることが好ましい。
防臭抗菌剤の平均粒子径が2nm未満の場合は防臭抗菌剤が凝集する傾向があり、また酸化チタンの結晶性が不充分となることから消臭性能、抗菌性能が不充分となり、同時に防臭抗菌性蛋白質の生成能が不充分となることから能臭性能、抗菌性能が不充分となることがある。
防臭抗菌剤の平均粒子径が300nmを越えると、防臭抗菌剤の有効な外部表面積の低下により消臭性能、抗菌性能が低下し、さらにヒトまたは動物細胞との接触効率が低下することから防臭抗菌性蛋白質生成能が不充分となり、防臭性能、抗菌性能が不充分となることがある。
The average particle diameter of the deodorizing antibacterial agent of the present invention is substantially the same as that of the amorphous titanium oxide fine particles, and is preferably in the range of 2 to 300 nm, more preferably 5 to 200 nm.
If the average particle size of the deodorant antibacterial agent is less than 2 nm, the deodorant antibacterial agent tends to aggregate, and the crystallinity of titanium oxide is insufficient, resulting in insufficient deodorant performance and antibacterial performance. Insufficient odor and antibacterial performance may occur due to insufficient ability to produce protein.
If the average particle size of the deodorizing antibacterial agent exceeds 300 nm, the deodorizing and antibacterial performance is reduced due to the reduction in the effective external surface area of the deodorizing antibacterial agent, and the contact efficiency with human or animal cells is further reduced. May cause insufficient protein-producing ability, resulting in insufficient deodorization performance and antibacterial performance.

防臭抗菌性蛋白質
本発明の防臭抗菌剤は、前記消臭抗菌成分担持微粒子をヒト上皮細胞または動物上皮細胞と接触させて生成した防臭抗菌性蛋白質を含む。前記消臭抗菌成分担持微粒子は、ヒト上皮細胞または動物上皮細胞と接触して防臭抗菌性蛋白質を生成する。即ち、接触によって先ず細胞内にリゾチームmRNAが発現し、ついで、これがリゾチーム蛋白質に変化するとともに細胞外に分泌され、このリゾチーム蛋白質(防臭抗菌性蛋白質)が防臭抗菌性能を発揮する。
リゾチーム蛋白質は細菌細胞壁を構成する多糖類を分解できる酵素であり、このため抗菌性能に優れ、細菌を死滅させたり、細菌の増殖を抑制できることから臭気成分の発生を防止あるいは抑制することができる。
Deodorant antibacterial protein The deodorant antibacterial agent of the present invention comprises a deodorant antibacterial protein produced by bringing the deodorant antibacterial component-carrying fine particles into contact with human epithelial cells or animal epithelial cells. The deodorant antibacterial component-carrying fine particles are brought into contact with human epithelial cells or animal epithelial cells to produce a deodorant antibacterial protein. That is, upon contact, lysozyme mRNA is first expressed in the cell, and then converted into a lysozyme protein and secreted outside the cell, and this lysozyme protein (deodorant antibacterial protein) exhibits deodorant antibacterial performance.
Lysozyme protein is an enzyme capable of degrading polysaccharides constituting the bacterial cell wall. Therefore, lysozyme protein is excellent in antibacterial performance and can kill or suppress the growth of bacteria, thereby preventing or suppressing the generation of odor components.

ヒト上皮細胞または動物上皮細胞
ヒト上皮細胞としては菌が増殖しやすく、臭気成分を発生しやすい箇所の上皮細胞(皮膚細胞)が挙げられる。具体的には、脇部の上皮細胞(A549)、足部の上皮細胞、頭部の上皮細胞、口内の上皮細胞、等がある。
動物上皮細胞としては、前記ヒト上皮細胞に対応した部位の上皮細胞が挙げられる。
ヒト上皮細胞または動物上皮細胞と消臭抗菌成分担持微粒子とを直接接触させる方法としては、例えば、ヒト上皮細胞(皮膚)または動物上皮細胞(皮膚)に消臭抗菌成分担持微粒子の分散液または粉体を塗布すればよい。
Human epithelial cells or animal epithelial cells Examples of human epithelial cells include epithelial cells (skin cells) where bacteria are likely to grow and odor components are likely to be generated. Specifically, there are side epithelial cells (A549), foot epithelial cells, head epithelial cells, oral epithelial cells, and the like.
Examples of animal epithelial cells include epithelial cells at sites corresponding to the human epithelial cells.
Examples of a method for directly contacting human epithelial cells or animal epithelial cells with deodorant antibacterial component-carrying fine particles include, for example, a dispersion or powder of deodorant antibacterial component-carrying fine particles on human epithelial cells (skin) or animal epithelial cells (skin). Apply the body.

消臭抗菌成分担持微粒子の塗布量は上皮細胞の場所、必要とする持続性等によって異なるが、ヒト上皮細胞(皮膚)上または動物上皮細胞(皮膚)上に消臭抗菌成分担持微粒子が適度に点在する程度でよい。
また接触時間は、防臭抗菌剤の塗布量によっても異なるが、中間体的蛋白質、例えばリゾチームmRNA(後述する防臭性能、抗菌性能を有するリゾチーム蛋白質に変異する前の中間体的蛋白質)の生成には、概ね5〜120分間あれば充分である。
接触時間が5分間未満の場合は中間体的蛋白質の生成量が不充分であり、このため中間体的蛋白質が変位して生成するリゾチーム蛋白質の生成量も少なく、充分な防臭性能、抗菌性能が得られない場合がある。
The amount of deodorant antibacterial component-supported fine particles varies depending on the location of the epithelial cells, the required durability, etc., but the deodorant antibacterial component-supported fine particles are moderately present on human epithelial cells (skin) or animal epithelial cells (skin). It is enough to be scattered.
The contact time varies depending on the amount of the deodorant antibacterial agent applied, but for the production of an intermediate protein such as lysozyme mRNA (intermediate protein before mutated to a lysozyme protein having deodorant performance and antibacterial performance described later). Approximately 5 to 120 minutes is sufficient.
If the contact time is less than 5 minutes, the amount of intermediate protein produced is insufficient, so the amount of lysozyme protein produced by displacement of the intermediate protein is also small, and sufficient deodorizing performance and antibacterial performance are achieved. It may not be obtained.

また、充分な防臭性能、抗菌性能を有するリゾチーム蛋白質の生成には、概ね10〜120分間あれば充分である。なお、ここで「防臭性能」とは菌が増殖して臭気を発生する原因となる菌の増殖を抑制、低減させること等を意味する。
増殖して臭気発生原因となる菌としては、表皮ぶどう状球菌、黄色ぶどう状球菌等が挙げられるがこれらに限定されるものではない。
また、臭気成分としてはアンモニア、イソ吉草酸、酢酸、ノネナール、アセチルメチルカービノール、エチルヘキサノン、ジメチルマロニック酸等が挙げられる。
In addition, approximately 10 to 120 minutes is sufficient for the production of lysozyme protein having sufficient deodorizing performance and antibacterial performance. Here, “odor prevention performance” means to suppress or reduce the growth of bacteria that cause bacteria to grow and generate odor.
Examples of the bacteria that proliferate and cause odor generation include, but are not limited to, staphylococcus aureus and yellow staphylococci.
Examples of odor components include ammonia, isovaleric acid, acetic acid, nonenal, acetylmethylcarbinol, ethylhexanone, dimethylmalonic acid and the like.

配合剤
本発明の防臭抗菌剤の分散液または粉体には、必要に応じて他の配合剤が含まれていてもよい。
配合剤としては、通常の医薬品、化粧料等に用いられると同様の分散媒、添加剤、増量材、希釈材、抗菌性能促進剤、消臭性能促進剤等種々の材料を用いることができる。具体的には、水、アルコール、オイル、アロマ等の有機化合物、シリカ、アルミナ、チタニア、シリカ・アルミナ等の無機酸化物等が挙げられる。
Compounding Agent The dispersion or powder of the deodorizing antibacterial agent of the present invention may contain other compounding agents as necessary.
As the compounding agent, various materials such as a dispersion medium, an additive, an extender, a diluent, an antibacterial performance accelerator, and a deodorizing performance accelerator similar to those used in ordinary pharmaceuticals and cosmetics can be used. Specific examples include organic compounds such as water, alcohol, oil, and aroma, and inorganic oxides such as silica, alumina, titania, and silica / alumina.

以下に実施例を示し、本発明を更に具体的に説明するが、本発明はこれら実施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

消臭抗菌成分担持微粒子(1)分散液の調製
酸化チタン微粒子(T-1)分散液の調製
塩化チタン水溶液を純水で希釈してTiO2として濃度5重量%の塩化チタン水溶液を調製した。この水溶液を、温度を5℃に調節した濃度15重量%のアンモニア水に添加して中和・加水分解した。塩化チタン水溶液添加後のpHは10.5であった。ついで、生成したゲルを濾過洗浄し、TiO2として濃度10重量%のオルソチタン酸のゲルを得た。
このオルソチタン酸のゲル1000gを純水29000gに分散させた後、濃度35重量%の過酸化水素水8000gを加えてペルオキソチタン酸水溶液とした後、攪拌しながら、85℃で3時間加熱し、TiO2としての濃度が3.0重量%の酸化チタン微粒子(T-1)分散液を調製した。
Deodorant antibacterial component-supported fine particles (1) Preparation of dispersion
Preparation of Titanium Oxide Fine Particle (T-1) Dispersion A titanium chloride aqueous solution was diluted with pure water to prepare a titanium chloride aqueous solution having a concentration of 5% by weight as TiO 2 . This aqueous solution was neutralized and hydrolyzed by adding it to 15% by weight ammonia water whose temperature was adjusted to 5 ° C. The pH after addition of the aqueous titanium chloride solution was 10.5. Next, the produced gel was washed by filtration to obtain an orthotitanic acid gel having a concentration of 10% by weight as TiO 2 .
After 1000 g of this orthotitanic acid gel was dispersed in 29000 g of pure water, 8000 g of a hydrogen peroxide solution having a concentration of 35% by weight was added to form a peroxotitanic acid aqueous solution, followed by heating at 85 ° C. for 3 hours while stirring. A dispersion of titanium oxide fine particles (T-1) having a concentration of 3.0% by weight as TiO 2 was prepared.

消臭抗菌成分の担持
別途、硝酸銀(AgNO3)7.9gに水492.1gを加えて、濃度1.0重量%の硝酸銀水溶液を調製した。
TiO2濃度を1.0重量%に調整した酸化チタン微粒子(T-1)分散液9.5kgを調合タンクに採取し、これを攪拌しながら50℃に加温した。ついで、酸化チタン微粒子(T-1)分散液のpHが9.0になるようにアンモニアを添加した後、前記硝酸銀水溶液をペリスターポンプで10g/minの速度で添加した。硝酸銀水溶液の添加により酸化チタン微粒子(T-1)分散液のpHが低下し始めたところで、陰イオン交換樹脂(三菱化学製)をpH8.5に維持するように少量ずつ添加し、全硝酸銀水溶液の添加が終了するまで、この操作を継続した。陰イオン交換樹脂の全使用量は310gであり、また酸化チタン微粒子(T-1)分散液の最終pHは8.1であった。
Separately carrying deodorant antibacterial components 492.1 g of water was added to 7.9 g of silver nitrate (AgNO 3 ) to prepare an aqueous silver nitrate solution having a concentration of 1.0% by weight.
9.5 kg of a titanium oxide fine particle (T-1) dispersion whose TiO 2 concentration was adjusted to 1.0% by weight was collected in a preparation tank and heated to 50 ° C. while stirring. Next, ammonia was added so that the pH of the titanium oxide fine particle (T-1) dispersion was 9.0, and then the aqueous silver nitrate solution was added at a rate of 10 g / min with a peristaltic pump. When the pH of the titanium oxide fine particle (T-1) dispersion began to drop due to the addition of the aqueous silver nitrate solution, anion exchange resin (Mitsubishi Chemical) was added in small portions so as to maintain the pH at 8.5. This operation was continued until the addition of was completed. The total amount of anion exchange resin used was 310 g, and the final pH of the titanium oxide fine particle (T-1) dispersion was 8.1.

酸化チタン微粒子(T-1)分散液からイオン交換樹脂を分離した後、ついで、95℃で3時間過熱後、冷却し、ついで、限外濾過膜装置でTiO2 重量に対して200倍の水で洗浄した後、限外濾過膜装置で濃縮して、固形分濃度10重量%の銀を担持した酸化チタン微粒子(T-1)分散液からなる消臭抗菌成分担持微粒子(1)分散液を得た。消臭抗菌成分担持微粒子(1)中のAg2Oの担持量は5.0重量%であった。
消臭抗菌成分担持微粒子(1)の平均粒子径は、超遠心式自動粒度分布測定装置(CAPA−700)で測定したところ、5nmであった。また、X線回折によりアモルファス型であった。
消臭抗菌成分担持微粒子(1)分散液について、リゾチームmRNA、リゾチームタンパク質の生成能を下記の方法により測定し、結果を表に示した。
After the ion exchange resin was separated from the titanium oxide fine particle (T-1) dispersion, the mixture was then heated at 95 ° C. for 3 hours and then cooled, and then 200 times the amount of water with respect to the weight of TiO 2 by an ultrafiltration membrane device. The deodorized antibacterial component-carrying fine particles (1) dispersion comprising a titanium oxide fine particle (T-1) dispersion carrying silver having a solid content concentration of 10% by weight is concentrated using an ultrafiltration membrane device. Obtained. The amount of Ag 2 O supported in the deodorized antibacterial component-supported fine particles (1) was 5.0% by weight.
The average particle size of the deodorant antibacterial component-carrying fine particles (1) was 5 nm as measured by an ultracentrifugal automatic particle size distribution analyzer (CAPA-700). Moreover, it was an amorphous type by X-ray diffraction.
The deodorizing antibacterial component-supporting fine particle (1) dispersion was measured for the ability to produce lysozyme mRNA and lysozyme protein by the following method, and the results are shown in the table.

リゾチームmRNAの生成
消臭抗菌成分担持微粒子(1)分散液5μg/mLにヒト上皮細胞(A549)片を浸漬し、30分間経過した後、細胞内の抗菌活性分子であるリゾチウムmRNAの発現量を逆転写酵素−ポリメラーゼ連鎖反応法(Reverse Transcriptase-Polymerase Chain Reaction: RT-PCR法)により測定し、結果を表に示した。なお、リゾチームmRNAの発現量は、消臭抗菌成分担持微粒子(1)分散液を塗布しなかった場合(後述する比較例1)のリゾチームmRNAの発現量を基準の1とし、対比して示した。
Generation of lysozyme mRNA Deodorant antibacterial component-supported microparticles (1) Human epithelial cell (A549) pieces are immersed in 5 μg / mL dispersion, and after 30 minutes, the expression level of intracellular lysozyme mRNA, which is an antibacterial active molecule, is determined. The measurement was performed by the reverse transcriptase-polymerase chain reaction (RT-PCR method), and the results are shown in the table. The expression level of lysozyme mRNA was shown in comparison with the expression level of lysozyme mRNA when the deodorant antibacterial component-carrying fine particles (1) dispersion was not applied (Comparative Example 1 described later) as the reference 1. .

リゾチームタンパク質の生成
消臭抗菌成分担持微粒子(1)分散液5μg/mLにヒト上皮細胞(A549)片を浸漬し、1時間経過した後、細胞内および細胞外に分泌されたリゾチームタンパク質の発現量をウェスターン ブロッティング法(Western Blotting法)により測定し、結果を表に示した。なお、リゾチウムタンパク質の発現量は、消臭抗菌成分担持微粒子(1)分散液を塗布しなかった場合(後述する比較例1)のリゾチームタンパク質の発現量を基準の1とし、対比して示した。
Production of lysozyme protein Deodorant antibacterial component-bearing fine particles (1) Human epithelial cell (A549) fragment is immersed in 5 μg / mL dispersion, and after 1 hour, the amount of lysozyme protein secreted intracellularly and extracellularly Was measured by the Western blotting method (Western blotting method), and the results are shown in the table. The expression level of lysozyme protein was shown in comparison with the expression level of lysozyme protein when the deodorant antibacterial component-carrying fine particles (1) dispersion was not applied (Comparative Example 1 to be described later) as the standard 1. .

防臭・消臭性能の評価
消臭抗菌成分担持微粒子(1)分散液を臭気を発する脇部に塗布し、2時間後に、塗布前との臭気性の対比を行い、以下の基準で評価し、結果を表に示した。
全く臭気が感じられなかった : ◎
臭気の大幅な低下が認められ、臭気が僅かに残存していた : ○
臭気の低下が認められたが、臭気が残存していた。 : △
塗布前と変化が認められなかった : ×
Evaluation of deodorant / deodorant performance Deodorant and antibacterial component-supported fine particles (1) Dispersion is applied to the side where odor is emitted, and after 2 hours, the odor is compared with that before application and evaluated according to the following criteria: The results are shown in the table.
No odor was felt: ◎
A significant decrease in odor was observed and a slight odor remained: ○
Although a decrease in odor was observed, the odor remained. : △
No change was observed before application: ×

消臭抗菌成分担持微粒子(2)分散液の調製
酸化チタン微粒子(T-2)分散液の調製
塩化チタン水溶液を純水で希釈してTiO2として濃度5重量%の塩化チタン水溶液を調製した。この水溶液を、温度を5℃に調節した濃度15重量%のアンモニア水に添加して中和・加水分解した。塩化チタン水溶液添加後のpHは10.5であった。ついで、生成したゲルを濾過洗浄し、TiO2として濃度10重量%のオルソチタン酸のゲルを得た。
このオルソチタン酸のゲルを120℃で16時間乾燥し、純水29000gに分散させた後、濃度35重量%の過酸化水素水8000gを加えてペルオキソチタン酸水溶液とした後、攪拌しながら、85℃で3時間加熱し、TiO2としての濃度が3.0重量%の酸化チタン微粒子(T-2)分散液を調製した。
Preparation of deodorant antibacterial component-supported fine particles (2) dispersion
Preparation of Titanium Oxide Fine Particle (T-2) Dispersion A titanium chloride aqueous solution was diluted with pure water to prepare a titanium chloride aqueous solution having a concentration of 5% by weight as TiO 2 . This aqueous solution was neutralized and hydrolyzed by adding it to 15% by weight ammonia water whose temperature was adjusted to 5 ° C. The pH after addition of the aqueous titanium chloride solution was 10.5. Next, the produced gel was washed by filtration to obtain an orthotitanic acid gel having a concentration of 10% by weight as TiO 2 .
This orthotitanic acid gel was dried at 120 ° C. for 16 hours and dispersed in 29000 g of pure water. Then, 8000 g of hydrogen peroxide having a concentration of 35% by weight was added to form a peroxotitanic acid aqueous solution. The mixture was heated at 0 ° C. for 3 hours to prepare a titanium oxide fine particle (T-2) dispersion having a concentration of 3.0% by weight as TiO 2 .

消臭抗菌成分の担持
別途、硝酸銀(AgNO3)7.9gに水492.1gを加えて、濃度1.0重量%の硝酸銀水溶液を調製した。
TiO2濃度を1.0重量%に調整した酸化チタン微粒子(T-2)分散液9.5kgを調合タンクに採取し、これを攪拌しながら50℃に加温した。ついで、酸化チタン微粒子(T-2)分散液のpHが9.0になるようにアンモニアを添加した後、前記硝酸銀水溶液をペリスターポンプで10g/minの速度で添加した。硝酸銀水溶液の添加により酸化チタン微粒子(T-1)分散液のpHが低下し始めたところで、陰イオン交換樹脂(三菱化学製)をpH8.5に維持するように少量ずつ添加し、全硝酸銀水溶液の添加が終了するまで、この操作を継続した。陰イオン交換樹脂の全使用量は310gであり、また酸化チタン微粒子(T-2)分散液の最終pHは8.1であった。
Separately carrying deodorant antibacterial components 492.1 g of water was added to 7.9 g of silver nitrate (AgNO 3 ) to prepare an aqueous silver nitrate solution having a concentration of 1.0% by weight.
9.5 kg of a titanium oxide fine particle (T-2) dispersion whose TiO 2 concentration was adjusted to 1.0% by weight was collected in a preparation tank and heated to 50 ° C. while stirring. Next, ammonia was added so that the pH of the titanium oxide fine particle (T-2) dispersion was 9.0, and then the aqueous silver nitrate solution was added at a rate of 10 g / min with a peristaltic pump. When the pH of the titanium oxide fine particle (T-1) dispersion began to drop due to the addition of the aqueous silver nitrate solution, anion exchange resin (Mitsubishi Chemical) was added in small portions so as to maintain the pH at 8.5. This operation was continued until the addition of was completed. The total amount of anion exchange resin used was 310 g, and the final pH of the titanium oxide fine particle (T-2) dispersion was 8.1.

酸化チタン微粒子(T-2)分散液からイオン交換樹脂を分離した後、ついで、95℃で3時間過熱後、冷却し、ついで、限外濾過膜装置でTiO2 重量に対して200倍の水で洗浄した後、限外濾過膜装置で濃縮して、固形分濃度10重量%の銀を担持した酸化チタン微粒子(T-2)分散液からなる消臭抗菌成分担持微粒子(2)分散液を得た。消臭抗菌成分担持微粒子(2)中のAg2Oの担持量は5.0重量%であった。
消臭抗菌成分担持微粒子(2)の平均粒子径は、超遠心式自動粒度分布測定装置(CAPA−700)で測定したところ、10nmであった。また、X線回折によりアモルファス型であった。
消臭抗菌成分担持微粒子(2)分散液について、リゾチームmRNA、リゾチームタンパク質の生成能を測定し、結果を表に示した。また、防臭・消臭性能を評価し、結果を表に示した。
After separating the ion exchange resin from the titanium oxide fine particle (T-2) dispersion, the mixture was then heated at 95 ° C. for 3 hours and then cooled, and then 200 times as much water as the TiO 2 weight was measured with an ultrafiltration membrane device. The deodorized antibacterial component-carrying fine particles (2) dispersion consisting of a titanium oxide fine particle (T-2) dispersion carrying silver having a solid content concentration of 10% by weight is concentrated using an ultrafiltration membrane device. Obtained. The amount of Ag 2 O supported in the deodorized antibacterial component-supported fine particles (2) was 5.0% by weight.
The average particle size of the deodorant antibacterial component-supporting fine particles (2) was 10 nm as measured with an ultracentrifugal automatic particle size distribution analyzer (CAPA-700). Moreover, it was an amorphous type by X-ray diffraction.
The deodorizing antibacterial component-carrying fine particles (2) dispersion was measured for the ability to produce lysozyme mRNA and lysozyme protein, and the results are shown in the table. Moreover, the deodorizing / deodorizing performance was evaluated and the results are shown in the table.

消臭抗菌成分担持微粒子(3)分散液の調製
酸化チタン微粒子(T-3)分散液の調製
塩化チタン水溶液を純水で希釈してTiO2として濃度5重量%の塩化チタン水溶液を調製した。この水溶液を、温度を5℃に調節した濃度15重量%のアンモニア水に添加して中和・加水分解した。塩化チタン水溶液添加後のpHは10.5であった。ついで、生成したゲルを濾過洗浄し、TiO2として濃度10重量%のオルソチタン酸のゲルを得た。
このオルソチタン酸のゲルを250℃で16時間乾燥し、純水29000gに分散させた後、濃度35重量%の過酸化水素水8000gを加えてペルオキソチタン酸水溶液とした後、攪拌しながら、85℃で3時間加熱し、TiO2としての濃度が3.0重量%の酸化チタン微粒子(T-3)分散液を調製した。
Preparation of deodorant antibacterial component-supported fine particles (3) dispersion
Preparation of Titanium Oxide Fine Particle (T-3) Dispersion A titanium chloride aqueous solution was diluted with pure water to prepare a titanium chloride aqueous solution having a concentration of 5% by weight as TiO 2 . This aqueous solution was neutralized and hydrolyzed by adding it to 15% by weight ammonia water whose temperature was adjusted to 5 ° C. The pH after addition of the aqueous titanium chloride solution was 10.5. Next, the produced gel was washed by filtration to obtain an orthotitanic acid gel having a concentration of 10% by weight as TiO 2 .
This orthotitanic acid gel was dried at 250 ° C. for 16 hours and dispersed in 29000 g of pure water. Then, 8000 g of hydrogen peroxide having a concentration of 35% by weight was added to form a peroxotitanic acid aqueous solution. The mixture was heated at 0 ° C. for 3 hours to prepare a dispersion of titanium oxide fine particles (T-3) having a concentration of 3.0% by weight as TiO 2 .

消臭抗菌成分の担持
別途、硝酸銀(AgNO3)7.9gに水492.1gを加えて、濃度1.0重量%の硝酸銀水溶液を調製した。
TiO2濃度を1.0重量%に調整した酸化チタン微粒子(T-3)分散液9.5kgを調合タンクに採取し、これを攪拌しながら50℃に加温した。ついで、酸化チタン微粒子(T-3)分散液のpHが9.0になるようにアンモニアを添加した後、前記硝酸銀水溶液をペリスターポンプで10g/minの速度で添加した。硝酸銀水溶液の添加により酸化チタン微粒子(T-3)分散液のpHが低下し始めたところで、陰イオン交換樹脂(三菱化学製)をpH8.5に維持するように少量ずつ添加し、全硝酸銀水溶液の添加が終了するまで、この操作を継続した。陰イオン交換樹脂の全使用量は310gであり、また酸化チタン微粒子(T-3)分散液の最終pHは8.1であった。
Separately carrying deodorant antibacterial components 492.1 g of water was added to 7.9 g of silver nitrate (AgNO 3 ) to prepare an aqueous silver nitrate solution having a concentration of 1.0% by weight.
9.5 kg of a titanium oxide fine particle (T-3) dispersion having a TiO 2 concentration adjusted to 1.0% by weight was collected in a preparation tank and heated to 50 ° C. while stirring. Next, ammonia was added so that the pH of the titanium oxide fine particle (T-3) dispersion was 9.0, and then the aqueous silver nitrate solution was added at a rate of 10 g / min with a peristaltic pump. When the pH of the titanium oxide fine particle (T-3) dispersion began to drop due to the addition of the aqueous silver nitrate solution, anion exchange resin (manufactured by Mitsubishi Chemical) was added little by little to maintain the pH at 8.5, and the total aqueous silver nitrate solution was added. This operation was continued until the addition of was completed. The total amount of anion exchange resin used was 310 g, and the final pH of the titanium oxide fine particle (T-3) dispersion was 8.1.

酸化チタン微粒子(T-3)分散液からイオン交換樹脂を分離した後、ついで、95℃で3時間過熱後、冷却し、ついで、限外濾過膜装置でTiO2 重量に対して200倍の水で洗浄した後、限外濾過膜装置で濃縮して、固形分濃度10重量%の銀を担持した酸化チタン微粒子(T-3)分散液からなる消臭抗菌成分担持微粒子(3)分散液を得た。消臭抗菌成分担持微粒子(3)中のAg2Oの担持量は5.0重量%であった。
消臭抗菌成分担持微粒子(3)の平均粒子径は、超遠心式自動粒度分布測定装置(CAPA−700)で測定したところ20nmであった。また、X線回折によりアモルファス型であった。
消臭抗菌成分担持微粒子(3)分散液について、リゾチームmRNA、リゾチームタンパク質の生成能を測定し、結果を表に示した。また、防臭・消臭性能を評価し、結果を表に示した。
After separating the ion exchange resin from the titanium oxide fine particle (T-3) dispersion, the mixture was then heated at 95 ° C. for 3 hours and then cooled, and then 200 times as much water as the TiO 2 weight in an ultrafiltration membrane device. The deodorized antibacterial component-carrying fine particles (3) comprising a titanium oxide fine particle (T-3) dispersion carrying silver with a solid content concentration of 10% by weight is concentrated using an ultrafiltration membrane device. Obtained. The amount of Ag 2 O supported in the deodorized antibacterial component-supported fine particles (3) was 5.0% by weight.
The average particle size of the deodorant antibacterial component-supporting fine particles (3) was 20 nm as measured with an ultracentrifugal automatic particle size distribution analyzer (CAPA-700). Moreover, it was an amorphous type by X-ray diffraction.
The deodorizing antibacterial component-supported fine particle (3) dispersion was measured for the ability to produce lysozyme mRNA and lysozyme protein, and the results are shown in the table. Moreover, the deodorizing / deodorizing performance was evaluated and the results are shown in the table.

消臭抗菌成分担持微粒子(4)分散液の調製
実施例1において、硝酸銀(AgNO3)4gに水247gを加えて、濃度1.0重量%の硝酸銀水溶液を調製して使用した以外は同様にして、固形分濃度10重量%の銀を担持した酸化チタン微粒子(T-1)からなる消臭抗菌成分担持微粒子(4)分散液を得た。消臭抗菌成分担持微粒子(4)中のAg2Oの担持量は2.5重量%であった。
消臭抗菌成分担持微粒子(4)分散液について、リゾチームmRNA、リゾチームタンパク質の生成能を測定し、結果を表に示した。また、防臭・消臭性能を評価し、結果を表に示した。
Preparation of deodorant antibacterial component- supported fine particles (4) dispersion In Example 1, except that 247 g of water was added to 4 g of silver nitrate (AgNO3) to prepare and use a silver nitrate aqueous solution having a concentration of 1.0% by weight. A deodorant antibacterial component-supporting fine particle (4) dispersion composed of titanium oxide fine particles (T-1) supporting silver having a solid content concentration of 10% by weight was obtained. The amount of Ag 2 O supported in the deodorized antibacterial component-supported fine particles (4) was 2.5% by weight.
The deodorizing antibacterial component-supported fine particle (4) dispersion was measured for the ability to produce lysozyme mRNA and lysozyme protein, and the results are shown in the table. Moreover, the deodorizing / deodorizing performance was evaluated and the results are shown in the table.

消臭抗菌成分担持微粒子(5)分散液の調製
実施例1において、硝酸銀(AgNO3)16gに水985gを加えて、濃度1.0重量%の硝酸銀水溶液を調製して使用した以外は同様にして、固形分濃度10重量%の銀を担持した酸化チタン微粒子(T-1)からなる消臭抗菌成分担持微粒子(5)分散液を得た。消臭抗菌成分担持微粒子(5)中のAg2Oの担持量は10重量%であった。
消臭抗菌成分担持微粒子(5)分散液について、リゾチームmRNA、リゾチームタンパク質の生成能を測定し、結果を表に示した。また、防臭・消臭性能を評価し、結果を表に示した。
Preparation of Deodorant Antibacterial Component-Supported Fine Particles (5) Dispersion In Example 1, except that 985 g of water was added to 16 g of silver nitrate (AgNO 3 ) to prepare and use a 1.0 wt% silver nitrate aqueous solution. Thus, a deodorized antibacterial component-supporting fine particle (5) dispersion composed of titanium oxide fine particles (T-1) supporting silver having a solid content concentration of 10% by weight was obtained. The amount of Ag 2 O supported in the deodorized antibacterial component-supported fine particles (5) was 10% by weight.
The deodorizing antibacterial component-carrying fine particle (5) dispersion was measured for the ability to produce lysozyme mRNA and lysozyme protein, and the results are shown in the table. Moreover, the deodorizing / deodorizing performance was evaluated and the results are shown in the table.

消臭抗菌成分担持微粒子(6)分散液の調製
実施例1において、硝酸銀(AgNO3)の代わりに硝酸亜鉛六水和物(Zn(NO32・6H2O)19.8gに水492.1gを加えて、濃度1.0重量%の硝酸亜鉛水溶液を調製して使用した以外は同様にして、固形分濃度10重量%の亜鉛を担持した酸化チタン微粒子(T-1)からなる消臭抗菌成分担持微粒子(6)分散液を得た。消臭抗菌成分担持微粒子(6)中のZnOの担持量は5.0重量%であった。
消臭抗菌成分担持微粒子(6)分散液について、リゾチームmRNA、リゾチームタンパク質の生成能を測定し、結果を表に示した。また、防臭・消臭性能を評価し、結果を表に示した。
Preparation of Deodorant Antibacterial Component-Supported Fine Particles (6) Dispersion In Example 1, instead of silver nitrate (AgNO 3 ), 19.8 g of zinc nitrate hexahydrate (Zn (NO 3 ) 2 .6H 2 O) and water 492 In the same manner, except that 0.1 g of a zinc nitrate aqueous solution having a concentration of 1.0% by weight was prepared and used, the consumption of titanium oxide fine particles (T-1) supporting zinc having a solid content of 10% by weight of zinc was similarly obtained. An odor antibacterial component-supporting fine particle (6) dispersion was obtained. The amount of ZnO supported in the deodorized antibacterial component-supported fine particles (6) was 5.0% by weight.
The deodorizing antibacterial component-carrying fine particle (6) dispersion was measured for the ability to produce lysozyme mRNA and lysozyme protein, and the results are shown in the table. Moreover, the deodorizing / deodorizing performance was evaluated and the results are shown in the table.

消臭抗菌成分担持微粒子(7)分散液の調製
酸化チタン・シリカ微粒子(TS-1)分散液の調製
硫酸チタンを水に溶解し、TiO2として1.0重量%を含む水溶液を準備した。この溶液に、攪拌しながら濃度15重量%のアンモニア水を徐々に添加し、白色スラリー液を得、このスラリー液をガラスフィルターでろ過し、ケーキを水で十分洗浄し、含水チタン酸のケーキを得た。このケーキ31.4gに、水と濃度33重量%の過酸化水素219.8gを加えた後、80℃で14時間加熱し、TiO2として濃度1.0重量%、pH8.2、黄褐色透明のチタン酸溶液3136gを得た。
Preparation of deodorant antibacterial component-supported fine particles (7) dispersion
Preparation of Titanium Oxide Silica Fine Particle (TS-1) Dispersion Titanium sulfate was dissolved in water to prepare an aqueous solution containing 1.0% by weight as TiO 2 . To this solution, 15% by weight of ammonia water is gradually added with stirring to obtain a white slurry liquid, which is filtered through a glass filter, the cake is thoroughly washed with water, and a hydrous titanic acid cake is obtained. Obtained. To 31.4 g of this cake, water and 219.8 g of hydrogen peroxide having a concentration of 33% by weight were added, and then heated at 80 ° C. for 14 hours to obtain a TiO 2 concentration of 1.0% by weight, pH 8.2, transparent yellowish brown. 3136 g of titanic acid solution was obtained.

次いで、濃度15重量%のアンモニア水溶液21.3gを水618.1gで希釈したアンモニア水溶液中で酸化銀2.10gを溶解して、アンミン錯塩水溶液とし、この水溶液を前記チタン酸溶液に添加攪拌した。次に濃度20重量%のシリカゾル38.7gを加え後、150℃で36時間加熱し、ついで、冷却後、限外濾過膜にて濃縮して固形分(酸化チタン・シリカ複合酸化物粒子)濃度10重量%の銀を担持した酸化チタン・シリカ微粒子(TS-1)分散液からなる消臭抗菌成分担持微粒子(7)分散液を得た。消臭抗菌成分担持微粒子(7)中のAg2Oの担持量は2.0重量%であった。
消臭抗菌成分担持微粒子(7)の平均粒子径は、超遠心式自動粒度分布測定装置(CAPA−700)で測定したところ、25nmであった。また、X線回折によりアモルファス型であった。
消臭抗菌成分担持微粒子(7)分散液について、リゾチームmRNA、リゾチームタンパク質の生成能を測定し、結果を表に示した。また、防臭・消臭性能を評価し、結果を表に示した。
Next, 2.10 g of silver oxide was dissolved in an aqueous ammonia solution obtained by diluting 21.3 g of an aqueous ammonia solution having a concentration of 15% by weight with 618.1 g of water to obtain an ammine complex salt aqueous solution, and this aqueous solution was added to the titanic acid solution and stirred. . Next, after adding 38.7 g of silica sol having a concentration of 20% by weight, the mixture was heated at 150 ° C. for 36 hours, then cooled and concentrated by an ultrafiltration membrane to obtain a solid content (titanium oxide / silica composite oxide particle) concentration. A deodorized antibacterial component-supported fine particle (7) dispersion comprising a titanium oxide / silica fine particle (TS-1) dispersion carrying 10% by weight of silver was obtained. The amount of Ag 2 O supported in the deodorized antibacterial component-supported fine particles (7) was 2.0% by weight.
The average particle size of the deodorant antibacterial component-carrying fine particles (7) was 25 nm as measured with an ultracentrifugal automatic particle size distribution analyzer (CAPA-700). Moreover, it was an amorphous type by X-ray diffraction.
The deodorizing antibacterial component-carrying fine particle (7) dispersion was measured for the ability to produce lysozyme mRNA and lysozyme protein, and the results are shown in the table. Moreover, the deodorizing / deodorizing performance was evaluated and the results are shown in the table.

比較例1Comparative Example 1

リゾチームmRNAの生成
ヒト上皮細胞(A549)片を水に浸漬し、30分間経過した後、細胞内の抗菌活性分子であるリゾチウムmRNAの発現量をRT−PCR法により測定した。このときのリゾチウムmRNAの量を基準の1とした。
リゾチームタンパク質の生成
ヒト上皮細胞(A549細胞)片を水に浸漬し、1時間経過した後、細胞内および細胞外に分泌されたリゾチームタンパク質の発現量をウェスターン ブロッティング法(Western Blotting法)により測定した。このときのリゾチームタンパク質の量を基準の1とした。
防臭・消臭性能の評価
何も塗布することなく2時間後に、臭気性の変化を調べたが同程度の臭気を維持していた。
Production of lysozyme mRNA A human epithelial cell (A549) fragment was immersed in water, and after 30 minutes, the expression level of lysozyme mRNA, which is an intracellular antibacterial active molecule, was measured by RT-PCR. The amount of lysozyme mRNA at this time was defined as 1.
Production of lysozyme protein Human epithelial cells (A549 cells) were immersed in water, and after 1 hour, the expression level of lysozyme protein secreted intracellularly and extracellularly was measured by Western blotting method (Western blotting method). did. The amount of lysozyme protein at this time was taken as the standard 1.
Evaluation of deodorant / deodorant performance After 2 hours without applying anything, the change in odor was investigated, but the same odor was maintained.

比較例2Comparative Example 2

防臭抗菌剤(R2)の調製
実施例1と同様にしてTiO2としての濃度が3.0重量%の酸化チタン微粒子(T-1)分散液を調製した。ついで、限外濾過膜装置で濃縮して、固形分濃度10重量%の酸化チタン微粒子(T-1)分散液からなる防臭抗菌剤(R2)分散液を得た。
防臭抗菌剤(R2)の平均粒子径は、超遠心式自動粒度分布測定装置(CAPA−700)で測定したところ、5nmであった。また、X線回折によりアモルファス型であった。
防臭抗菌剤(R2)について、リゾチームmRNA、リゾチームタンパク質の生成能を測定し、結果を表に示した。また、防臭・消臭性能、抗菌性能を評価し、結果を表に示した。
Preparation of deodorant antibacterial agent (R2) A titanium oxide fine particle (T-1) dispersion having a concentration of 3.0% by weight as TiO 2 was prepared in the same manner as in Example 1. Subsequently, it concentrated with the ultrafiltration membrane apparatus, and the deodorizing antibacterial agent (R2) dispersion liquid which consists of a titanium oxide microparticles | fine-particles (T-1) dispersion liquid with a solid content concentration of 10 weight% was obtained.
The average particle size of the deodorant antibacterial agent (R2) was 5 nm as measured with an ultracentrifugal automatic particle size distribution analyzer (CAPA-700). Moreover, it was an amorphous type by X-ray diffraction.
The deodorizing antibacterial agent (R2) was measured for its ability to produce lysozyme mRNA and lysozyme protein, and the results are shown in the table. Moreover, the deodorizing / deodorizing performance and antibacterial performance were evaluated, and the results are shown in the table.

比較例3Comparative Example 3

防臭抗菌剤(R3)
濃度1.0重量%の硝酸銀水溶液を防臭抗菌剤(R3)として用いた。
防臭抗菌剤(R3)について、リゾチームmRNA、リゾチームタンパク質の生成能を測定し、結果を表に示した。また、防臭・消臭性能を評価し、結果を表に示した。
Deodorant antibacterial agent (R3)
An aqueous silver nitrate solution having a concentration of 1.0% by weight was used as the deodorant antibacterial agent (R3).
The deodorizing antibacterial agent (R3) was measured for its ability to produce lysozyme mRNA and lysozyme protein, and the results are shown in the table. Moreover, the deodorizing / deodorizing performance was evaluated and the results are shown in the table.

比較例4Comparative Example 4

防臭抗菌剤(R4)の調製
抗菌剤(日揮触媒化成(株)製:ATOMYBALL-(UA)、SiO2・Al23、無定形、平均粒子径15nm、Ag2O含有量5重量%、固形分濃度1.5重量%)を限外濾過膜装置で濃縮して固形分濃度10重量%の銀を担持したシリカ・アルミナ微粒子分散液からなる防臭抗菌剤(R4)分散液を得た。防臭抗菌剤(R4)中のAg2Oの担持量は5.0重量%であった。
防臭抗菌剤(R4)について、リゾチームmRNA、リゾチームタンパク質の生成能を測定し、結果を表に示した。また、防臭・消臭性能を評価し、結果を表に示した。
Preparation of deodorant antibacterial agent (R4) Antibacterial agent (manufactured by JGC Catalysts & Chemicals Co., Ltd .: ATOMYBALL- (UA), SiO 2 · Al 2 O 3 , amorphous, average particle size 15 nm, Ag 2 O content 5% by weight, The solid content concentration of 1.5% by weight was concentrated with an ultrafiltration membrane device to obtain a deodorant antibacterial agent (R4) dispersion comprising a silica / alumina fine particle dispersion carrying silver with a solid content concentration of 10% by weight. The amount of Ag 2 O supported in the deodorant antibacterial agent (R4) was 5.0% by weight.
The deodorizing antibacterial agent (R4) was measured for its ability to produce lysozyme mRNA and lysozyme protein, and the results are shown in the table. Moreover, the deodorizing / deodorizing performance was evaluated and the results are shown in the table.

比較例5Comparative Example 5

防臭抗菌剤(R5)
実施例3と同様にしてTiO2としての濃度が3.0重量%の酸化チタン微粒子(T-3)分散液を調製した。ついで、150℃で2時間水熱処理して酸化チタン微粒子(RT-5)分散液を調製した。
Deodorant antibacterial agent (R5)
In the same manner as in Example 3, a titanium oxide fine particle (T-3) dispersion having a concentration of 3.0% by weight as TiO 2 was prepared. Subsequently, hydrothermal treatment was performed at 150 ° C. for 2 hours to prepare a titanium oxide fine particle (RT-5) dispersion.

消臭抗菌成分の担持
別途、硝酸銀(AgNO3)7.9gに水492.1gを加えて、濃度1.0重量%の硝酸銀水溶液を調製した。
TiO2濃度を1.0重量%に調整した酸化チタン微粒子(RT-5)分散液9.5kgを調合タンクに採取し、これを攪拌しながら50℃に加温した。ついで、酸化チタン微粒子(RT-5)分散液のpHが9.0になるようにアンモニアを添加した後、前記硝酸銀水溶液をペリスターポンプで10g/minの速度で添加した。硝酸銀水溶液の添加により酸化チタン微粒子(RT-5)分散液のpHが低下し始めたところで、陰イオン交換樹脂(三菱化学製)をpH8.5に維持するように少量ずつ添加し、全硝酸銀水溶液の添加が終了するまで、この操作を継続した。陰イオン交換樹脂の全使用量は310gであり、また酸化チタン微粒子(RT-5)分散液の最終pHは8.1であった。
Separately carrying deodorant antibacterial components 492.1 g of water was added to 7.9 g of silver nitrate (AgNO 3 ) to prepare an aqueous silver nitrate solution having a concentration of 1.0% by weight.
9.5 kg of a titanium oxide fine particle (RT-5) dispersion whose TiO 2 concentration was adjusted to 1.0% by weight was collected in a preparation tank and heated to 50 ° C. while stirring. Next, ammonia was added so that the pH of the titanium oxide fine particle (RT-5) dispersion was 9.0, and then the aqueous silver nitrate solution was added at a rate of 10 g / min with a peristaltic pump. When the pH of the titanium oxide fine particle (RT-5) dispersion began to drop due to the addition of the silver nitrate aqueous solution, anion exchange resin (manufactured by Mitsubishi Chemical) was added little by little to maintain the pH at 8.5, and the total silver nitrate aqueous solution was added. This operation was continued until the addition of was completed. The total amount of anion exchange resin used was 310 g, and the final pH of the titanium oxide fine particle (RT-5) dispersion was 8.1.

酸化チタン微粒子(RT-5)分散液からイオン交換樹脂を分離した後、ついで、95℃で3時間加熱後、冷却し、ついで、限外濾過膜装置でTiO2 重量に対して200倍の水で洗浄した後、限外濾過膜装置で濃縮して、固形分濃度10重量%の銀を担持した酸化チタン微粒子(RT-5)分散液からなる防臭抗菌剤(R5)分散液を得た。防臭抗菌剤(R5)中のAg2Oの担持量は5.0重量%であった。
消臭抗菌剤(R5)の平均粒子径は、超遠心式自動粒度分布測定装置(CAPA−700)で測定したところ22nmであった。また、X線回折によりアナターゼ型であった。
防臭抗菌剤(R5)について、リゾチームmRNA、リゾチームタンパク質の生成能を測定し、結果を表に示した。また、防臭・消臭性能を評価し、結果を表に示した。
The ion exchange resin was separated from the titanium oxide fine particle (RT-5) dispersion, then heated at 95 ° C. for 3 hours, then cooled, and then 200 times as much water as TiO 2 weight in an ultrafiltration membrane device. After washing with, the solution was concentrated with an ultrafiltration membrane device to obtain a deodorant antibacterial agent (R5) dispersion composed of a titanium oxide fine particle (RT-5) dispersion carrying silver having a solid concentration of 10% by weight. The amount of Ag 2 O supported in the deodorant antibacterial agent (R5) was 5.0% by weight.
The average particle size of the deodorant antibacterial agent (R5) was 22 nm as measured with an ultracentrifugal automatic particle size distribution analyzer (CAPA-700). It was anatase type by X-ray diffraction.
The deodorizing antibacterial agent (R5) was measured for its ability to produce lysozyme mRNA and lysozyme protein, and the results are shown in the table. Moreover, the deodorizing / deodorizing performance was evaluated and the results are shown in the table.

比較例6Comparative Example 6

防臭抗菌剤(R6)
硫酸チタニルを純水に溶解して、TiO2として濃度1.0重量%の水溶液を調製した。この水溶液を撹拌しながら、濃度15重量%のアンモニア水を徐々に添加し、白色のスラリーを得、このスラリーを濾過し、洗浄し、含水チタン酸のケーキを得た。このケーキ31.4gに純水と濃度33重量%の過酸化水素水219.8gを加えた後、80℃で14時間加熱し、TiO2として濃度1.0重量%の溶液3136gを得た。このチタン酸溶液は黄褐色透明で、pHは8.2であった。
Deodorant antibacterial agent (R6)
Titanyl sulfate was dissolved in pure water to prepare an aqueous solution having a concentration of 1.0% by weight as TiO 2 . While stirring this aqueous solution, 15% by weight ammonia water was gradually added to obtain a white slurry, which was filtered and washed to obtain a hydrous titanic acid cake. Pure water and 219.8 g of 33 wt% hydrogen peroxide water were added to 31.4 g of this cake, and then heated at 80 ° C. for 14 hours to obtain 3136 g of a 1.0 wt% solution as TiO 2 . This titanic acid solution was transparent yellowish brown and had a pH of 8.2.

次いで、濃度15重量%のアンモニア水82gを純水2377gで希釈したアンモニア水中で酸化銀2.46gを溶解して、銀のアミン錯塩水溶液とし、さらにこの水溶液に炭酸ジルコニウムアンモニウム15.4gを純水に溶解添加した。この混合水溶液を前記酸化チタン水溶液に加え、次に、SiO2として濃度20重量%のシリカゾル38.7gを加えた後、150℃で36時間加熱した。この溶液は初期黄褐色液であったが、36時間後に淡乳白色で透明なコロイド溶液となった。この銀成分を含む複合酸化物コロイド粒子が分散したコロイド溶液のpHは7.5であった。 Next, 2.46 g of silver oxide was dissolved in ammonia water obtained by diluting 82 g of ammonia water having a concentration of 15% by weight with 2377 g of pure water to obtain a silver amine complex salt aqueous solution. Further, 15.4 g of ammonium zirconium carbonate was added to the pure water. And dissolved. This mixed aqueous solution was added to the titanium oxide aqueous solution, and then 38.7 g of silica sol having a concentration of 20% by weight as SiO 2 was added, followed by heating at 150 ° C. for 36 hours. This solution was an initial tan solution, but after 36 hours became a pale milky white and transparent colloidal solution. The pH of the colloidal solution in which the composite oxide colloidal particles containing the silver component were dispersed was 7.5.

ついで、限外濾過膜装置で濃縮して、固形分濃度10重量%の銀を担持した酸化チタン・ジルコニア・シリカ微粒子(RTZS-1)分散液からなる防臭抗菌剤(R6)分散液を得た。防臭抗菌剤(R6)中のAg2Oの担持量は5.0重量%であった。
消臭抗菌剤(R6)の平均粒子径は6nmであった。また、X線回折によりアナタース型であった。
防臭抗菌剤(R6)について、リゾチームmRNA、リゾチームタンパク質の生成能を測定し、結果を表に示した。また、防臭・消臭性能を評価し、結果を表に示した。
Subsequently, the solution was concentrated with an ultrafiltration membrane device to obtain a deodorant antibacterial agent (R6) dispersion composed of a titanium oxide / zirconia / silica fine particle (RTZS-1) dispersion supporting silver having a solid concentration of 10% by weight. . The amount of Ag 2 O supported in the deodorant antibacterial agent (R6) was 5.0% by weight.
The average particle size of the deodorant antibacterial agent (R6) was 6 nm. Moreover, it was an anatase type by X-ray diffraction.
The deodorizing antibacterial agent (R6) was measured for its ability to produce lysozyme mRNA and lysozyme protein, and the results are shown in the table. Moreover, the deodorizing / deodorizing performance was evaluated and the results are shown in the table.

Figure 2010083775
Figure 2010083775

Claims (5)

銀、銅、亜鉛、錫、コバルト、ニッケル、マンガンから選ばれる1種または2種以上の消臭抗菌成分が担持された無定型酸化チタン系微粒子と、該微粒子をヒトまたは動物上皮細胞と接触させて生成した防臭抗菌性蛋白質とからなるヒトまたは動物用防臭抗菌剤。   Amorphous titanium oxide microparticles carrying one or more deodorizing antibacterial components selected from silver, copper, zinc, tin, cobalt, nickel, and manganese, and the microparticles are brought into contact with human or animal epithelial cells. A deodorizing antibacterial agent for humans or animals comprising a deodorizing antibacterial protein produced by 前記防臭抗菌性蛋白質がリゾチーム蛋白質であることを特徴とする請求項1記載のヒトまたは動物用防臭抗菌剤。   The deodorizing antibacterial agent for humans or animals according to claim 1, wherein the deodorizing antibacterial protein is a lysozyme protein. 前記消臭抗菌成分が銀であることを特徴とする請求項1または2に記載のヒトまたは動物用防臭抗菌剤。   The deodorizing antibacterial agent for humans or animals according to claim 1 or 2, wherein the deodorizing antibacterial component is silver. 前記酸化チタン系微粒子の平均粒子径が2〜300nmの範囲にあることを特徴とする請求項1〜3のいずれかに記載のヒトまたは動物用防臭抗菌剤。   The human or animal deodorant antibacterial agent according to any one of claims 1 to 3, wherein the titanium oxide fine particles have an average particle diameter in the range of 2 to 300 nm. 前記消臭抗菌成分が担持された無定型酸化チタン系微粒子中の前記消臭抗菌成分の担持量が、酸化物として0.1〜20重量%の範囲にあることを特徴とする請求項1〜4のいずれかに記載のヒトまたは動物用防臭抗菌剤。   The amount of the deodorant antibacterial component supported in the amorphous titanium oxide-based fine particles on which the deodorant antibacterial component is supported is in the range of 0.1 to 20% by weight as an oxide. 5. A deodorizing antibacterial agent for humans or animals according to any one of 4 above.
JP2008252403A 2008-09-30 2008-09-30 Deodorant antibacterial agent for human or animal Expired - Fee Related JP5483853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008252403A JP5483853B2 (en) 2008-09-30 2008-09-30 Deodorant antibacterial agent for human or animal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008252403A JP5483853B2 (en) 2008-09-30 2008-09-30 Deodorant antibacterial agent for human or animal

Publications (2)

Publication Number Publication Date
JP2010083775A true JP2010083775A (en) 2010-04-15
JP5483853B2 JP5483853B2 (en) 2014-05-07

Family

ID=42248097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008252403A Expired - Fee Related JP5483853B2 (en) 2008-09-30 2008-09-30 Deodorant antibacterial agent for human or animal

Country Status (1)

Country Link
JP (1) JP5483853B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102176473B1 (en) * 2020-07-01 2020-11-10 (주)바이오소재 Bio antibacterial pellet and antibacterial products by using metal derivatives and porous carriers

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225402A (en) * 1989-02-28 1990-09-07 Kanebo Ltd Antibacterial composition
JPH0352804A (en) * 1989-07-19 1991-03-07 Tomita Seiyaku Kk Antibacterial titanium oxide and preparation thereof
JPH0881320A (en) * 1994-09-14 1996-03-26 Shinagawa Fuel Co Ltd Antimicrobial agent
JPH11286425A (en) * 1998-03-31 1999-10-19 Shiseido Co Ltd Composition for suppressing aged person smell
JP2002145717A (en) * 2000-11-01 2002-05-22 Catalysts & Chem Ind Co Ltd Antimicrobial cosmetic
JP2004189633A (en) * 2002-12-09 2004-07-08 Mandom Corp Deodorant cosmetic
JP2004307363A (en) * 2003-04-03 2004-11-04 Mitsui Chemicals Inc External preparation for skin
JP2005318999A (en) * 2004-05-07 2005-11-17 Catalysts & Chem Ind Co Ltd Antibacterial deodorant and its manufacturing method
JP2007145771A (en) * 2005-11-29 2007-06-14 Mandom Corp Antibacterial agent composition and deodorant agent

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225402A (en) * 1989-02-28 1990-09-07 Kanebo Ltd Antibacterial composition
JPH0352804A (en) * 1989-07-19 1991-03-07 Tomita Seiyaku Kk Antibacterial titanium oxide and preparation thereof
JPH0881320A (en) * 1994-09-14 1996-03-26 Shinagawa Fuel Co Ltd Antimicrobial agent
JPH11286425A (en) * 1998-03-31 1999-10-19 Shiseido Co Ltd Composition for suppressing aged person smell
JP2002145717A (en) * 2000-11-01 2002-05-22 Catalysts & Chem Ind Co Ltd Antimicrobial cosmetic
JP2004189633A (en) * 2002-12-09 2004-07-08 Mandom Corp Deodorant cosmetic
JP2004307363A (en) * 2003-04-03 2004-11-04 Mitsui Chemicals Inc External preparation for skin
JP2005318999A (en) * 2004-05-07 2005-11-17 Catalysts & Chem Ind Co Ltd Antibacterial deodorant and its manufacturing method
JP2007145771A (en) * 2005-11-29 2007-06-14 Mandom Corp Antibacterial agent composition and deodorant agent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102176473B1 (en) * 2020-07-01 2020-11-10 (주)바이오소재 Bio antibacterial pellet and antibacterial products by using metal derivatives and porous carriers

Also Published As

Publication number Publication date
JP5483853B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
EP3177142B1 (en) A process for preparing an antimicrobial particulate composition
KR101233570B1 (en) Antibacterial deodorant and method for producing the same
JP5812488B2 (en) Antibacterial antiviral composition and method for producing the same
KR102336493B1 (en) Composition for antibacterial and deodorization
JP5669367B2 (en) Antibacterial deodorant and method for producing the same
JP5354852B2 (en) Deodorant antibacterial composition
JP2013166705A (en) Virus inactivating agent
CN106665651A (en) Preparation method of stable sepiolite antibacterial powder
KR20190047001A (en) A visible light-responsive photocatalytic titanium dioxide fine particle mixture, a dispersion thereof, a production method of a dispersion, a photocatalytic thin film, and a member having a photocatalytic thin film on its surface
JP2009268510A (en) Antibacterial deodorant
KR20160086906A (en) Antiviral composition, antiviral agent, photocatalyst and virus inactivation method
JP2000169717A (en) Antimicrobial wax and its preparation
JP5483853B2 (en) Deodorant antibacterial agent for human or animal
JP4849778B2 (en) Antibacterial deodorant and method for producing the same
KR20160073307A (en) Antiviral composition, antiviral agent, photo catalyst and virus inactivation process
JP2008284242A (en) Deodorizing and antibacterial composition and its manufacturing method
JP4619075B2 (en) Method for producing antibacterial and deodorant titanium oxide colloidal solution
JP5854590B2 (en) Antibacterial / deodorant treatment agent and antibacterial / deodorant treatment article
JP2002068915A (en) Sol
JP5574813B2 (en) Manufacturing method of titanium oxide-based fine particles, antibacterial / deodorant using the titanium oxide-based fine particles, coating solution for forming antibacterial / deodorant coating, and substrate with antibacterial / deodorant coating
CN1903048A (en) Eggs with facteriostasis function, and processing method therefor
JPH09227319A (en) Antimicrobial powder and production thereof
JPH10273322A (en) Antifungal composite titanate and manufacture of the same
JP2013123591A (en) Titanium oxide-based antibacterial deodorant, dispersion liquid of the titanium oxide-based antibacterial deodorant, and fiber or cloth with titanium oxide-based antibacterial deodorant
CN113455517A (en) Environment-friendly slow-release antibacterial disinfection emulsion and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140218

R150 Certificate of patent or registration of utility model

Ref document number: 5483853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees