JPH07196424A - Antimicrobial agent consisting of complex particle or hollow particle - Google Patents

Antimicrobial agent consisting of complex particle or hollow particle

Info

Publication number
JPH07196424A
JPH07196424A JP35334793A JP35334793A JPH07196424A JP H07196424 A JPH07196424 A JP H07196424A JP 35334793 A JP35334793 A JP 35334793A JP 35334793 A JP35334793 A JP 35334793A JP H07196424 A JPH07196424 A JP H07196424A
Authority
JP
Japan
Prior art keywords
particles
antibacterial
particle
silver
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35334793A
Other languages
Japanese (ja)
Inventor
Tetsuo Ito
徹男 伊藤
Kouji Shiho
浩司 志保
Kiyoshi Kasai
澄 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP35334793A priority Critical patent/JPH07196424A/en
Publication of JPH07196424A publication Critical patent/JPH07196424A/en
Pending legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PURPOSE:To obtain an antimicrobial agent having good dispersibility when added to materials such as resins, rubbers, coatings, cosmetics or fibers, capable of exhibiting sufficient antimicrobial effect without loosing characteristics of the material themselves and free from decoloring and deterioration. CONSTITUTION:This complex particles has a coating layer containing at least one kind of metal selected from silver, copper and zinc and/or its compound of fine particles used as a core. The antimicrobial agent consists of this complex particles and/or hollow particles having the above coating layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複合粒子または中空粒
子からなる抗菌剤に関し、さらに詳しくは、樹脂、ゴ
ム、塗料、紙、化粧品、繊維等への添加剤および微生物
の繁殖抑制用の添加剤として使用される複合粒子または
中空粒子からなる抗菌剤に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antibacterial agent comprising composite particles or hollow particles, and more specifically, an additive to resins, rubbers, paints, papers, cosmetics, fibers, etc., and an additive for suppressing the growth of microorganisms. The present invention relates to an antibacterial agent composed of composite particles or hollow particles used as an agent.

【0002】[0002]

【従来の技術】銀イオン、銅イオン、亜鉛イオンなどが
抗菌性を示すことは既に知られており、これらの金属イ
オンを保持したゼオライトまたはセラミックを高分子中
に混合して抗菌性を付与するという試みがなされている
(特開昭59-133235号公報、特開平4-77537号公報等)。
しかしながら、これらの金属イオンを担持させたゼオラ
イトは必ずしも安価でなく、また、少量の添加では抗菌
性の発現が不十分となる。さらにゼオライトは0.5μ
m以下の微粒子化が困難で、樹脂、ゴム、塗料、化粧
品、繊維等への分散性が悪く、抗菌性が均一に発現され
ず、耐薬品性に劣り、しかも着色しやすいという欠点を
有している。かかる着色等を抑制するために、例えばゼ
オライトにアンモニウムイオンを担持させたり、アンミ
ン錯体イオンを担持させることが行われているが未だ充
分ではない。
It is already known that silver ions, copper ions, zinc ions, etc. exhibit antibacterial properties, and zeolite or ceramics holding these metal ions are mixed in a polymer to impart antibacterial properties. Attempts have been made (JP-A-59-133235, JP-A-4-77537, etc.).
However, zeolites carrying these metal ions are not always inexpensive, and addition of a small amount thereof causes insufficient antibacterial properties. Furthermore, zeolite is 0.5μ
It is difficult to form fine particles of m or less, has poor dispersibility in resins, rubbers, paints, cosmetics, fibers, etc., does not exhibit uniform antibacterial properties, has poor chemical resistance, and is easily colored. ing. In order to suppress such coloring and the like, for example, zeolite is loaded with ammonium ions or ammine complex ions, but this is not sufficient.

【0003】また、抗菌性を示す前記金属そのものを微
粒子化して樹脂やゴムに配合しようとする試みもなされ
ているが、微粒子化が困難で分散性が悪く、抗菌性が十
分発現されていない。さらに、塗料や化粧品等の液状製
品に微粒子状の抗菌性金属を配合しようとする試みもあ
るが、保存中にこれら金属が沈降するという欠点を有す
る。
Attempts have also been made to atomize the metal itself having antibacterial properties and blend it into a resin or rubber, but it is difficult to microparticulate and the dispersibility is poor, and antibacterial properties are not sufficiently exhibited. Further, there have been attempts to blend fine particles of antibacterial metal into liquid products such as paints and cosmetics, but there is a drawback that these metals precipitate during storage.

【0004】一方、メチシリン耐性黄色ブドウ球菌(M
RSA)等による院内感染菌の防止対策をはじめ、抗菌
効果を有する衣料、カーペット、カーテン等のインテリ
ア用抗菌繊維が近年、強く求められてきている。繊維に
抗菌効果を付与するためには、従来、4級アンモニウム
塩等の有機系抗菌剤を繊維中に含浸させたり、有機系抗
菌剤を後加工によって、繊維表面に塗布またはスプレー
する方法が試みられてきた。しかしながら、有機系抗菌
剤を繊維中に含浸させる方法は、綿繊維には有効な方法
であっても、ポリアミド、ポリエステル等の合成繊維に
は有効ではなく、これら有機系抗菌剤を繊維中に保持で
きず、繊維内部からブリードアウトしたり、または洗濯
を繰り返すことによりその効果が損なわれるという欠点
を有している。
On the other hand, methicillin-resistant Staphylococcus aureus (M
In recent years, there has been a strong demand for antibacterial fibers for interiors such as clothes, carpets, curtains, etc., which have antibacterial effects, in addition to measures for preventing hospital-acquired bacteria by RSA and the like. In order to impart an antibacterial effect to the fiber, conventionally, a method of impregnating the fiber with an organic antibacterial agent such as a quaternary ammonium salt or applying or spraying the organic antibacterial agent to the surface of the fiber by post-processing has been tried. Has been. However, the method of impregnating an organic antibacterial agent into a fiber is not effective for synthetic fibers such as polyamide and polyester even if it is effective for cotton fiber, and these organic antibacterial agents are retained in the fiber. However, it has a drawback that its effect is impaired by bleeding out from the inside of the fiber or repeated washing.

【0005】さらに、有機系抗菌剤は、高温で分解しや
すく、合成繊維中に配合し難いものが多く、高濃度に添
加すると変色したり、日光によって劣化し、その分解生
成物が皮膚障害を生起したりするという問題も有する。
また、後加工により繊維表面に有機系抗菌剤を塗布する
方法は、付着させた薬剤が洗濯等によって容易に脱落し
てしまうという欠点を有している。そこで、合成繊維中
に酸化亜鉛微粉末や銀を担持させたゼオライト微粉末を
練り込み、紡糸することで抗菌効果の持続を図ろうとす
る試みもあるが、微粉末であるほど繊維中での分散状態
が不良となり、凝集して紡糸ができなかったり、繊維強
度を低下させるという欠点を有する。また、これら粉末
の粒径を大きくすると、やはり紡糸中に糸切れ等の問題
と共に繊維強度も低下させてしまうことになる。
Furthermore, many organic antibacterial agents are easily decomposed at high temperatures and are difficult to mix in synthetic fibers. If they are added in a high concentration, they are discolored or deteriorated by sunlight, and their decomposition products cause skin damage. It also has the problem of occurring.
In addition, the method of applying an organic antibacterial agent to the surface of the fiber by post-processing has a drawback that the attached chemical agent is easily dropped off by washing or the like. Therefore, there has been an attempt to maintain the antibacterial effect by kneading fine particles of zinc oxide or fine particles of zeolite supporting silver into synthetic fibers and spinning them, but the finer particles are dispersed in the fiber. There are drawbacks such that the state becomes poor and the fibers cannot be spun due to aggregation and the fiber strength is lowered. Further, if the particle size of these powders is increased, the fiber strength will also be reduced along with problems such as yarn breakage during spinning.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、樹
脂、ゴム、塗料、化粧品、繊維等の材料に添加した際に
分散性が良好で、材料本来の特性を失うことなく、充分
な抗菌効果を示し、変色、変質することのない複合粒子
または中空粒子からなる抗菌剤を提供することにある。
The object of the present invention is to provide good dispersibility when added to materials such as resins, rubbers, paints, cosmetics, fibers, etc. without losing the original properties of the material, and sufficient antibacterial properties. An object of the present invention is to provide an antibacterial agent comprising composite particles or hollow particles which exhibit an effect and are not discolored or deteriorated.

【0007】[0007]

【課題を解決するための手段】前記課題は、 コアとな
る微粒子(以下、「コア微粒子」という。)上に銀、銅
および亜鉛よりなる群から選ばれる少なくとも1種の金
属および/またはそれらの化合物(以下、これらをまと
めて「抗菌性金属」という。)を含む被覆層を有する複
合粒子からなることを特徴とする抗菌剤、ならびに抗菌
性金属を含む表面層を有し、さらに粒子内部に空孔を有
する中空粒子からなることを特徴とする抗菌剤、により
達成される。
[Means for Solving the Problems] The above-mentioned problems are solved by at least one metal selected from the group consisting of silver, copper and zinc on the core fine particles (hereinafter referred to as “core fine particles”) and / or their contents. An antibacterial agent characterized by comprising a composite particle having a coating layer containing a compound (hereinafter collectively referred to as "antibacterial metal"), and a surface layer containing the antibacterial metal, further comprising inside the particle. An antibacterial agent characterized by comprising hollow particles having pores.

【0008】以下、本発明について具体的に説明する。
本発明において用いられるコア微粒子は、有機化合物お
よび無機化合物のいずれも使用することができる。ここ
で、有機化合物としては、例えばポリスチレン、ポリス
チレンとジビニルベンゼンとの共重合体;ポリメチルメ
タクリレート、ポリエチレン、ポリプロピレン、ポリイ
ミド、ポリアミド、ポリ塩化ビニル、ポリ塩化ビニリデ
ン、ポリウレタン、ポリカーボネート、フッ素樹脂、ポ
リエステル系エラストマー、ポリアミド系エラストマ
ー、スチレン系エラストマー、ブタジエン系エラストマ
ー等の重合体またはこれらと共重合可能な単量体(エチ
レングリコールジメタクリレート等の架橋性単量体を含
む)を共重合させた共重合体;セルロース;天然ゴム等
を挙げることができる。また、無機化合物としては、例
えばアルミナ、シリカ、二酸化チタン、タルク、カオリ
ン、ハイドロキシアパタイト、活性白土、ケイソウ土、
雲母等を挙げることができる。これらの有機化合物およ
び無機化合物は1種単独であるいは2種以上を混合して
用いることができる。本発明におけるコア微粒子の形態
は真球状のものだけでなく、凹部を有する偏平状のも
の、長軸と短軸を有する棒状のもの等の異形粒子であっ
てもよい。
The present invention will be specifically described below.
As the core fine particles used in the present invention, both organic compounds and inorganic compounds can be used. Here, as the organic compound, for example, polystyrene, a copolymer of polystyrene and divinylbenzene; polymethylmethacrylate, polyethylene, polypropylene, polyimide, polyamide, polyvinyl chloride, polyvinylidene chloride, polyurethane, polycarbonate, fluororesin, polyester series Elastomers, polyamide elastomers, styrene elastomers, butadiene elastomers and other polymers, or copolymers of these and copolymerizable monomers (including crosslinkable monomers such as ethylene glycol dimethacrylate). Cellulose; natural rubber and the like. As the inorganic compound, for example, alumina, silica, titanium dioxide, talc, kaolin, hydroxyapatite, activated clay, diatomaceous earth,
Mica etc. can be mentioned. These organic compounds and inorganic compounds may be used alone or in combination of two or more. The form of the core fine particles in the present invention is not limited to a true spherical shape, but may be a deformed particle such as a flat shape having a concave portion or a rod shape having a major axis and a minor axis.

【0009】本発明においてコア微粒子の被覆に用いら
れる抗菌性金属の具体例としては、銀、銅、亜鉛ならび
に酸化銀、塩化銀、硫酸銀、チオ硫酸銀、セレン化銀、
リン酸銀、メタリン酸銀、硝酸銀、酢酸銀等の銀化合
物、酸化銅、塩化銅、塩素酸銅、セレン化銅、硫酸銅、
硝酸銅、酢酸銅等の銅化合物、酸化亜鉛、塩化亜鉛、過
塩素酸亜鉛、臭化亜鉛、ヨウ化亜鉛、硫酸亜鉛、硝酸亜
鉛、酢酸亜鉛等の亜鉛化合物を挙げることができる。こ
れらは1種または2種以上を組み合わせて用いることが
できる。
Specific examples of the antibacterial metal used for coating the core fine particles in the present invention include silver, copper, zinc and silver oxide, silver chloride, silver sulfate, silver thiosulfate, silver selenide,
Silver compounds such as silver phosphate, silver metaphosphate, silver nitrate, silver acetate, copper oxide, copper chloride, copper chlorate, copper selenide, copper sulfate,
Examples thereof include copper compounds such as copper nitrate and copper acetate, and zinc compounds such as zinc oxide, zinc chloride, zinc perchlorate, zinc bromide, zinc iodide, zinc sulfate, zinc nitrate and zinc acetate. These can be used alone or in combination of two or more.

【0010】本発明において、複合粒子を得るためにコ
ア微粒子上に抗菌性金属を被覆する方法としては、例え
ば加水分解法、機械的方法、真空法等、種々の方法が採
用できる。
In the present invention, various methods such as a hydrolysis method, a mechanical method and a vacuum method can be adopted as a method for coating the core fine particles with the antibacterial metal to obtain the composite particles.

【0011】加水分解法は、加水分解性の抗菌性金属お
よび/または金属アルコキシドの水溶液中にコア微粒子
を均一に分散せしめ、次いで室温で、あるいは40℃以
上の温度に加熱しながら尿素、炭酸等を供給源とする炭
酸イオンの存在下、加水分解反応を生起させて該コア微
粒子上に抗菌性金属の塩基性炭酸金属塩を形成した後、
室温でアルカリ処理するか、あるいは空気中で200〜
300℃に加熱することにより抗菌性金属の酸化物に変
換する方法である。ここで、加水分解反応液1リットル
に対する加水分解性の抗菌性金属塩および/または金属
アルコキシドの使用量は0.01〜100ミリモルが好
ましく、0.1〜100ミリモルがさらに好ましい。
In the hydrolysis method, core fine particles are uniformly dispersed in an aqueous solution of a hydrolyzable antibacterial metal and / or metal alkoxide, and then urea, carbonic acid, etc. are heated at room temperature or while being heated to a temperature of 40 ° C. or higher. In the presence of carbonate ion as a source, after causing a hydrolysis reaction to form a basic metal carbonate of an antibacterial metal on the core fine particles,
Alkaline treatment at room temperature or 200 ~ in air
It is a method of converting to an oxide of an antibacterial metal by heating at 300 ° C. Here, the amount of the hydrolyzable antibacterial metal salt and / or metal alkoxide used per 1 liter of the hydrolysis reaction liquid is preferably 0.01 to 100 mmol, more preferably 0.1 to 100 mmol.

【0012】機械的方法は抗菌性の金属および/または
金属アルコキシドとコア微粒子とをヘンシェルミキサ
ー、ハイブリタイザー、オングミル等の高速回転羽根ま
たは高速回転アームを有する混合機や粉砕機中に入れ
て、200〜10,000rpm、好ましくは1,00
0〜8,000rpmの回転数で、1〜120分間、好
ましくは3〜30分間、通常、室温下、必要に応じて加
熱または冷却しながら高速攪拌することにより、コア微
粒子上に金属および/または金属酸化物を被覆する方法
である。
The mechanical method is to put the antibacterial metal and / or metal alkoxide and the core fine particles into a mixer or a crusher having a high-speed rotating blade or a high-speed rotating arm such as a Henschel mixer, a hybridizer or an Ong mill. ~ 10,000 rpm, preferably 1.00
At a rotation speed of 0 to 8,000 rpm, for 1 to 120 minutes, preferably for 3 to 30 minutes, usually, at room temperature, by stirring at high speed while heating or cooling as needed, the metal and / or the core fine particles are This is a method of coating a metal oxide.

【0013】真空法は抗菌性の金属および/または金属
酸化物を蒸着源またはターゲットとして、10-5Pa〜
2Paの真空度で被処理コア微粒子を振動させながら、
真空蒸着、スパッタリングまたはイオンプレーティング
等の処理を通常、30分間行う方法である。
The vacuum method employs an antibacterial metal and / or metal oxide as a vapor deposition source or a target, and is from 10 -5 Pa to
While vibrating the core fine particles to be processed with a vacuum degree of 2 Pa,
This is a method in which treatment such as vacuum deposition, sputtering or ion plating is usually performed for 30 minutes.

【0014】なお、上記各方法において金属を被覆させ
た場合には前記処理後、酸素または空気中で100〜3
00℃に加熱することにより金属酸化物に変換すること
もできる。
When a metal is coated in each of the above methods, after the above treatment, 100 to 3 in oxygen or air is used.
It can also be converted to a metal oxide by heating to 00 ° C.

【0015】また、抗菌性金属を被覆するに際しては、
コア微粒子の表面を物理的、化学的方法により親水化処
理した後、被覆することによりコア微粒子の表面と抗菌
性金属との接着性を向上させることができる。
When coating the antibacterial metal,
It is possible to improve the adhesiveness between the surface of the core fine particles and the antibacterial metal by coating the surfaces of the core fine particles with a hydrophilic treatment by a physical or chemical method and then coating.

【0016】このようなコア微粒子の表面の親水化方法
としては、短波長紫外線を照射する方法、プラズマ
処理またはプラズマ重合処理する方法、加水分解法、
ならびに極性基を導入する方法を挙げることができる
が、特に〜の方法が好ましい。
As a method for making the surface of the core fine particles hydrophilic, irradiation with short wavelength ultraviolet rays, plasma treatment or plasma polymerization treatment, hydrolysis method,
And a method of introducing a polar group can be mentioned, and the methods of to are particularly preferable.

【0017】の方法は、酸素およびオゾンの存在下、
あるいは不存在下でコア微粒子表面に160〜400n
mの波長領域を有する紫外線、例えば低圧水銀灯、高圧
水銀灯、キセノンランプ、メタルハライドランプ、カー
ブンアーク灯等を照射してコア微粒子の表面を親水化す
る方法である。ここで、紫外線の照射量は0.01〜1
0J/cm2、好ましくは0.1〜5J/cm2である。
なお、酸素およびオゾンの不存在下とは窒素、アルゴン
等の不活性ガス中、または10Torr以下の真空下、
酸素が1容量%未満およびオゾンが0.1容量%未満含
まれている状態をいう。また、処理に際してはコア微粒
子を振動させながら処理するのがより望ましい。
The method of is in the presence of oxygen and ozone,
Alternatively, in the absence of 160 to 400 n
This is a method of irradiating ultraviolet rays having a wavelength range of m, for example, a low pressure mercury lamp, a high pressure mercury lamp, a xenon lamp, a metal halide lamp, a curven arc lamp, etc., to make the surface of the core fine particles hydrophilic. Here, the irradiation amount of ultraviolet rays is 0.01 to 1
It is 0 J / cm 2 , preferably 0.1 to 5 J / cm 2 .
The absence of oxygen and ozone means in an inert gas such as nitrogen or argon, or under a vacuum of 10 Torr or less,
It means a state in which oxygen is less than 1% by volume and ozone is less than 0.1% by volume. Further, it is more desirable to perform the treatment while vibrating the core fine particles during the treatment.

【0018】の方法は、真空下、あるいは酸素、アン
モニア、アルゴン等の非重合性ガス雰囲気下でコア微粒
子表面をプラズマ処理する方法、またはベンゼン等の重
合性ガス雰囲気下でコア微粒子表面をプラズマ重合処理
する方法である。これらの処理条件は、例えば真空度1
0mTorr〜10Torr、周波数50Hz〜50M
Hz、放電電力0.2〜500W、処理時間30秒〜3
0分である。
The method of (1) is a method of plasma-treating the surface of the core fine particles in a vacuum or in an atmosphere of a non-polymerizable gas such as oxygen, ammonia, or argon, or plasma-polymerizing the surface of the core fine particles in an atmosphere of a polymerizable gas such as benzene. It is a method of processing. These processing conditions are, for example, vacuum degree 1
0mTorr-10Torr, Frequency 50Hz-50M
Hz, discharge power 0.2 to 500 W, processing time 30 seconds to 3
0 minutes.

【0019】の方法は、加水分解が可能なコア微粒子
を溶解または膨潤させない溶媒、例えば濃度1〜10重
量%の水酸化ナトリウム、水酸化カリウム等のアルカリ
水溶液中にコア微粒子を分散させ、室温〜100℃の温
度で1〜24時間、コア微粒子表面の加水分解を行った
後、水洗し、乾燥する方法である。
In the method of (1), the core fine particles are dispersed in a solvent which does not dissolve or swell the hydrolyzable core fine particles, for example, an alkaline aqueous solution of sodium hydroxide, potassium hydroxide or the like having a concentration of 1 to 10% by weight, and the temperature is from room temperature to room temperature. This is a method of hydrolyzing the surface of the core fine particles at a temperature of 100 ° C. for 1 to 24 hours, followed by washing with water and drying.

【0020】本発明においては、上述のようにして得ら
れた複合粒子のコア微粒子が、アルミナ、シリカ等の加
熱により多孔質になる無機化合物、あるいは有機化合物
である場合、例えば酸素または水素の存在下あるいは真
空下で、100℃以上、好ましくは300℃以上に加熱
処理することにより、複合粒子内部のコア微粒子を分解
し、ガス化させるか、コア微粒子内部に含まれる揮発成
分をガス化させて、該コア微粒子内部に空孔を持たせる
ことにより中空粒子を得ることができる。ここで中空粒
子とは粒子内部の30容量%以上が空孔である粒子をい
う。なお、加熱処理において、昇温速度および冷却速度
が急激であると、中空粒子が崩壊しやすくなるため、昇
温速度は、30℃/分以下、冷却速度は、20℃/分以下が
好ましい。
In the present invention, when the core fine particles of the composite particles obtained as described above are inorganic compounds or organic compounds such as alumina and silica which become porous by heating, the presence of, for example, oxygen or hydrogen. By heating at 100 ° C. or higher, preferably 300 ° C. or higher under low or vacuum, the core fine particles inside the composite particles are decomposed and gasified, or the volatile components contained in the core fine particles are gasified. Hollow particles can be obtained by providing pores inside the core particles. Here, the hollow particles are particles in which 30% by volume or more of the inside of the particles are pores. In the heat treatment, when the heating rate and the cooling rate are rapid, the hollow particles are likely to collapse, so the heating rate is preferably 30 ° C./minute or less and the cooling rate is preferably 20 ° C./minute or less.

【0021】また、これらの複合粒子または中空粒子
は、酸化および/または還元処理することにより種々の
組成の被覆層に変換させることができる。さらに、これ
らの複合粒子および中空粒子は、アルミニウム、ガリウ
ム、インジウム、イットリウム、セリウム、チタン、ジ
ルコニウム、バナジウム、タルタン等の化合物、好まし
くはこれらの酸化物を被覆層中あるいは表面層中に含む
ことができる。これらの化合物を含むことにより、複合
粒子および中空粒子が抗菌能と同時に紫外線遮蔽能を発
現することが可能となる。上記化合物の被覆層中の割合
は、好ましくは1〜99モル%、好ましくは5〜95モ
ル%である。
Further, these composite particles or hollow particles can be converted into coating layers of various compositions by subjecting to oxidation and / or reduction treatment. Furthermore, these composite particles and hollow particles may contain compounds such as aluminum, gallium, indium, yttrium, cerium, titanium, zirconium, vanadium, and tartan, preferably these oxides in the coating layer or the surface layer. it can. By including these compounds, it becomes possible for the composite particles and the hollow particles to exhibit the antibacterial activity and the ultraviolet screening ability at the same time. The proportion of the above compound in the coating layer is preferably 1 to 99 mol%, preferably 5 to 95 mol%.

【0022】上述のようにして得られる複合粒子または
中空粒子の平均粒径は、通常、0.01〜500μmの
ものが実用的であり、好ましくは、0.05〜50μm
である。粒径が0.01μm未満であると凝集性が強く
なり、均質な複合粒子および中空粒子を得ることができ
ず、また、500μmを超えると複合粒子または中空粒
子からなる抗菌剤を樹脂やゴム等へ配合したときに分散
不良となる恐れがある。特に、塗料や化粧品に配合する
には、50μm以下が好ましい。また、複合粒子または
中空粒子の外径に対する内径の比は、通常0.3〜0.
99であり、好ましくは、0.5〜0.99、特に好ま
しくは、0.6〜0.99である。
The average particle size of the composite particles or hollow particles obtained as described above is usually 0.01 to 500 μm for practical use, preferably 0.05 to 50 μm.
Is. If the particle size is less than 0.01 μm, the cohesiveness becomes strong, and homogeneous composite particles and hollow particles cannot be obtained. If the particle size exceeds 500 μm, the antibacterial agent composed of the composite particles or hollow particles may be treated with resin, rubber or the like. When mixed in, there is a risk of poor dispersion. In particular, when blended in paints and cosmetics, 50 μm or less is preferable. The ratio of the inner diameter to the outer diameter of the composite particles or hollow particles is usually 0.3 to 0.
It is 99, preferably 0.5 to 0.99, and particularly preferably 0.6 to 0.99.

【0023】本発明の複合粒子または中空粒子からなる
抗菌剤は、樹脂、ゴム、塗料、化粧品、繊維等の基材へ
配合しても材料本来の特性を損なうことはなく、十分な
抗菌効果を示すことができる。本発明の抗菌剤を上記基
材に配合する場合の配合量は、一般に基材100重量部
に対し、0.1〜30重量部である。0.1重量部未満
では、抗菌効果が充分発現されず、30重量部以上で
は、経済的に高価となり、また、基材の強度を低下させ
る恐れがある。例えば本発明の抗菌剤を繊維に配合する
場合は、繊維の原料となる樹脂100重量部に対し、抗
菌剤を0.5〜30重量部、好ましくは1〜20重量部
配合する。配合量が0.5重量部未満では十分な抗菌効
果を発現できず、30重量部を超えると紡糸性が不良と
なったり、繊維を低下させたりする恐れがある。なお、
配合量が多くなる場合は配合する繊維と同じ組成を有す
る重合体をコア微粒子として用いることが好ましい。
The antibacterial agent comprising the composite particles or hollow particles of the present invention does not impair the original properties of the material even when it is added to a base material such as resin, rubber, paint, cosmetics and fibers, and has a sufficient antibacterial effect. Can be shown. When the antibacterial agent of the present invention is blended with the above-mentioned substrate, the compounding amount is generally 0.1 to 30 parts by weight with respect to 100 parts by weight of the substrate. If it is less than 0.1 parts by weight, the antibacterial effect is not sufficiently exhibited, and if it is 30 parts by weight or more, it becomes economically expensive and the strength of the substrate may be lowered. For example, when the antibacterial agent of the present invention is added to the fiber, 0.5 to 30 parts by weight, preferably 1 to 20 parts by weight of the antibacterial agent is added to 100 parts by weight of the resin as the raw material of the fiber. If the blending amount is less than 0.5 parts by weight, a sufficient antibacterial effect cannot be exhibited, and if it exceeds 30 parts by weight, spinnability may be poor or fibers may be reduced. In addition,
When the blending amount is large, it is preferable to use a polymer having the same composition as the blended fiber as the core fine particles.

【0024】また、本発明の複合粒子または中空粒子か
らなる抗菌剤は、前記基材に配合する時に、難燃材、可
塑剤、酸化防止剤、消臭剤、防腐剤、界面活性剤、保湿
剤、香料、増粘剤、蛍光増白剤、安定剤、紫外線吸収
剤、紫外線遮蔽剤等が同時に添加されていてもよい。
The antibacterial agent comprising the composite particles or hollow particles of the present invention, when incorporated into the above-mentioned base material, is a flame retardant material, a plasticizer, an antioxidant, a deodorant, a preservative, a surfactant, and a moisturizing agent. Agents, fragrances, thickeners, fluorescent whitening agents, stabilizers, ultraviolet absorbers, ultraviolet shielding agents and the like may be added at the same time.

【0025】[0025]

【実施例】以下、実施例および比較例により本発明を説
明するが、本発明はこれらによって限定されるものでは
ない。 抗菌性試験 試験菌株として大腸菌Escherlchia coli IAM1239を用い
た。これをブイヨン培地で37℃24時間培養し、培養
液を滅菌リン酸緩衝液で希釈し、培養液1ml当たり大
腸菌が105〜106個となるように調整した。この調整
液を複合粒子(20mg)または中空粒子(20mg)
と混合するか、または調整液を試験シート(4cm2
に1ml添加し、37℃で保存し、8時間後および24
時間後に生理食塩水30mlで複合粒子、中空粒子あるい
は試験シート上の菌液を洗いだした。この洗液の生菌液
数をメンブランフィルター法により測定した。
EXAMPLES The present invention will be described below with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Antibacterial test Escherichia coli IAM1239 was used as a test strain. This was cultured in a broth medium at 37 ° C. for 24 hours, the culture solution was diluted with a sterile phosphate buffer solution, and adjusted to 10 5 to 10 6 E. coli per 1 ml of the culture solution. This adjustment liquid was used as composite particles (20 mg) or hollow particles (20 mg)
Mix with or prepare the test solution (4 cm 2 )
1 ml, and store at 37 ° C, after 8 hours and 24
After the lapse of time, the composite particles, hollow particles or the bacterial solution on the test sheet was washed out with 30 ml of physiological saline. The viable cell count of this wash was measured by the membrane filter method.

【0026】分散性の評価 樹脂、繊維原液および塗料中における粒子の分散状態を
電子顕微鏡を用いて観察した。
Evaluation of Dispersibility The dispersed state of particles in the resin, the fiber stock solution and the coating material was observed using an electron microscope.

【0027】実施例1 平均粒径2.2μmのポリスチレン粒子10gを振動さ
せながら、該粒子から80mmの距離から253.7n
mの波長を有する紫外線ランプ(10W)を10分間照
射してポリスチレン粒子を親水化した。次いで該粒子お
よび3mol/lの尿素水溶液5mlを0.1mol/
lの硝酸銀水溶液50ml中に入れ、超音波水浴中で1
分間攪拌した後、90℃で1時間加水分解させた。加水
分解終了後、空気中で250℃で24時間酸化処理する
ことにより、酸化銀が被覆されたポリスチレン粒子(以
下、「粒子A」という。)を得た。得られた粒子Aの平
均粒径は2.44μmであり、粒子外径に対する内径の
比は0.90であった。得られた粒子Aについて抗菌性
試験を行った。また、粒子AをABS樹脂100重量部
に対して1重量部混合し、エクストルーダーでペレット
化した後、熱プレスで0.2mmの厚さのシートにし、
2cm2の試験シートとした。このシートについて抗菌
性試験および分散性の評価を行った。
Example 1 While vibrating 10 g of polystyrene particles having an average particle size of 2.2 μm, from a distance of 80 mm from the particles, 253.7 n
The polystyrene particles were made hydrophilic by irradiation with an ultraviolet lamp (10 W) having a wavelength of m for 10 minutes. Then, the particles and 5 ml of a 3 mol / l urea aqueous solution were added to 0.1 mol / l.
1 in 50 ml of an aqueous silver nitrate solution, 1 in an ultrasonic water bath
After stirring for 1 minute, it was hydrolyzed at 90 ° C. for 1 hour. After completion of the hydrolysis, a silver oxide-coated polystyrene particle (hereinafter referred to as “particle A”) was obtained by performing an oxidation treatment in air at 250 ° C. for 24 hours. The average particle diameter of the obtained particles A was 2.44 μm, and the ratio of the inner diameter to the outer diameter of the particles was 0.90. An antibacterial test was performed on the obtained particles A. In addition, 1 part by weight of the particles A is mixed with 100 parts by weight of ABS resin, pelletized by an extruder, and then hot pressed into a sheet having a thickness of 0.2 mm.
The test sheet was 2 cm 2 . This sheet was subjected to an antibacterial test and a dispersibility evaluation.

【0028】実施例2 平均粒径3.2μmのポリメチルメタクリレート粒子1
00gを用いた以外は実施例1と同様にして該粒子の表
面を親水化した後、平均粒径0.5μmの酸化銀粉末1
0gをヘンシェルミキサーを用いて4,000rpmの
回転数で、10分間室温下で高速攪拌して酸化銀が被覆
されたポリメチルメタクリレート粒子(以下、「粒子
B」という。)を得た。得られた粒子Bの平均粒径は
4.0μmであり、粒子外径に対する内径の比は0.8
0であった。粒子Bについて抗菌性試験を行った。ま
た、粒子Bをポリメチルメタクリレートに混合した以外
は実施例1と同様にして2cm2の試験シートとした。
このシートについて抗菌性試験および分散性の評価を行
った。
Example 2 Polymethylmethacrylate particles 1 having an average particle size of 3.2 μm
The surface of the particles was made hydrophilic in the same manner as in Example 1 except that 100 g was used, and then silver oxide powder 1 having an average particle size of 0.5 μm was used.
Using 0 g of Henschel mixer, 0 g of the polymethylmethacrylate particles coated with silver oxide (hereinafter referred to as "particle B") were stirred at a high speed of 4,000 rpm for 10 minutes at room temperature. The average particle diameter of the obtained particles B was 4.0 μm, and the ratio of the inner diameter to the outer diameter of the particles was 0.8.
It was 0. An antibacterial test was conducted on the particles B. A 2 cm 2 test sheet was prepared in the same manner as in Example 1 except that the particles B were mixed with polymethylmethacrylate.
This sheet was subjected to an antibacterial test and a dispersibility evaluation.

【0029】実施例3 平均粒径2.2μmのポリメチルメタクリレート粒子1
00gを10重量%の水酸化ナトリウム水溶液で50
℃、8時間親水化処理した後、該粒子を0.2mol/
lの硫酸銅水溶液500ml中に入れて混合し、さらに
3mol/lの尿素水溶液50mlを加えて80℃で2
時間加水分解を行った後、空気中で250℃で24時間
加熱して粒子表面が酸化銅で被覆され、かつ、粒子内部
に空孔を有する粒子(以下、「粒子C」という。)を得
た。粒子Cの平均粒径は2.42μmであり、粒子外径
に対する内径の比は0.80であった。粒子Cについて
抗菌性試験を行った。また、実施例1と同様にして粒子
CをABS樹脂に配合し、抗菌性試験および分散性の評
価を行った。
Example 3 Polymethylmethacrylate particles 1 having an average particle size of 2.2 μm
50 g with 10% by weight aqueous sodium hydroxide solution
After hydrophilizing treatment at 8 ° C. for 8 hours, the particles were treated with 0.2 mol / mol.
1 ml of a copper sulfate aqueous solution (500 ml) and mixed, and further, a 3 mol / l urea aqueous solution (50 ml) is added and the mixture is heated at 80 ° C. for 2 hours.
After hydrolyzing for a period of time, the particles are heated in air at 250 ° C. for 24 hours to obtain particles whose surfaces are coated with copper oxide and which have pores inside (hereinafter referred to as “particle C”). It was The average particle diameter of the particles C was 2.42 μm, and the ratio of the inner diameter to the outer diameter of the particles was 0.80. An antibacterial test was conducted on the particles C. Further, in the same manner as in Example 1, the particles C were mixed with the ABS resin, and the antibacterial property test and the dispersibility evaluation were performed.

【0030】実施例4 実施例2においてポリメチルメタクリレート粒子の代わ
りに平均粒径1.18μmのエチルアクリレート/多官
能ウレタアクリレートUA−101H(共栄社製)=8
5/15(重量比)からなる粒子を用いた以外は実施例
2と同様にしてエチルアクリレート/多官能ウレタンア
クリレート粒子の表面が酸化銀で被覆された粒子(以
下、「粒子D」という。)を得た。粒子Dの平均粒径は
1.2μmであり、粒子外径に対する内径の比は0.8
0であった。次いで、アクリロニトリル/エチルアクリ
レート/メタクリルスルホン酸ナトリウム=93.3/
5.5/1.2(重量比)からなるアクリル系繊維原液
(ジメチルホルムアミドの25重量%溶液)100重量
部に対して、粒子D10重量部を添加して分散させた。
引き続いて該繊維原液を20℃で65重量%のジメチル
ホルムアミド水溶液中に紡糸させながら延伸し、水洗
後、乾燥し、120℃で湿熱処理を行った。得られた繊
維を常法に従って不織布の試験シートとし、抗菌性試験
および分散性の評価を行った。
Example 4 Instead of polymethylmethacrylate particles in Example 2, ethyl acrylate having an average particle size of 1.18 μm / multifunctional ureta acrylate UA-101H (manufactured by Kyoeisha Co., Ltd.) = 8.
Particles in which the surface of ethyl acrylate / polyfunctional urethane acrylate particles was coated with silver oxide in the same manner as in Example 2 except that particles of 5/15 (weight ratio) were used (hereinafter referred to as "particle D"). Got The average diameter of the particles D is 1.2 μm, and the ratio of the inner diameter to the outer diameter of the particles is 0.8.
It was 0. Then, acrylonitrile / ethyl acrylate / sodium methacryl sulfonate = 93.3 /
To 100 parts by weight of an acrylic fiber stock solution (25% by weight solution of dimethylformamide) of 5.5 / 1.2 (weight ratio), 10 parts by weight of particles D were added and dispersed.
Subsequently, the fiber stock solution was stretched at 20 ° C. in a 65 wt% aqueous solution of dimethylformamide while being spun, washed with water, dried, and subjected to wet heat treatment at 120 ° C. The obtained fiber was used as a non-woven fabric test sheet according to a conventional method, and an antibacterial test and a dispersibility evaluation were performed.

【0031】実施例5 平均粒径1.6μmのシリカ粒子10gおよび3mol
/lの尿素水溶液5mlを、0.05mol/lの硝酸
銅水溶液20ml中にいれ、超音波水浴中で1分間攪拌
した後、90℃で24時間加水分解させた。その後、室
温まで冷却し、遠心分離により粒子を沈降させ、蒸留水
を加え、精製、乾燥して銅−シリカ複合粒子を得た。さ
らに20℃/時間の速度で1100℃まで昇温して、こ
の温度で2時間熱処理して10℃/時間の速度で除冷
し、酸化銅からなる被覆層を有する中空粒子(以下、
「粒子E」という。)を得た。粒子Eの平均粒径は1.
72μmであり、粒子外径に対する内径の比は0.91
であった。粒子Eについて抗菌性試験を行った。次い
で、固形分12重量%のエポキシ系塗料に固形分100
重量部当たり、粒子Eを10重量部添加し、これを2c
2のステンレス板に塗布し、乾燥したものを試験シー
トとして抗菌性試験および分散性の評価を行った。ま
た、粒子Eを固形分100量部当たり、30重量部配合
し、固形分を5重量%としたエポキシ系塗料を3ヶ月間
室温で保存したが、粒子Eが沈降することはなかった。
Example 5 10 g and 3 mol of silica particles having an average particle size of 1.6 μm
5 ml of a 1 / l urea aqueous solution was put into 20 ml of a 0.05 mol / l copper nitrate aqueous solution, stirred for 1 minute in an ultrasonic water bath, and then hydrolyzed at 90 ° C. for 24 hours. Then, the mixture was cooled to room temperature, the particles were settled by centrifugation, distilled water was added, purified and dried to obtain copper-silica composite particles. Further, the temperature is raised to 1100 ° C. at a rate of 20 ° C./hour, heat treatment is performed at this temperature for 2 hours, and the mixture is cooled at a rate of 10 ° C./hour, and hollow particles having a coating layer made of copper oxide (hereinafter,
It is called "Particle E". ) Got. The average particle size of the particles E is 1.
72 μm, the ratio of the inner diameter to the outer diameter of the particle is 0.91
Met. An antibacterial test was conducted on the particles E. Next, the solid content of 100% is added to the epoxy-based paint having a solid content of 12% by weight.
10 parts by weight of particle E was added per 2 parts by weight,
An antibacterial property test and a dispersibility evaluation were carried out using a test sheet obtained by coating and drying a m 2 stainless steel plate. Further, 30 parts by weight of the particle E per 100 parts by weight of the solid content was mixed and the epoxy-based coating having a solid content of 5% by weight was stored at room temperature for 3 months, but the particle E did not sediment.

【0032】参考例1 平均粒径0.4μmのポリスチレン70g、平均粒径
0.1μmの酸化銀粉末15gおよび平均粒径0.1μ
mの酸化チタン粉末15gを1500rpmで5分間、
予備混合した後、7500rpmで10分間高速攪拌し
て酸化銀/酸化チタン被覆ポリスチレン(以下、「粒子
F」という。)を得た。粒子Fの平均粒径は0.55μ
mであり、粒子外径に対する内径の比は0.73であっ
た。また、実施例1と同様にして粒子CをABS樹脂に
配合し、抗菌性試験および分散性の評価を行った。さら
に粒子CについてJIS L−0842に準ずる耐光性
試験の前および試験96時間後の360nmおよび30
5nmの紫外線透過率を日立製作所製分光光度計U−3
400を用いて測定したところ、紫外線透過率は低く、
また、分光性試験の前後で紫外線透過率が変化すること
なく、良好な紫外線遮蔽性を示していた。
Reference Example 1 70 g of polystyrene having an average particle size of 0.4 μm, 15 g of silver oxide powder having an average particle size of 0.1 μm, and an average particle size of 0.1 μm
m titanium oxide powder 15 g at 1500 rpm for 5 minutes,
After pre-mixing, high-speed stirring was performed at 7,500 rpm for 10 minutes to obtain silver oxide / titanium oxide-coated polystyrene (hereinafter referred to as "particle F"). The average particle size of the particles F is 0.55μ
m, and the ratio of the inner diameter to the outer diameter of the particles was 0.73. Further, in the same manner as in Example 1, the particles C were mixed with the ABS resin, and the antibacterial property test and the dispersibility evaluation were performed. Further, for the particle C, 360 nm and 30 before the light resistance test according to JIS L-0842 and after 96 hours of the test.
The UV transmittance of 5 nm was measured by Hitachi spectrophotometer U-3.
When measured using 400, the ultraviolet transmittance is low,
Further, the ultraviolet transmittance did not change before and after the spectral property test, and it showed good ultraviolet shielding properties.

【0033】参考例2 平均粒径0.4μmのポリメチルメタクリレート粒子7
0g、平均粒径0.05μmの酸化亜鉛粉末および平均
粒径0.1μmの酸化ジルコニウム粉末15gを実施例
1と同様に高速攪拌して酸化亜鉛/酸化ジルコニウム被
覆ポリメチルメタクリレート(以下、「粒子G」とい
う。)を得た。粒子Gの平均粒径は0.52μmであ
り、粒子外径に対する内径の比は0.77であった。ま
た、実施例1と同様にして粒子GをABS樹脂に配合
し、抗菌性試験および分散性の評価を行った。さらに粒
子Gについて参考例1と同様にして紫外線透過率の測定
を行ったところ、紫外線透過率は低く、また、分光性試
験の前後で紫外線透過率が変化することなく、良好な紫
外線遮蔽性を示していた。
Reference Example 2 Polymethylmethacrylate particles 7 having an average particle size of 0.4 μm
0 g of zinc oxide powder having an average particle diameter of 0.05 μm and 15 g of zirconium oxide powder having an average particle diameter of 0.1 μm were rapidly stirred in the same manner as in Example 1, and zinc oxide / zirconium oxide-coated polymethylmethacrylate (hereinafter, referred to as “particle G ".) I got. The average particle diameter of the particles G was 0.52 μm, and the ratio of the inner diameter to the outer diameter of the particles was 0.77. Further, in the same manner as in Example 1, the particles G were mixed with the ABS resin, and the antibacterial property test and the dispersibility were evaluated. Further, when the ultraviolet transmittance of the particles G was measured in the same manner as in Reference Example 1, the ultraviolet transmittance was low, and the ultraviolet transmittance did not change before and after the spectroscopic test, and a good ultraviolet shielding property was obtained. Was showing.

【0034】参考例3 平均粒径1.4μmのポリメチルメタクリレート粒子1
0gおよび3mol/lの尿素水溶液5mlを0.05
mol/lの硝酸銅50mlおよび0.1mol/lの
テトラブトキシチタン水溶液50ml中に入れ、1分間
超音波処理した後、80℃で2時間加水分解させた。そ
の後、室温まで冷却し、4,000rpmで遠心分離に
より粒子を沈降させ、蒸留水を加え精製、乾燥させて銅
と酸化チタンが混合被覆されたポリメチルメタクリレー
ト粒子(以下、「粒子H」という。)を得た。粒子Hの
平均粒径は1.33μmであり、粒子外径に対する内径
の比は0.95であった。また、実施例1と同様にして
粒子HをABS樹脂に配合し、抗菌性試験および分散性
の評価を行った。さらに粒子Hについて参考例1と同様
にして紫外線透過率の測定を行ったところ、紫外線透過
率は低く、また、分光性試験の前後で紫外線透過率が変
化することなく、良好な紫外線遮蔽性を示した。
Reference Example 3 Polymethylmethacrylate particles 1 having an average particle size of 1.4 μm
0 g and 5 mol of a 3 mol / l urea aqueous solution were added to 0.05
The mixture was placed in 50 ml of mol / l copper nitrate and 50 ml of 0.1 mol / l tetrabutoxytitanium aqueous solution, subjected to ultrasonic treatment for 1 minute, and then hydrolyzed at 80 ° C. for 2 hours. Then, the mixture is cooled to room temperature, the particles are precipitated by centrifugation at 4,000 rpm, distilled water is added to the particles for purification and drying, and polymethylmethacrylate particles coated with copper and titanium oxide are mixed (hereinafter referred to as “particle H”). ) Got. The average particle diameter of the particles H was 1.33 μm, and the ratio of the inner diameter to the outer diameter of the particles was 0.95. Further, in the same manner as in Example 1, the particle H was mixed with the ABS resin, and the antibacterial property test and the dispersibility were evaluated. Further, the ultraviolet transmittance of the particles H was measured in the same manner as in Reference Example 1. As a result, the ultraviolet transmittance was low, and the ultraviolet transmittance did not change before and after the spectroscopic test, and good ultraviolet shielding properties were obtained. Indicated.

【0035】以上の抗菌性試験および分散性の評価の結
果をまとめて表1に示した。
The results of the above antibacterial test and dispersibility evaluation are summarized in Table 1.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【発明の効果】本発明によれば、樹脂、ゴム、塗料、化
粧品、繊維等の材料に添加した際に分散性が良好で、材
料本来の特性を失うことなく、充分な抗菌効果を示し、
変色、変質することのない複合粒子または中空粒子から
なる抗菌剤が得られる。
INDUSTRIAL APPLICABILITY According to the present invention, when added to materials such as resins, rubbers, paints, cosmetics, fibers, etc., the dispersibility is good and sufficient antibacterial effect is exhibited without losing the original characteristics of the material.
An antibacterial agent composed of composite particles or hollow particles that does not undergo discoloration or deterioration is obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 A01N 25/26 59/20 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location A01N 25/26 59/20 Z

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 コアとなる微粒子上に銀、銅および亜鉛
よりなる群から選ばれる少なくとも1種の金属および/
またはそれらの化合物を含む被覆層を有する複合粒子か
らなることを特徴とする抗菌剤。
1. At least one metal selected from the group consisting of silver, copper, and zinc on the core fine particles and /
Alternatively, an antibacterial agent comprising composite particles having a coating layer containing those compounds.
【請求項2】 銀、銅および亜鉛よりなる群から選ばれ
る少なくとも1種の金属および/またはそれらの化合物
を含む表面層を有し、さらに粒子内部に空孔を有する中
空粒子からなることを特徴とする抗菌剤。
2. A hollow particle having a surface layer containing at least one metal selected from the group consisting of silver, copper and zinc and / or a compound thereof, and further comprising hollow particles having pores inside the particle. Antibacterial agent.
JP35334793A 1993-12-28 1993-12-28 Antimicrobial agent consisting of complex particle or hollow particle Pending JPH07196424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35334793A JPH07196424A (en) 1993-12-28 1993-12-28 Antimicrobial agent consisting of complex particle or hollow particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35334793A JPH07196424A (en) 1993-12-28 1993-12-28 Antimicrobial agent consisting of complex particle or hollow particle

Publications (1)

Publication Number Publication Date
JPH07196424A true JPH07196424A (en) 1995-08-01

Family

ID=18430234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35334793A Pending JPH07196424A (en) 1993-12-28 1993-12-28 Antimicrobial agent consisting of complex particle or hollow particle

Country Status (1)

Country Link
JP (1) JPH07196424A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006133857A1 (en) * 2005-06-16 2006-12-21 Imperial Chemical Industries Plc Anti-microbial paint films
CN1322814C (en) * 2002-01-21 2007-06-27 太原理工大学 Nano silicate antibiosis composition and process for preparing same
JP2008544953A (en) * 2005-05-10 2008-12-11 チバ ホールディング インコーポレーテッド Antibacterial porous silicon oxide particles
JP2017025303A (en) * 2015-07-23 2017-02-02 ゼロックス コーポレイションXerox Corporation Anti-bacterial aqueous ink compositions comprising metal ion composite ionomer resins
JP2018076528A (en) * 2012-06-29 2018-05-17 ローム アンド ハース カンパニーRohm And Haas Company Silver-containing concentrate
CN108641506A (en) * 2018-04-19 2018-10-12 苏州诺升功能高分子材料股份有限公司 A kind of preparation method of the composite nano anti-biotic dispersant based on polytetrafluoroethylene (PTFE)
CN109006867A (en) * 2018-08-28 2018-12-18 安徽江淮汽车集团股份有限公司 A kind of antibacterial agent and preparation method thereof
CN115486443A (en) * 2022-09-16 2022-12-20 中国科学院赣江创新研究院 Cerium-doped titanium dioxide-polystyrene microsphere composite antibacterial material and preparation method and application thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1322814C (en) * 2002-01-21 2007-06-27 太原理工大学 Nano silicate antibiosis composition and process for preparing same
JP2008544953A (en) * 2005-05-10 2008-12-11 チバ ホールディング インコーポレーテッド Antibacterial porous silicon oxide particles
WO2006133857A1 (en) * 2005-06-16 2006-12-21 Imperial Chemical Industries Plc Anti-microbial paint films
JP2018076528A (en) * 2012-06-29 2018-05-17 ローム アンド ハース カンパニーRohm And Haas Company Silver-containing concentrate
JP2017025303A (en) * 2015-07-23 2017-02-02 ゼロックス コーポレイションXerox Corporation Anti-bacterial aqueous ink compositions comprising metal ion composite ionomer resins
CN108641506A (en) * 2018-04-19 2018-10-12 苏州诺升功能高分子材料股份有限公司 A kind of preparation method of the composite nano anti-biotic dispersant based on polytetrafluoroethylene (PTFE)
CN108641506B (en) * 2018-04-19 2021-02-26 苏州诺升功能高分子材料股份有限公司 Preparation method of polytetrafluoroethylene-based composite nano antibacterial dispersant
CN109006867A (en) * 2018-08-28 2018-12-18 安徽江淮汽车集团股份有限公司 A kind of antibacterial agent and preparation method thereof
CN115486443A (en) * 2022-09-16 2022-12-20 中国科学院赣江创新研究院 Cerium-doped titanium dioxide-polystyrene microsphere composite antibacterial material and preparation method and application thereof
CN115486443B (en) * 2022-09-16 2023-11-10 中国科学院赣江创新研究院 Cerium doped titanium dioxide-polystyrene microsphere composite antibacterial material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Buşilă et al. Synthesis and characterization of antimicrobial textile finishing based on Ag: ZnO nanoparticles/chitosan biocomposites
Zahran et al. Surface modification of cotton fabrics for antibacterial application by coating with AgNPs–alginate composite
JPH03252308A (en) Antimicrobial composition containing silica gel as matrix
KR100727086B1 (en) Functional polymer materials and method of manufacturing the same
Dural Erem et al. Antibacterial activity of PA6/ZnO nanocomposite fibers
Gao et al. An antibacterial composite film based on cellulose acetate/TiO 2 nanoparticles
CN101421050A (en) Methods and compositions for metal nanoparticle treated surfaces
Li et al. Dual-functional bacterial cellulose modified with phase-transitioned proteins and gold nanorods combining antifouling and photothermal bactericidal properties
JPH08253690A (en) Antimicrobial resin composition
CN110051837B (en) CuO/ZnO/Au nano-particles and preparation method and application thereof
Gungor et al. Developing centrifugal spun thermally cross‐linked gelatin based fibrous biomats for antibacterial wound dressing applications
KR100587465B1 (en) Inorganic antibiotic agent with silver and thermal plastic resin master batch containing its
JPH07196424A (en) Antimicrobial agent consisting of complex particle or hollow particle
Gawish et al. Antimicrobial polypropylene loaded by silver nano particles
CN112522802A (en) Anti-ultraviolet antibacterial polypropylene filament and preparation method thereof
FR2828114A1 (en) Permeable fibrous material, e.g. useful as a mulching paper, wallhanging paper, dustbag paper, acoustic panel, wiping paper, filter medium or food packaging, includes a germicide adsorbed on activated carbon fibers
US5298252A (en) Antimicrobial composition having resistance to heat and weathers
CN112451731A (en) Bacteriostatic wound dressing based on visible light up-conversion material and preparation method thereof
Alloisio et al. Electrospun alginate mats embedding silver nanoparticles with bioactive properties
Obasi et al. Fabrication of antimicrobial electrospun mats using polyvinyl alcohol–zinc oxide blends
CN113334611B (en) Manufacturing method and application of nano-copper antibacterial and antiviral melt-blown fabric master batch
RU2474471C2 (en) Colloidal solution of silver nanoparticles, metal-polymer nanocomposite film material, methods for production thereof, bactericidal composition based on colloidal solution and bactericidal film made from metal-polymer material
JPH09216911A (en) Antibacterial and antimildew polymer particle and its production
JP2802988B2 (en) Modified cellulose regenerated fiber
JP2014033776A (en) Titanium oxide-based antibacterial deodorant, fluid dispersion thereof and product including the titanium oxide-based antibacterial deodorant