JPH0494009A - Conductive compound - Google Patents

Conductive compound

Info

Publication number
JPH0494009A
JPH0494009A JP21028990A JP21028990A JPH0494009A JP H0494009 A JPH0494009 A JP H0494009A JP 21028990 A JP21028990 A JP 21028990A JP 21028990 A JP21028990 A JP 21028990A JP H0494009 A JPH0494009 A JP H0494009A
Authority
JP
Japan
Prior art keywords
silver
fine particles
copper
conductive composition
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21028990A
Other languages
Japanese (ja)
Inventor
Yoshikatsu Mizukami
義勝 水上
Hiroshi Tamemasa
博史 為政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Kanebo Ltd
Original Assignee
Tanaka Kikinzoku Kogyo KK
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK, Kanebo Ltd filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP21028990A priority Critical patent/JPH0494009A/en
Publication of JPH0494009A publication Critical patent/JPH0494009A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a conductive compound with high conductivity giving less color to a product molded with the compound kneaded by forming a conductive metal coat on the surface of fine inorganic particles. CONSTITUTION:On the surface of inorganic fine particles 10-24wt.% of conductive metal film is formed uniformly. As the metal of conductive metal coat those such as gold, silver, cupper, aluminium and the like can be used. To adhere such conductive metal onto fine particles serving as a carrier the vacuum evaporation or reduction deposition method can be used. In the case the application of conductive metal film is less than 10wt.% conductivity is not sufficient. If it is 25wt.% or more, the increase of conductivity in proportion to the increased amount is not expected.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は導電性組成物に係り、繊維製品、フィルム、プ
ラスチック成型品、ペイント等の製造に際して添加され
、これらの製品に導電性をもたらすために利用される導
電性微粒子に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a conductive composition, which is added during the production of textile products, films, plastic molded products, paints, etc. to bring conductivity to these products. The present invention relates to conductive fine particles used for.

(従来の技術) 上記のような導電性の繊維製品等を製造するために添加
される従来の導電性微粒子としては、種々の金属粒子、
カーボンブラックなどが知られている。また酸化チタン
の微粒子に酸化亜鉛または酸化錫被膜を形成させ−た微
粒子により最高10−2Ω αが得られている(特公平
1−22365号)。
(Prior Art) Conventional conductive fine particles added to produce the above-mentioned conductive textile products include various metal particles,
Carbon black and the like are known. Furthermore, a maximum resistance of 10<-2 >[Omega][alpha] has been obtained using fine particles of titanium oxide coated with zinc oxide or tin oxide (Japanese Patent Publication No. 1-22365).

(発明が解決しようとする課題及び発明の目的)上記の
金属粒子は高価であり、比重が大であるため、マトリッ
クスとの比重差が大であり、混練時に沈降し易いという
欠点がある。またカーボンブラックを導電性組成物とし
て使用すると混練成型品が黒色のものしか得られないと
いう問題がある。
(Problems to be Solved by the Invention and Objects of the Invention) The metal particles described above are expensive and have a large specific gravity, so there is a large difference in specific gravity from the matrix, and there is a drawback that they tend to settle during kneading. Furthermore, when carbon black is used as a conductive composition, there is a problem in that only black kneaded and molded products can be obtained.

そして上記の特公平1−22365号により提案されて
いるものがあるが、更に優れた導電性のものが待望され
ている。
Although there is a method proposed in the above-mentioned Japanese Patent Publication No. 1-22365, there is a long-awaited demand for one with even better conductivity.

本発明は上記の問題に鑑みてなされたものであり、その
目的は導電性組成物を混練した成型品の着色が少なく、
製造が容易で高導電性であり、かつ廉価な導電性組成物
を提供することにある。
The present invention was made in view of the above-mentioned problems, and its purpose is to reduce the coloring of molded products made by kneading conductive compositions.
The object of the present invention is to provide a conductive composition that is easy to manufacture, has high conductivity, and is inexpensive.

(課題を解決し、目的を達成する手段及び作用)本発明
によれば、上記の課題は無機質の微粒子の表面に導電性
金属被膜が10重量%以上25重量%未満均均斉形成せ
しめられていることを特徴とする導電性組成物により基
本的に解決されると共に、上記の目的が達成される。
(Means and effects for solving the problem and achieving the object) According to the present invention, the above problem is solved by uniformly forming a conductive metal coating of 10% by weight or more and less than 25% by weight on the surface of the inorganic fine particles. This is basically solved and the above objects are achieved by an electrically conductive composition characterized by the following.

本発明に使用する導電性金属被膜の金属としては金、銀
、銅、アルミニウム等の金属を用いることが出来る。導
電性の点では銀、銅、金、アルミニウムの順に好ましい
が、金、銀は高価である為、第1層として銅又はアルミ
ニウム被膜を形成させた後、更に第2層として金又は銀
被膜を形成させても良い。
As the metal of the conductive metal coating used in the present invention, metals such as gold, silver, copper, and aluminum can be used. In terms of conductivity, silver, copper, gold, and aluminum are preferred in this order, but since gold and silver are expensive, it is preferable to form a copper or aluminum film as the first layer, and then apply a gold or silver film as the second layer. It may be formed.

金属被膜が酸化され易い条件下にある場合には第2層に
金又は銀を使用することが望ましい、また着色度の点で
3層以上の組み合せでも良い。
When the metal coating is under conditions where it is easily oxidized, it is desirable to use gold or silver for the second layer, and a combination of three or more layers may be used in terms of the degree of coloration.

担体としての微粒子上に導電性金属を付着させて本発明
による導電性組成物を製造するためには、自体周知の真
空蒸着法や還元析出法を用いることができる。
In order to produce the conductive composition according to the present invention by depositing a conductive metal on fine particles as a carrier, a well-known vacuum deposition method or a reduction precipitation method can be used.

これらのうちで真空蒸着法は担体微粒子を蒸着装買のチ
ャンバー内にセットし、蒸着源をタングステン製バスケ
ットに乗せて上記のチャンバー内にセットし、該チャン
バー内を減圧しく約2×10−’ Torr程度迄)、
次いで上記の担体微粒子を振動させながら上記のタング
ステンバスケ・ントを加熱して上記の蒸発源金属を蒸発
せしめることにより実施することができる。
Among these methods, in the vacuum evaporation method, carrier fine particles are set in the chamber of the evaporation equipment, the evaporation source is placed on a tungsten basket and set in the above-mentioned chamber, and the pressure inside the chamber is reduced to approximately 2 x 10-' Torr level),
This can then be carried out by heating the tungsten basket while vibrating the fine carrier particles to evaporate the evaporation source metal.

一方、還元析出法は担体微粒子を純水中に分散させ、こ
の分散液とめつき液とを混合し、次いで、攪拌しながら
この混合液にめっき用還元液を添加することにより実施
することができる。
On the other hand, the reduction precipitation method can be carried out by dispersing fine carrier particles in pure water, mixing this dispersion with a plating solution, and then adding a reducing solution for plating to this mixed solution while stirring. .

これらの両方法の内で真空蒸着法は蒸発金属の照射方向
が限定されるために、導電性金属を担体微粒子上に均斉
に付着させる目的で担体微粒子に振動を与えて転勤させ
る必要性があり、従って担体微粒子の粒径が揃っていな
いと導電性金属の付着量に差が生じるが、一方、還元析
出法によれば分散した状態の担体微粒子上に導電性金属
が析出してゆくので均斉な付着が可能であり、付着量の
制御も容易なので前者よりも後者の方法が望ましい。
Of these two methods, the vacuum evaporation method is limited in the direction of irradiation of the evaporated metal, so it is necessary to vibrate and transfer the conductive metal to the carrier particles in order to uniformly deposit the conductive metal onto the carrier particles. Therefore, if the particle size of the carrier particles is not uniform, there will be a difference in the amount of conductive metal deposited.On the other hand, in the reduction precipitation method, the conductive metal is deposited on the dispersed carrier particles, so it is not uniform. The latter method is preferable to the former method because it allows for more precise adhesion and easier control of the amount of adhesion.

導電性金属被膜が10重量%未満の場合は導電性が充分
でない為、10重量%以上の導電性金属被膜形成が必要
であり、25重量%以上の場合はその増加分に見合った
導電性の向上が見られなくなる。
If the amount of the conductive metal coating is less than 10% by weight, the conductivity will not be sufficient, so it is necessary to form a conductive metal coating of 10% by weight or more, and if it is 25% by weight or more, the amount of conductivity will be No improvement will be seen.

導電性被膜を担持させる微粒子は平均粒径2μm以下で
あればマトリックスに混練する際、実用上使用できる。
The fine particles supporting the conductive film can be practically used when kneaded into the matrix if they have an average particle size of 2 μm or less.

また担体微粒子は球に近い形状の方が混練する際には容
易であるが、マトリックスを配向させた場合、針状であ
る方が導電性としては好ましい。
Further, it is easier to knead the carrier fine particles when the shape is close to a sphere, but when the matrix is oriented, the needle-like shape is preferable in terms of conductivity.

担体微粒子としては無電解めっきをする際に変化しない
物であれば何でも良く、水不溶性の金属酸化物、例えば
酸化チタン、酸化アルミニウム、又は硫酸バリウム又は
炭酸カルシウム等を使用することが出来る。
Any carrier fine particles may be used as long as they do not change during electroless plating, and water-insoluble metal oxides such as titanium oxide, aluminum oxide, barium sulfate, or calcium carbonate can be used.

本発明の導電性組成物は各種ポリマー(ポリエステル、
ナイロン、アクリル)、繊維、フィルム、プラスチック
成型品、ペイント等に添加され静電気防止、電磁波シー
ルド、低温発熱体等に使用出来る。
The conductive composition of the present invention can be applied to various polymers (polyester,
It can be added to fibers, films, plastic molded products, paints, etc., and used for static electricity prevention, electromagnetic shielding, low-temperature heating elements, etc.

(実施例等) 次に、本発明による導電性組成物の製造例及び使用例に
より、本発明を更に詳細に説明する。
(Examples etc.) Next, the present invention will be explained in more detail with reference to manufacturing examples and usage examples of the conductive composition according to the present invention.

尚、下記において言及する%及び部は、別設の定めがな
い限り重量基準によるものである。
Note that the percentages and parts mentioned below are based on weight unless otherwise specified.

11匠L (1)下記の3種類の液を調整した。11 Takumi L (1) The following three types of liquids were prepared.

(A)担体微粒子分散液 担体微粒子100gを純水500−に分散させたもの。(A) Carrier fine particle dispersion liquid 100 g of fine carrier particles are dispersed in 500 g of pure water.

(B)銀めっき液 硝酸銀22.0gを純水に溶解して1,000−とじた
後に水酸化アンモニウムを添加してpHを11に調整し
たもの。
(B) Silver plating solution: 22.0 g of silver nitrate was dissolved in pure water and the pH was adjusted to 11 by adding ammonium hydroxide.

(C)銀めっき用還元液 酒石酸カリウムナトリウム(4水和物)75gを純水に
より溶解して500−となし、液温を30°Cに保った
もの。
(C) Reducing solution for silver plating 75 g of potassium sodium tartrate (tetrahydrate) was dissolved in pure water to give a solution of 500-, and the solution temperature was maintained at 30°C.

(2)操作 担体微粒子として酸化チタン(平均粒径1.5μm)を
用い、上記の分散液(A)に銀めっき液(B)を添加し
て混合し、液温を30°Cで攪拌しながら上記の銀めっ
き用還元液(C)を添加して攪拌を続けることにより銀
イオンを完全に還元させ、次いで更に1時間攪拌を継続
した。その後に攪拌を中止し、Na2O濾紙を用いて吸
引濾過し、純水で充分に洗浄し、さらに、この粉末を純
水中に分散させ攪拌しながらヒドラジンヒトラードを加
えて液温を80℃にして10分間処理した。
(2) Operation Using titanium oxide (average particle size 1.5 μm) as carrier fine particles, silver plating solution (B) was added to the above dispersion solution (A) and mixed, and the solution was stirred at a temperature of 30°C. Meanwhile, the above-mentioned reducing solution for silver plating (C) was added and stirring was continued to completely reduce the silver ions, and then stirring was continued for an additional hour. After that, stirring was stopped, suction filtration was carried out using Na2O filter paper, and the powder was thoroughly washed with pure water. Further, this powder was dispersed in pure water, and while stirring, hydrazine hydrogen hydroxide was added and the liquid temperature was raised to 80°C. and treated for 10 minutes.

その後に攪拌を中止し、NL5Cろ紙を用いて吸引ろ過
し、純水で充分に洗浄し、80℃の空気乾燥機内で12
時間乾燥することにより所望の導電性組成物を得た。こ
の導電性組成物における銀の付着状態をEPMAにて観
察した処、酸化チタン粉末の表面に銀が均斉に付着して
いることが判明しな、化学分析によれば銀の付着量は1
2.2%であった。
After that, stirring was stopped, suction filtered using NL5C filter paper, thoroughly washed with pure water, and placed in an air dryer at 80°C for 12 hours.
A desired conductive composition was obtained by drying for a period of time. When observing the state of silver adhesion in this conductive composition using EPMA, it was found that silver was uniformly adhered to the surface of the titanium oxide powder, and according to chemical analysis, the amount of silver adhesion was 1.
It was 2.2%.

製ゑl」工 銀めっき液中の硝酸銀溶解量を40.2gとし、銀めっ
き用還元液中の酒石酸カリウムナトリウム(4水和物)
量を140gとしたこと以外は製造例1と全く同様にし
て導電性組成物を得た。
The amount of silver nitrate dissolved in the silver plating solution was 40.2 g, and the amount of potassium sodium tartrate (tetrahydrate) in the reducing solution for silver plating was 40.2 g.
A conductive composition was obtained in exactly the same manner as in Production Example 1 except that the amount was 140 g.

この導電性組成物における銀の付着状態をEPMAにて
観察した処、酸化チタン粉末の表面に銀が均斉に付着し
ていることが判明した。化学分析によれば銀の付着量は
20.2%であった。
When the state of silver adhesion in this conductive composition was observed using EPMA, it was found that silver was uniformly adhered to the surface of the titanium oxide powder. According to chemical analysis, the amount of silver deposited was 20.2%.

11九り 担体微粒子として酸化アルミニウム(平均粒径1.5μ
m)を用いたこと以外は製造例1と全く同様にして導電
性組成物を得た。
Aluminum oxide (average particle size 1.5μ
A conductive composition was obtained in exactly the same manner as in Production Example 1 except that m) was used.

この導電性組成物における銀の付着状態をEPMAにて
観察した処、酸化アルミニウム粉末の表面に銀が均斉に
付着していることが判明した。化学分析によれば銀の付
着量は12.1%であった。
When the state of silver adhesion in this conductive composition was observed using EPMA, it was found that silver was uniformly adhered to the surface of the aluminum oxide powder. According to chemical analysis, the amount of silver deposited was 12.1%.

1皮鮭支 担体微粒子として前記の酸化アルミニウムを用いたこと
以外は製造例2と全く同様にして導電性組成物を得た。
A conductive composition was obtained in exactly the same manner as in Production Example 2, except that the aluminum oxide described above was used as the salmon support fine particles.

この導電性組成物における銀の付着状態をEPMAにて
観察した処、酸化アルミニウム粉末の表面に銀が均斉に
付着していることが判明した。化学分析によれば銀の付
着量は20.1%であった。
When the state of silver adhesion in this conductive composition was observed using EPMA, it was found that silver was uniformly adhered to the surface of the aluminum oxide powder. According to chemical analysis, the amount of silver deposited was 20.1%.

1逢匠i 担体微粒子として硫酸バリウム(平均粒径1.5μm)
を用いたこと以外は製造例1と全く同様にして導電性組
成物を得た。
1. Barium sulfate as carrier fine particles (average particle size 1.5 μm)
A conductive composition was obtained in exactly the same manner as in Production Example 1 except that .

この導電性組成物における銀の付着状態をEPMAにて
観察した処、硫酸バリウム粉末の表面に銀が均斉に付着
していることが判明した。化学分析によれば銀の付着量
は12.0%であった。
When the state of silver adhesion in this conductive composition was observed using EPMA, it was found that silver was uniformly adhered to the surface of the barium sulfate powder. According to chemical analysis, the amount of silver deposited was 12.0%.

設ffi 担体微粒子として前記の硫酸バリウムを用いたこと以外
は製造例2と全く同様にして導電性組成物を得た。
Setting ffi A conductive composition was obtained in exactly the same manner as in Production Example 2, except that the above barium sulfate was used as the carrier fine particles.

この導電性組成物における銀の付着状態をEPMAにて
観察した処、硫酸バリウム粉末の表面に銀が均斉に付着
していることが判明した。化学分析によれば銀の付着量
は20.0%であった。
When the state of silver adhesion in this conductive composition was observed using EPMA, it was found that silver was uniformly adhered to the surface of the barium sulfate powder. According to chemical analysis, the amount of silver deposited was 20.0%.

11匠り 担体微粒子として炭酸カルシウム(平均粒径1゜5μm
)を用いたこと以外は製造例1と全く同様にして導電性
組成物を得た。
11 Calcium carbonate (average particle size 1°5 μm) as fine carrier particles
A conductive composition was obtained in exactly the same manner as in Production Example 1 except that ) was used.

この導電性組成物における銀の付着状態をEPMAにて
観察した処、炭酸カルシウム粉末の表面に銀が均斉に付
着していることが判明した。化学分析によれば銀の付着
量は12,2%であった。
When the state of silver adhesion in this conductive composition was observed using EPMA, it was found that silver was uniformly adhered to the surface of the calcium carbonate powder. According to chemical analysis, the amount of silver deposited was 12.2%.

艷り匹比 担体微粒子として前記の硫酸カルシウムを用いたこと以
外は製造例2と全く同様にして導電性組成物を得た。
A conductive composition was obtained in exactly the same manner as in Production Example 2, except that the calcium sulfate described above was used as the carrier fine particles.

この導電性組成物における銀の付着状態をEPMAにて
観察した処、炭酸カルシウム粉末の表面に銀が均斉に付
着していることが判明した。化学分析によれば銀の付着
量は20.2%であった。
When the state of silver adhesion in this conductive composition was observed using EPMA, it was found that silver was uniformly adhered to the surface of the calcium carbonate powder. According to chemical analysis, the amount of silver deposited was 20.2%.

11鮭史 (1)次の銅めっき液及び銅めっき用還元液を調整した
11 History of Salmon (1) The following copper plating solution and reducing solution for copper plating were prepared.

(B′)銅めっき液 硫酸銅(5水和物)54.9g、酒石酸カリウムナトリ
ウム(4水和物)110g及び水酸化ナトリウム31g
を純水により溶解して650 dとなしたもの。
(B') Copper plating solution Copper sulfate (pentahydrate) 54.9g, potassium sodium tartrate (tetrahydrate) 110g and sodium hydroxide 31g
Dissolved in pure water to obtain 650 d.

(C′)銅めっき用還元液 37%ホルムアルデヒド溶液240−であって、液温3
0℃に保たれたもの。
(C') Reducing solution for copper plating 37% formaldehyde solution 240-, liquid temperature 3
kept at 0℃.

(2)操作 担体微粒子として前記の酸化チタンを用い製造例1と同
様に調製した分散液(A)に銅めっき液(B′)を添加
して混合し、液温を30℃で攪拌しながら上記の銅めっ
き用還元液(C′)を添加して攪拌を続けることにより
銅イオンを完全に還元させ、次いで更に1時間攪拌を継
続した。その後に攪拌を中止し、111[L5c濾紙を
用いて吸引濾過し、純水で充分に洗浄し、さらに、この
粉末を純水中に分散させ攪拌しながらSBHを加えて液
温を80℃にして10分間処理した。
(2) Operation Copper plating solution (B') was added to the dispersion (A) prepared in the same manner as in Production Example 1 using the titanium oxide as the carrier fine particles and mixed, and the solution temperature was kept at 30°C while stirring. The above-mentioned reducing solution for copper plating (C') was added and stirring was continued to completely reduce the copper ions, and then stirring was continued for an additional hour. After that, stirring was stopped, suction filtration was performed using 111 [L5c filter paper, and the powder was thoroughly washed with pure water. Furthermore, this powder was dispersed in pure water, and while stirring, SBH was added and the liquid temperature was raised to 80°C. and treated for 10 minutes.

その後に攪拌を中止し、N[L5Cのろ紙を用いて吸引
ろ過し、純水で充分に洗浄し、80℃の空気乾燥機内で
12時間乾燥することにより所望の導電性組成物を得た
。この導電性組成物における銅の付着状態をEPMAに
て観察した処、酸化チタン粉末の表面に銅が均斉に付着
していることが判明した。化学分析によれば銅の付着量
は12.2%であった。
Thereafter, stirring was stopped, and the mixture was suction-filtered using N[L5C filter paper, thoroughly washed with pure water, and dried in an air dryer at 80° C. for 12 hours to obtain a desired conductive composition. When the state of copper adhesion in this conductive composition was observed using EPMA, it was found that copper was uniformly adhered to the surface of the titanium oxide powder. According to chemical analysis, the amount of copper deposited was 12.2%.

艮n吐1表− 銅めっき液中の硫酸銅溶解量を100゜4gとし、銅め
つき用還元液中の酒石酸カリウムナトリウム(4水和物
)量を275gとしたこと以外は製造例9と全く同様に
して導電性組成物を得た。
Table 1 - Same as Production Example 9 except that the amount of copper sulfate dissolved in the copper plating solution was 100°4g, and the amount of potassium sodium tartrate (tetrahydrate) in the reducing solution for copper plating was 275g. A conductive composition was obtained in exactly the same manner.

この導電性組成物における銅の付着状態をEPMAにて
観察した処、酸化チタン粉末の表面に銅が均斉に付着し
ていることが判明した。化学分析によれば銅の付着量は
20.2%であった。
When the state of copper adhesion in this conductive composition was observed using EPMA, it was found that copper was uniformly adhered to the surface of the titanium oxide powder. According to chemical analysis, the amount of copper deposited was 20.2%.

数4」は」− 担体微粒子として前記の酸化アルミニウムを用いたこと
以外は製造例9と全く同様にして導電性組成物を得た。
A conductive composition was obtained in exactly the same manner as in Production Example 9 except that the aluminum oxide described above was used as the carrier fine particles.

この導電性組成物における銅の付着状態をEPMAにて
観察した処、酸化アルミニウム粉末の表面に銅が均斉に
付着していることが判明した。化学分析によれば銅の付
着量は12.0%であった。
When the state of copper adhesion in this conductive composition was observed using EPMA, it was found that copper was uniformly adhered to the surface of the aluminum oxide powder. According to chemical analysis, the amount of copper deposited was 12.0%.

11鮭り工 担体微粒子として前記の酸化アルミニウムを用いたこと
以外は製造例10と全く同様にして導電性組成物を得た
11 A conductive composition was obtained in exactly the same manner as in Production Example 10 except that the aluminum oxide described above was used as the salmon carrier fine particles.

この導電性組成物における銅の付着状態をEPMAにて
観察した処、酸化アルミニウム粉末の表面に銅が均斉に
付着していることが判明した。化学分析によれば銀の付
着量は20.1%であった。
When the state of copper adhesion in this conductive composition was observed using EPMA, it was found that copper was uniformly adhered to the surface of the aluminum oxide powder. According to chemical analysis, the amount of silver deposited was 20.1%.

1遭匠LΣ 担体微粒子として前記の硫酸バリウムを用いたこと以外
は製造例9と全く同様にして導電性組成物を得た。
A conductive composition was obtained in exactly the same manner as in Production Example 9 except that the barium sulfate described above was used as the carrier fine particles.

この導電性組成物における銅の付着状態をEPMAにて
観察した処、硫酸バリウム粉末の表面に銅が均斉に付着
していることが判明した。化学分析によれば銅の付着量
は12.1%であった。
When the state of copper adhesion in this conductive composition was observed using EPMA, it was found that copper was uniformly adhered to the surface of the barium sulfate powder. According to chemical analysis, the amount of copper deposited was 12.1%.

11鮭り先 担体微粒子として前記の硫酸バリウムを用いたこと以外
は製造例10と全く同様にして導電性組成物を得た。
11 A conductive composition was obtained in exactly the same manner as in Production Example 10 except that the barium sulfate described above was used as the salmon tip carrier particles.

この導電性組成物における銅の付着状態をEPMAにて
観察した処、硫酸バリウム粉末の表面に銅が均斉に付着
していることが判明した。化学分析によれば銅の付着量
は20.0%であった。
When the state of copper adhesion in this conductive composition was observed using EPMA, it was found that copper was uniformly adhered to the surface of the barium sulfate powder. According to chemical analysis, the amount of copper deposited was 20.0%.

11漣15 担体微粒子として前記の炭酸カルシウムを用いたこと以
外は製造例9と全く同様にして導電性組成物を得た。
11 Ren 15 A conductive composition was obtained in exactly the same manner as in Production Example 9 except that the calcium carbonate described above was used as the carrier fine particles.

この導電性組成物における銅の付着状態をEPMAにて
観察した処、炭酸カルシウム粉末の表面に銅が均斉に付
着していることが判明した。化学分析によれば銅の付着
量は12.1%であった。
When the state of copper adhesion in this conductive composition was observed using EPMA, it was found that copper was uniformly adhered to the surface of the calcium carbonate powder. According to chemical analysis, the amount of copper deposited was 12.1%.

11匹り恒 担体微粒子として前記の炭酸カルシウムを用いたこと以
外は製造例10と全く同様にして導電性組成物を得た。
A conductive composition was obtained in exactly the same manner as in Production Example 10, except that the above-mentioned calcium carbonate was used as the constant carrier fine particles.

この導電性組成物における銅の付着状態をEPMAにて
観察した処、炭酸カルシウム粉末の表面に銅が均斉に付
着していることが判明した。化学分析によれば銅の付着
量は20.2%であった。
When the state of copper adhesion in this conductive composition was observed using EPMA, it was found that copper was uniformly adhered to the surface of the calcium carbonate powder. According to chemical analysis, the amount of copper deposited was 20.2%.

1逢LL7− 製造例9で得られた、銅12.2 wt%付着させた酸
化チタン微粒子114.0 gに製造例1と同様の方法
で、銀めっき液の硝酸銀を9.6gとして、銀めっき用
還元液の酒石酸カリウムナトリウム(4水和物)を50
gとして操作した後に攪拌を中止し、N15C濾紙を用
いて吸引濾過し、純水で充分に洗浄し、さらに、この粉
末を純水中に分散させ攪拌しながらヒドラジンヒトラー
ドを加えて液温を80°Cにして10分間処理したとこ
ろ、暗銀灰色の微粒子を得た。
1逢LL7- Using the same method as in Production Example 1, 114.0 g of titanium oxide fine particles to which 12.2 wt% copper was attached, obtained in Production Example 9, was coated with 9.6 g of silver nitrate in the silver plating solution. 50% potassium sodium tartrate (tetrahydrate), a reducing solution for plating.
After the operation as g, stop stirring, suction filtrate using N15C filter paper, wash thoroughly with pure water, and further disperse this powder in pure water and add hydrazine hydrogen tride while stirring to cool the liquid temperature. When treated at 80°C for 10 minutes, dark silver-gray fine particles were obtained.

この微粒子を化学分析により、銅および銀の含有率を分
析したところ、銅は11.6 wL%、銀は5.1wt
%であった。
Chemical analysis of these fine particles revealed that the content of copper and silver was 11.6 wL% and 5.1 wL% of silver.
%Met.

製Jゴ九1」− 製造例13で得られた、銅12.1 wt%付着させた
硫酸バリウム微粒子114.0 gに製造例1と同様−
の方法で、銀めっき液の硝酸銀を19gとして、銀めっ
き用還元液の酒石酸カリウムナトリウム(4水和物)を
100 gとして操作した後に撹拌を中止し、N[L 
5 C濾紙を用いて吸引濾過し、純水で充分に洗浄し、
さらに、この粉末を純水中に分散させ攪拌しながらSB
Hを加えて液温を80℃にして10分間処理したところ
、銀灰色の微粒子を得た。
114.0 g of barium sulfate fine particles to which 12.1 wt% copper was attached, obtained in Production Example 13, were treated in the same manner as in Production Example 1.
Using the method described above, the silver plating solution containing 19 g of silver nitrate and the reducing solution for silver plating containing potassium sodium tartrate (tetrahydrate) was used as 100 g, then stirring was stopped and N[L
5 Suction filter using C filter paper, wash thoroughly with pure water,
Furthermore, this powder was dispersed in pure water and SB was added while stirring.
When H was added to raise the liquid temperature to 80°C and the mixture was treated for 10 minutes, silver-gray fine particles were obtained.

この微粒子を化学分析により、銅および銀の含有率を分
析したところ、銅は10.8 wt%、銀は9.6wt
%であった。
Chemical analysis of these fine particles revealed that the content of copper and silver was 10.8 wt%, and 9.6 wt% silver.
%Met.

釈j目11j− 製造例17で得られた、銅11.6wt%、銀5.1w
t%を付着させた酸化チタン微粒子120.0 gを純
水500 d中に分散させ、ついで、塩化金酸16.3
gを純水1000−に溶解しアンモニア水を加えてpH
を11に調整した溶液を加えて約60℃に加温しながら
、攪拌下でヒドラジンヒトラード5%水溶液150m1
を加えて反応させたところ、褐色の微粒子を得た。
Copper 11.6wt%, silver 5.1w obtained in Production Example 17
120.0 g of titanium oxide fine particles to which t% was attached were dispersed in 500 d of pure water, and then 16.3 g of chloroauric acid was dispersed in 500 d of pure water.
Dissolve g in pure water 1000- and add ammonia water to adjust the pH.
Add a solution adjusted to 11 and add 150 ml of a 5% hydrazine hydrogen hydrazine aqueous solution under stirring while heating to about 60°C.
When the mixture was added and reacted, brown fine particles were obtained.

この微粒子を化学分析により、銅、銀および金の含有率
を分析したところ、銅11.1 wt%、銀4.9 w
t%、金4.Owt%であった。
Chemical analysis of these fine particles revealed that the content of copper, silver, and gold was 11.1 wt% copper and 4.9 wt% silver.
t%, gold4. It was Owt%.

製造例20 酸化チタン微粒子(平均粒径1,5μm > 200 
gを蒸着装置のチャンバー内にセットし、蒸着源(アル
ミニウム切片)をタングステン製バスケットに乗せて上
記のチャンバー内にセットし、該チャンバー内を減圧し
、(2X 10−’ Torr )、次いで上記の酸化
チタン微粒子を振動させながら上記のタングステンバス
ケットを加熱して上記の蒸着源金属を25g分蒸発した
ところ灰白色の微粒子を得た。
Production Example 20 Titanium oxide fine particles (average particle size 1.5 μm > 200
g is set in the chamber of the evaporation apparatus, the evaporation source (aluminum section) is placed on a tungsten basket and set in the above chamber, the pressure inside the chamber is reduced (2X 10-' Torr), and then the above The tungsten basket was heated while vibrating the titanium oxide fine particles to evaporate 25 g of the vapor deposition source metal, yielding gray-white fine particles.

この微粒子を化学分析により、アルミニウムの含有率を
分析したところ、アルミニウム12 wt%であった。
When the aluminum content of these fine particles was analyzed by chemical analysis, the aluminum content was 12 wt%.

上記で得たアルミニウムを付着した酸化チタン微粒子を
65gずつ2個取り、それぞれ純水500Δに分散させ
て、一方には実施例17と同様に銀を付着させ、他方は
実施例19と同様の方法で塩化金酸を22.9 gとし
、ヒドラジンヒトラード5%水溶液を215−とじた以
外は同一として金を付着させた。
Two pieces of 65 g each of the aluminum-attached titanium oxide fine particles obtained above were dispersed in 500 Δ of pure water, and one was coated with silver in the same manner as in Example 17, and the other was in the same manner as in Example 19. Gold was deposited using the same method except that 22.9 g of chloroauric acid and 215-g of a 5% aqueous solution of hydrazine hydrogen chloride were used.

上記で得た、銀を付着させた微粒子の銀とアルミニウム
の含有率は、銀8.6wt%、アルミニウム11、Ow
t%であった。
The silver and aluminum content of the silver-attached fine particles obtained above was 8.6 wt% silver, 11 wt% aluminum, and Ow
It was t%.

また、金を付着させた微粒子の金とアルミニウムの含有
率は、金9.7wt%、アルミニウム10.8wt%で
あった。
Further, the content of gold and aluminum in the fine particles to which gold was attached was 9.7 wt% gold and 10.8 wt% aluminum.

そして製造例1〜20で調整した微粒子の比抵抗は0.
8Ω口〜1.2Ω口に入るものであった。
The specific resistance of the fine particles prepared in Production Examples 1 to 20 was 0.
The resistance was 8Ω to 1.2Ω.

使月10− 製造例1〜20にて調製した比抵抗0.8Ω口〜1.2
ΩΩの導電性組成物を50%、70%夫々分子量約17
.000、融点215℃のナイロン26に混練したポリ
マーを芯に、同じナイロン6ポリマーを鞘に用い、複合
比1:10で複合し、直径0.3龍のオリフィスから2
80°Cで押し出し、1.000 m / winの速
度で巻き取った。
Usage 10 - Specific resistance 0.8Ω~1.2 prepared in Production Examples 1 to 20
50% and 70% of the conductive composition of ΩΩ each have a molecular weight of about 17.
.. 000, a polymer kneaded with nylon 26 with a melting point of 215°C is used as the core, and the same nylon 6 polymer is used as the sheath, composited at a composite ratio of 1:10, and 2
It was extruded at 80 °C and wound up at a speed of 1.000 m/win.

このナイロン繊維をホットビンを用い3倍に延伸し、2
0デニールのナイロンフィラメントを得た。得られたフ
ィラメントの比抵抗は全て、102ΩC以下の優れた導
電性を示した。
This nylon fiber was stretched 3 times using a hot bottle, and
A 0 denier nylon filament was obtained. All of the obtained filaments exhibited excellent electrical conductivity with a specific resistance of 102 ΩC or less.

11鮭り 製造例1と同様の方法にて銀被膜8%を形成せしめた酸
化チタン微粒子(比抵抗5X10’ΩC11)を70%
混練したナイロン26を芯にしたフィラメントの比抵抗
は106ΩCと好ましい導電性を示さなかった。
11 70% titanium oxide fine particles (specific resistance 5 x 10'ΩC11) on which 8% silver coating was formed by the same method as in Salmon Production Example 1
The filament having a kneaded nylon 26 core had a specific resistance of 106 ΩC, which did not show desirable electrical conductivity.

(発明の効果) 上述のことから、本発明により次の効果がもたらされる
(Effects of the Invention) From the above, the present invention provides the following effects.

(1)導電性が優れ且つ銀や銅の使用量が従来品に比較
して少なくてすむので相対的に廉価に供給することがで
きる。
(1) It has excellent conductivity and requires less silver and copper than conventional products, so it can be supplied at a relatively low price.

(2)無機質微粒子に銅や銀の被膜を形成せしめるもの
であるから、従来品に比べて比重が小であるので混練時
の沈降性も軽減される。
(2) Since a coating of copper or silver is formed on inorganic fine particles, the specific gravity is lower than that of conventional products, so sedimentation during kneading is also reduced.

(3)また混練成型品の着色が少なく、かつ製造が容易
である。さらに無機質微粒子の表面に銀や銅の被膜が形
成されているので、従来品の銀粉や銅粉のみの粒子に比
較して表面積が大である。
(3) Furthermore, the kneaded and molded product has little coloring and is easy to manufacture. Furthermore, since a coating of silver or copper is formed on the surface of the inorganic fine particles, the surface area is larger than that of conventional particles made of only silver powder or copper powder.

Claims (5)

【特許請求の範囲】[Claims] (1)無機質の微粒子の表面に導電性金属被膜が10重
量%以上25重量%未満均斉に形成せしめられているこ
とを特徴とする導電性組成物。
(1) A conductive composition characterized in that a conductive metal coating is uniformly formed on the surface of inorganic fine particles in an amount of 10% by weight or more and less than 25% by weight.
(2)導電性金属被膜が金、銀、銅、アルミニウムのう
ちの少なくとも一つよりなる請求項(1)記載の導電性
組成物。
(2) The conductive composition according to claim (1), wherein the conductive metal film is made of at least one of gold, silver, copper, and aluminum.
(3)無機質の微粒子が金属酸化物、硫酸バリウムまた
は炭酸カルシウムのうち少なくとも一つよりなる請求項
(1)記載の導電性組成物。
(3) The conductive composition according to claim (1), wherein the inorganic fine particles are made of at least one of metal oxide, barium sulfate, and calcium carbonate.
(4)無機質の微粒子の平均粒径が2μm又はそれ以下
である請求項(1),(3)記載の導電性組成物。
(4) The conductive composition according to claims (1) and (3), wherein the inorganic fine particles have an average particle size of 2 μm or less.
(5)金属酸化物が酸化チタンおよび酸化アルミニウム
のうちの一つである請求項(1),(3)記載の導電性
組成物。
(5) The conductive composition according to claims (1) and (3), wherein the metal oxide is one of titanium oxide and aluminum oxide.
JP21028990A 1990-08-10 1990-08-10 Conductive compound Pending JPH0494009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21028990A JPH0494009A (en) 1990-08-10 1990-08-10 Conductive compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21028990A JPH0494009A (en) 1990-08-10 1990-08-10 Conductive compound

Publications (1)

Publication Number Publication Date
JPH0494009A true JPH0494009A (en) 1992-03-26

Family

ID=16586934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21028990A Pending JPH0494009A (en) 1990-08-10 1990-08-10 Conductive compound

Country Status (1)

Country Link
JP (1) JPH0494009A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003023787A1 (en) * 2001-09-06 2003-03-20 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Electrically conductive particles, especially for introducing in liquid media and method for the production thereof
WO2004073400A3 (en) * 2003-02-19 2004-10-28 Fraunhofer Ges Forschung Material, in particular to be introduced into binder systems

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003023787A1 (en) * 2001-09-06 2003-03-20 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Electrically conductive particles, especially for introducing in liquid media and method for the production thereof
WO2004073400A3 (en) * 2003-02-19 2004-10-28 Fraunhofer Ges Forschung Material, in particular to be introduced into binder systems

Similar Documents

Publication Publication Date Title
US5945158A (en) Process for the production of silver coated particles
WO1990009736A1 (en) Antibacterial or conductive composition and applications thereof
JP3346584B2 (en) Fibrous conductive filler and method for producing the same
KR20090131847A (en) Antibiotic polymer and method for preparing the same
JPH02225402A (en) Antibacterial composition
CN114260450B (en) Silver-plated micron-sized particles and preparation method and application thereof
JPH0344149B2 (en)
JPH02268104A (en) Antimicrobial composition
JP3766161B2 (en) Coated powder, silver-coated copper powder and method for producing the same, conductive paste and conductive film
JPH0494009A (en) Conductive compound
JPH02268103A (en) Antimicrobial composition
CN1817509A (en) Production of iron composite powder with copper coating
CN1132885C (en) Process for preparing conducting light colour flaky pigment
JPH0347850A (en) Electrically conductive composition
JPH0519241B2 (en)
JPH0578862A (en) Electric conductive composition
JP2632007B2 (en) Manufacturing method of magnetic electroless plating powder
JP6076249B2 (en) Coated fibrous copper fine particles, and conductive coating agent and conductive film containing the coated fibrous copper fine particles
JPH0258356B2 (en)
CN114226725B (en) Silver-modified micron-sized particles, and preparation method and application thereof
JP4161287B2 (en) Conductive resin composition and production method and use thereof
JPS58209002A (en) Method of producing white conductive powder
JPH02268105A (en) Antimicrobial composition
JPH0497912A (en) Production of titanium oxide fine particle coated with silver
JPH02173272A (en) Silver chemical plating liquid and protection of powder coated by silver