JPH02111825A - Manufacture of metal matrix composite material - Google Patents

Manufacture of metal matrix composite material

Info

Publication number
JPH02111825A
JPH02111825A JP26493788A JP26493788A JPH02111825A JP H02111825 A JPH02111825 A JP H02111825A JP 26493788 A JP26493788 A JP 26493788A JP 26493788 A JP26493788 A JP 26493788A JP H02111825 A JPH02111825 A JP H02111825A
Authority
JP
Japan
Prior art keywords
metal
composite material
molten metal
matrix
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26493788A
Other languages
Japanese (ja)
Inventor
Yoshiaki Kajikawa
義明 梶川
Tetsuya Suganuma
菅沼 徹哉
Takashi Morikawa
隆 森川
Atsuo Tanaka
淳夫 田中
Masahiro Kubo
雅洋 久保
Tetsuya Nukami
額見 哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP26493788A priority Critical patent/JPH02111825A/en
Publication of JPH02111825A publication Critical patent/JPH02111825A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the title material of which a reinforcing material is uniformly dispersed into a light metal as a matrix with excellent adhesion by adding a formed body constituted of a reinforcing material, metallic fluoride, etc., to the molten metal of Al, Mg or their alloys. CONSTITUTION:A formed body 14 constituted of the fiber, whiskers or powder 10 of a reinforcing material having discreating characteristics such as SiC and fine pieces 12 of metallic fluoride such as K2ZrF6, K2TiF6 and KAlF4 or furthermore of metallic fine pieces such as Fe, Cr and Ni is added to the molten metal 16 of a light alloy constituted of Al, Mg or their alloys, and stirring is executed. The metallic fluoride removes an oxide film on the surface of the reinforcing material and the molten metal of the light alloy matrix to improve the wettability between the reinforcing material and the matrix molten metal. The composite metallic material of which the reinforcing material and other metallic fine pieces are uniformly dispersed and combined in the matrix light alloy with good fitness can be obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、複合材料に係り、更に詳細にはコンポキャス
ティング法を応用した金属基複合材料の製造方法に係る
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a composite material, and more particularly to a method for manufacturing a metal matrix composite material using a compocasting method.

従来の技術 例えば日本軽金属学会の主催により昭和60年7月15
〜16日に熱海市に於て開催された第3回金属成形セミ
ナーに於て頒布された「アルミニウム複合材料(FRM
)の成形」と題する小冊子に記載されている如く、強化
材が短繊維や粒子である場合に於ける複合材料の製造方
法の一つとしてコンポキャスティング法が従来より知ら
れている。このコンポキャスティング法によれば、他の
方法に比して強化材の体積率の小さい複合材料を容易に
製造することができる。
Conventional technology For example, on July 15, 1985, sponsored by the Japan Society of Light Metals.
"Aluminum composite material (FRM)" distributed at the 3rd Metal Forming Seminar held in Atami City on the 16th
As described in the brochure entitled "Formation of Composite Materials", the compocasting method has been known as one of the methods for producing composite materials when the reinforcing material is short fibers or particles. According to this compocasting method, a composite material with a smaller volume fraction of reinforcing material can be easily produced compared to other methods.

発明が解決しようとする課題 しかしこのコンポキャスティング法に於ては、強化材及
びマトリックス金属の溶湯の互いに他に対する濡れ性が
良好でなければならず、そのため例えばマトリックス金
属がアルミニウム合金である場合には従来より強化材の
濡れを向上させる目的でMgやCaが添加・されており
、従ってマトリックス金属の組成が限定されるという問
題がある。
Problems to be Solved by the Invention However, in this composite casting method, the molten metal of the reinforcing material and the matrix metal must have good wettability with each other, and therefore, for example, when the matrix metal is an aluminum alloy, Conventionally, Mg and Ca have been added for the purpose of improving the wettability of reinforcing materials, and therefore there is a problem that the composition of the matrix metal is limited.

また強化材及びマトリックス金属の比重が相互に大きく
相違する場合には、強化材がマトリックス金属中に均一
に分散された複合材料を製造することが困難である。更
にコンポキャスティング法に於ては、固液共存状態にて
マトリックス金属の溶湯と強化材とが混合されるので、
マトリックス金属の溶湯の温度が厳密に管理されなけれ
ばならないという問題がある。
Further, when the specific gravity of the reinforcing material and the matrix metal are significantly different from each other, it is difficult to manufacture a composite material in which the reinforcing material is uniformly dispersed in the matrix metal. Furthermore, in the composite casting method, the molten matrix metal and reinforcing material are mixed in a solid-liquid coexistence state.
There is a problem in that the temperature of the molten matrix metal must be strictly controlled.

本発明は、従来のコンポキャスティング法に於ける上述
の如き問題に鑑み、強化材がマトリックス金属中に均一
に分散され、強化材とマトリックス金属との密着も良好
な金属基複合材料を容易に且低順に製造することを可能
にする方法であって、マトリックス金属の組成が制限を
受けない製造方法を提供することを目的としている。
In view of the above-mentioned problems in the conventional composite casting method, the present invention facilitates the production of metal matrix composite materials in which the reinforcing material is uniformly dispersed in the matrix metal and the reinforcing material and the matrix metal have good adhesion. It is an object of the present invention to provide a manufacturing method that allows manufacturing in descending order and in which the composition of the matrix metal is not subject to any restrictions.

課題を解決するための手段 上述の如き目的は、本発明によれば、■離散的な強化材
と金属フッ化物の微細片とを含む成形体を形成し、該成
形体をAI、Mg5A1合金、及びM g合金よりなる
群より選択されたマトリックス金属の溶湯中に導入し、
前記溶湯を撹拌することを含む金属基複合材料の製造方
法、及び■離散的な強化材と金属の微細片と金属フッ化
物の微細片とを含む成形体を形成し、該成形体をAI、
Mg、A1合金、及びMg合金よりなる群より選択され
たマトリックス金属の溶湯中に導入し、前記溶湯を撹拌
することを含む金属基複合材料の製造方法によって達成
される。
Means for Solving the Problems According to the present invention, the above objects are: (1) forming a molded body containing discrete reinforcing materials and fine pieces of metal fluoride; and Mg alloy into the molten metal,
A method for producing a metal matrix composite material comprising stirring the molten metal;
This is achieved by a method for manufacturing a metal matrix composite material, which includes introducing a matrix metal selected from the group consisting of Mg, A1 alloy, and Mg alloy into a molten metal and stirring the molten metal.

発明の作用及び効果 本発明によれば、強化材と金属フッ化物の微細片とを含
む成形体又は強化材と金属の微細片と金属フッ化物の微
細片とを含む成形体が形成され、該成形体がマトリック
ス金属の溶湯中に導入される。金属フッ化物は強化材及
びマトリックス金属の溶湯の表面の酸化膜を除去して強
化材と溶湯との濡れを改善する。従って強化材は7トリ
ツクス金属の溶湯に良好に濡れることによって溶湯と良
好に馴染み、その状態にて溶湯が撹拌されることにより
強化材は溶湯と均一に混合され、これにより強化材がマ
トリックス金属中に均一に分散され且マトリックス金属
に良好に密着した複合材料が製造される。
Effects and Effects of the Invention According to the present invention, a molded body containing a reinforcing material and fine pieces of metal fluoride or a molded body containing a reinforcing material, fine pieces of metal, and fine pieces of metal fluoride are formed, and The compact is introduced into a molten matrix metal. The metal fluoride removes the oxide film on the surface of the reinforcing material and the molten metal of the matrix metal, thereby improving the wetting of the reinforcing material and the molten metal. Therefore, the reinforcing material gets well wetted with the molten metal of the 7-trix metal and blends well with the molten metal, and as the molten metal is stirred in this state, the reinforcing material is uniformly mixed with the molten metal. A composite material is produced which is uniformly dispersed in the matrix metal and has good adhesion to the matrix metal.

また本発明の方法によれば、マトリックス金属は組成の
制限を受けず、強化材とマトリックス金属との間に比較
的大きい比重差がある場合にも強化材がマトリックス金
属中に均一に分散された複合材料を容易に製造すること
ができ、またマトリックス金属の溶湯の温度を厳密に管
理する必要がないので、従来のコンポキャスティング法
の場合に比して複合材料を容易に且低順に製造すること
ができる。
Furthermore, according to the method of the present invention, the matrix metal is not subject to compositional limitations, and even when there is a relatively large specific gravity difference between the reinforcing material and the matrix metal, the reinforcing material can be uniformly dispersed in the matrix metal. Composite materials can be manufactured easily and there is no need to strictly control the temperature of the molten matrix metal, so composite materials can be manufactured more easily and in a lower order than in the case of conventional composite casting methods. Can be done.

また本発明によれば、マトリックス金属の溶湯に対する
強化材の濡れ性を向上させるべく、従来のコンポキャス
ティング法に於ける如く強化材を予熱することが不要で
あるので、このことによっても複合材料を容易に且低順
に製造することができる。
Furthermore, according to the present invention, it is not necessary to preheat the reinforcing material as in conventional composite casting methods in order to improve the wettability of the reinforcing material with respect to the molten matrix metal. It can be manufactured easily and in descending order.

更に本発明の方法によれば、本願出願人と同一の出願人
の出願にかかる特願昭63−117396号に記載され
た方法の場合の如く強化材の表面に金属フッ化物の微細
片を付着させることは不要であり、強化材と金属フッ化
物の微細片とを含む成形体又は強化材と金属の微細片と
金属フッ化物の微細片とを含む成形体を形成すればよい
ので、上述の先の提案にかかる方法の場合に比して複合
材料を能率よく製造することができる。
Further, according to the method of the present invention, fine pieces of metal fluoride are attached to the surface of the reinforcing material as in the method described in Japanese Patent Application No. 117396/1983 filed by the same applicant as the present applicant. It is unnecessary to form a molded body containing a reinforcing material and fine pieces of metal fluoride, or a molded body containing a reinforcing material, fine pieces of metal, and fine pieces of metal fluoride. Composite materials can be manufactured more efficiently than in the case of the method according to the previous proposal.

特に上述の■の方法によれば、金属のべ細片により成形
体中へのマトリックス金属の溶湯の浸透性が向上され、
また個々の強化材が金属の微細片により互いに離間され
た状態にてマトリックス金属の溶湯中に導入されるので
、上述の■の方法の場合に比して更に一層強化材が均一
に分散された複合材料を製造することができる。
In particular, according to method (2) above, the metal strips improve the permeability of the molten matrix metal into the molded body,
In addition, since the individual reinforcing materials are introduced into the molten matrix metal while being separated from each other by fine pieces of metal, the reinforcing materials are more evenly dispersed than in the case of method (2) above. Composite materials can be manufactured.

また本発明の方法に於ては、金属フッ化物は任意の金属
元素のフッ化物であってよいが、例えばに!IZrF6
 、K!lTiF6 、KAlF4 、K2AlF5 
、K、AlF3  ・HごO,C5AIF4、C3AI
F5 ・H!!Oの如く、アルカリ金属、アルカリ土類
金属、希土類金属の如き電気的に正の元素と結合したT
i5Zr%Hf、V、Nb、Taの如き遷移金属又はA
Iを含むフッ化物であることが好ましい。従って本発明
の一つの詳細な特徴によれば、金属フッ化物は電気的に
正の金属元素と結合した遷移金属又はAIを含むフッ化
物である。
Further, in the method of the present invention, the metal fluoride may be a fluoride of any metal element, for example! IZrF6
,K! lTiF6, KAlF4, K2AlF5
, K, AlF3 ・HgoO, C5AIF4, C3AI
F5 ・H! ! T combined with electrically positive elements such as O, alkali metals, alkaline earth metals, and rare earth metals
i5Zr%Hf, V, Nb, transition metals such as Ta or A
A fluoride containing I is preferable. According to one particular feature of the invention, therefore, the metal fluoride is a fluoride containing a transition metal or AI in combination with an electrically positive metal element.

また上述の■の方法に於ける金属の微細片はマトリック
ス金属の組成と同−又は実質的に同一の組成のものであ
ってもよく、またマトリックス金属の組成とは異なる組
成のものであってもよい。
Further, the fine metal pieces used in the method (2) above may have the same or substantially the same composition as the matrix metal, or may have a composition different from the matrix metal. Good too.

前者の場合にはマトリックス金属の組成の変化を回避す
ることかでき、後者の場合には複合材料の製造と同時に
マトリックス金属の組成を積極的に変化させて複合材料
の耐熱性の如き特定の性質を向上させることができる。
In the former case, changes in the composition of the matrix metal can be avoided, while in the latter case, the composition of the matrix metal can be actively changed at the same time as the composite material is manufactured to improve specific properties such as heat resistance of the composite material. can be improved.

この場合金属の微細片はFe、Cr、Nt、Cu、Ti
、ZnSAl。
In this case, the metal particles are Fe, Cr, Nt, Cu, Ti.
, ZnSAl.

Mg、 SnSMn、 Co、 Ag1Pb、 S i
、及びこれらの何れかを主成分とする合金よりなる群よ
り選択された金属の微細片であることが好ましく、特に
使用されるマトリックス金属とは組成の異なる金属の微
細片としてはNi5Fe、Co。
Mg, SnSMn, Co, Ag1Pb, Si
It is preferable to use fine pieces of metal selected from the group consisting of , and alloys containing any of these as main components. Particularly fine pieces of metal having a composition different from that of the matrix metal used include Ni5Fe and Co.

Cu、T t、S i、Zn、Sn、又はこれらの何れ
かを主成分とする合金の微細片であることが好ましい。
Preferably, it is a fine piece of Cu, Tt, Si, Zn, Sn, or an alloy containing any of these as a main component.

尚本発明の方法に於ては、強化材は短繊維、ウィスカ、
粒子の如き離散的な任意の形態のものであってよい。
In the method of the present invention, the reinforcing material is short fibers, whiskers,
It may be of any discrete form, such as particles.

以下に添付の図を参照しつつ、本発明を実施例について
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention will be explained in detail below by way of example embodiments with reference to the accompanying figures.

実施例1 平均粒径20μのSiC粒子と平均粒径40μのに!l
!ZrF5粉末とを100:1の重量比にて混合し、該
混合物を金型にて直径1011111%高さ10龍の円
柱状に圧縮成形することにより、第1図に示されている
如く、SiC粒子10とに!!ZrF6粉末12とより
なる成形体14を形成した。
Example 1 SiC particles with an average particle size of 20μ and those with an average particle size of 40μ! l
! As shown in FIG. 10 particles! ! A compact 14 made of ZrF6 powder 12 was formed.

次いで第2図に示されている如く、上述の如く形成され
た10個の成形体14を約740℃のA1合金(JIS
規格2014)の溶湯16中に浸漬し、更に第3図及び
第4図に示されている如く溶湯16をプロペラ18によ
り撹拌し、これにより成形体を完全に崩壊させると共に
SiC粒子を溶湯中に分散させた。
Next, as shown in FIG. 2, the ten molded bodies 14 formed as described above were heated to an A1 alloy (JIS
The molten metal 16 is further stirred by a propeller 18 as shown in FIGS. 3 and 4, thereby completely disintegrating the molded body and disintegrating SiC particles into the molten metal. Dispersed.

上述のプロセスを30回繰返すことにより溶湯中のSi
C粒子の量を増大させ、溶湯中に十分な口のSiC粒子
が分散された段階で溶湯よりプロペラを取出し、溶湯を
そのまま凝固させた。次いでかくして得られた複合材料
を切断し、その断面を研磨して光学顕微鏡にて観察した
ところ、SiC粒子は凝集しておらず複合材料全体に均
一に分散されており、SiC粒子とA1合金との密着も
良好であることが認められた。尚SiC粒子の体積率は
約12%であった。
By repeating the above process 30 times, Si in the molten metal
The amount of C particles was increased, and when a sufficient number of SiC particles were dispersed in the molten metal, the propeller was removed from the molten metal, and the molten metal was directly solidified. The composite material thus obtained was then cut, its cross section polished, and observed under an optical microscope. It was found that the SiC particles were not aggregated and were uniformly dispersed throughout the composite material, indicating that the SiC particles and A1 alloy were not aggregated. Good adhesion was also observed. The volume fraction of SiC particles was about 12%.

実施、か12 成形体を構成する混合物として厚さ0.1μにてNiが
メツキされた平均繊維径0.5μ、平均繊維長100μ
のSiCウィスカと平均粒径20μのKA I F4粉
末との重量比で10:1の混合物が使用され、マトリッ
クス金属の溶湯として湯温的740℃のA1合金(JI
S規格ADC12)の溶湯が使用された点を除き、実施
例1の場合と同一の要領にて複合材料を製造した。
Implementation, No. 12 The mixture constituting the molded body was plated with Ni to a thickness of 0.1μ, with an average fiber diameter of 0.5μ and an average fiber length of 100μ.
A 10:1 mixture by weight of SiC whiskers and KA I F4 powder with an average particle size of 20 μm was used as the matrix metal melt, and A1 alloy (JI
A composite material was produced in the same manner as in Example 1, except that molten metal of S standard ADC12) was used.

この実施例の複合材料に於ても、SiCウィスカは凝集
しておらず複合材料全体に均一に分散されており、Si
CウィスカとA1合金との密着も良好であることが認め
られた。尚SiCウィスカの体積率は約7%であった。
Also in the composite material of this example, the SiC whiskers are not aggregated and are uniformly dispersed throughout the composite material, and the SiC whiskers are not aggregated and are uniformly dispersed throughout the composite material.
It was also found that the adhesion between the C whisker and the A1 alloy was good. The volume fraction of SiC whiskers was approximately 7%.

実施例3 成形体を構成する混合物として平均粒径40μのTiA
1粒子と平均粒径40μのに2ZrF5粉末とのff1
fi比で150:1の混合物が使用され、マトリックス
金属の溶湯として湯温的730℃のA1合金(JIS規
格AC4C)の溶湯が使用された点を除き、実施例1の
場合と同一の要領にて複合材料を製造した。
Example 3 TiA with an average particle size of 40μ as a mixture constituting a molded body
ff1 of 2ZrF5 powder with 1 particle and average particle size of 40μ
The procedure was the same as in Example 1, except that a mixture with an fi ratio of 150:1 was used and a molten metal of A1 alloy (JIS standard AC4C) at a temperature of 730°C was used as the molten metal for the matrix metal. A composite material was manufactured.

この実施例の複合材料に於ても、TiA1粒子は凝集し
ておらず複合材料全体に均一に分散されており、TiA
1粒子とA1合金との密着も良好であることが認められ
た。尚TiA1粒子の体積率は約14%であった。
In the composite material of this example as well, the TiA1 particles were not aggregated and were uniformly dispersed throughout the composite material.
It was also observed that the adhesion between the 1 particle and the A1 alloy was good. The volume fraction of TiA1 particles was about 14%.

実施例4 成形体を構成する混合物として平均粒径40μのSiC
粒子と平均粒径40μのKA I F4粉末との重量比
で50=1の混合物が使用され、マトリックス金属の溶
湯として湯温的800℃のMg合金(JIS規格MC2
)の溶湯が使用された点を除き、実施例1の場合と同一
の要領にて複合材料を製造した。
Example 4 SiC with an average particle size of 40μ as a mixture constituting a molded body
A mixture of particles and KA I F4 powder with an average particle size of 40μ in a weight ratio of 50=1 was used, and a Mg alloy (JIS standard MC2
A composite material was produced in the same manner as in Example 1, except that the molten metal of ) was used.

この実施例の複合材料に於ても、SiC粒子は凝集して
おらず複合材料全体に均一に分散されており、SiC粒
子とMg合金との密告も良好であることが認められた。
In the composite material of this example as well, it was observed that the SiC particles were not aggregated and were uniformly dispersed throughout the composite material, and that the contact between the SiC particles and the Mg alloy was good.

尚SiC粒子の体積率は約15%であった。The volume fraction of SiC particles was about 15%.

実施例5 成形体を構成する混合物として平均粒径20μのSiC
粒子と平均粒径40μのA1合金(JIS規格2014
)粉末と平均粒径40μのに= ZrF6粉末との重量
比で20:15:1の混合物が使用された点を除き、実
施例1の場合と同一の要領にて複合材料を製造した。
Example 5 SiC with an average particle size of 20μ as a mixture constituting a molded body
A1 alloy with particles and average particle size of 40μ (JIS standard 2014
A composite material was produced in the same manner as in Example 1, except that a mixture of ZrF6 powder and ZrF6 powder with an average particle size of 40 μm in a weight ratio of 20:15:1 was used.

この実施例の複合材料に於ても、SiC粒子は凝集して
おらず複合材料全体に均一に分散されており、SiC粒
子とA1合金との密着も良好であることが認められた。
In the composite material of this example as well, it was observed that the SiC particles were not aggregated and were uniformly dispersed throughout the composite material, and that the adhesion between the SiC particles and the A1 alloy was also good.

尚SiC粒子の体積率は約8%であった。The volume fraction of SiC particles was approximately 8%.

実施例6 成形体を構成する混合物として厚さ0.1μにてNiが
メツキされた平均繊維径0.5μ、平均繊維長100μ
のSiCウィスカと平均粒径40μのA1合金(JIS
規格ADC12)粉末と平均粒径20μのKA I F
4粉末との重量比で20:60:1の混合物が使用され
、マトリックス金属の溶湯として湯温的740℃のA1
合金(JIS規格ADC12)の溶湯が使用された点を
除き、実施例1の場合と同一の要領にて複合材料を製造
した。
Example 6 A mixture constituting a molded body plated with Ni to a thickness of 0.1μ, average fiber diameter 0.5μ, average fiber length 100μ
A1 alloy (JIS
Standard ADC12) Powder and KAIF with average particle size 20μ
4 powder at a weight ratio of 20:60:1.
A composite material was manufactured in the same manner as in Example 1, except that a molten metal of the alloy (JIS standard ADC12) was used.

この実施例の複合材料に於ても、SiCウィスカは凝集
しておらず複合材料全体に均一に分散されており、Si
CウィスカとA1合金との密着も良好であることが認め
られた。尚SiCウィスカの体積率は約5%であった。
Also in the composite material of this example, the SiC whiskers are not aggregated and are uniformly dispersed throughout the composite material, and the SiC whiskers are not aggregated and are uniformly dispersed throughout the composite material.
It was also found that the adhesion between the C whisker and the A1 alloy was good. The volume percentage of SiC whiskers was approximately 5%.

実施例7 成形体を構成する混合物として平均粒径40μのTiA
l粒子と平均粒径40μのA1合金(JIs規格AC4
C)粉末と平均粒径40μのに2ZrF6粉末との重量
比で100:80:1の混合物が使用され、マトリック
ス金属の溶湯として湯温的730℃のA1合金(JIS
現格AC4C)の溶湯が使用された点を除き、実施例1
の場合と同一の要領にて複合材料を製造した。
Example 7 TiA with an average particle size of 40μ as a mixture constituting a molded body
A1 alloy with l particles and average grain size of 40μ (JIs standard AC4
C) A mixture of powder and 2ZrF6 powder with an average particle size of 40μ in a weight ratio of 100:80:1 was used, and A1 alloy (JIS
Example 1 except that molten metal of current AC4C) was used.
A composite material was manufactured in the same manner as in the case of .

この実施例の複合材料に於ても、TiA1粒子は凝集し
ておらず複合材料全体に均一に分散されており、TiA
1粒子とA1合金との密着も良好であることが認められ
た。尚TiA1粒子の体積率は約10%であった。
In the composite material of this example as well, the TiA1 particles were not aggregated and were uniformly dispersed throughout the composite material.
It was also observed that the adhesion between the 1 particle and the A1 alloy was good. The volume fraction of TiA1 particles was about 10%.

実施例8 成形体を構成する混合物として平均粒径40μのSiC
粒子と平均粒径100μのM g合金(JIs規格MC
2)粉末と平均粒径40μのKAlF4粉末との重量比
で100:50:1の混合物が使用され、マトリックス
金属の溶湯として湯温的800℃のMg合金(JIS規
洛MC2)の溶湯が使用された点を除き、実施例1の場
合と同一の要領にて複合材料を製造した。
Example 8 SiC with an average particle size of 40μ as a mixture constituting a molded body
Mg alloy with particles and average particle size of 100μ (JIs standard MC
2) A mixture of powder and KAlF4 powder with an average particle size of 40μ in a weight ratio of 100:50:1 is used, and a molten metal of Mg alloy (JIS Kiraku MC2) at a temperature of 800°C is used as the molten metal of the matrix metal. A composite material was produced in the same manner as in Example 1, except for the following points.

この実施例の複合材料に於ても、SiC粒子は凝集して
おらず複合材料全体に均一に分散されており、SiC粒
子とA1合金との密着も良好であることが認められた。
In the composite material of this example as well, it was observed that the SiC particles were not aggregated and were uniformly dispersed throughout the composite material, and that the adhesion between the SiC particles and the A1 alloy was also good.

尚SiC粒子の体積率は約10%であった。The volume fraction of SiC particles was approximately 10%.

実施例9 成形体を構成する混合物として平均粒径20μのSiC
粒子と平均粒径20μの純Ti粉末と平均粒径40μの
に2ZrF6粉末との重量比で800:40:1の混合
物が使用された点を除き、実施例1の場合と同一の要領
にて複合材料を製造した。
Example 9 SiC with an average particle size of 20μ as a mixture constituting a molded body
In the same manner as in Example 1, except that a mixture of pure Ti powder with an average particle size of 20μ and 2ZrF6 powder with an average particle size of 40μ in a weight ratio of 800:40:1 was used. A composite material was produced.

この実施例の複合材料に於ても、SiC粒子は凝集して
おらずW金材料全体に均一に分散されており、S I 
C粒子とA1合金との密着も良好であることが認められ
た。尚SiC粒子の体積率は約10%であった。また添
加されたTiの量は極く少量であったので、複合材料の
マトリックス金属の組成は使用されたA1合金溶湯の組
成と実質的に同一であった。
In the composite material of this example as well, the SiC particles are not aggregated and are uniformly dispersed throughout the W gold material.
It was also observed that the adhesion between the C particles and the A1 alloy was good. The volume fraction of SiC particles was approximately 10%. Furthermore, since the amount of Ti added was extremely small, the composition of the matrix metal of the composite material was substantially the same as the composition of the molten A1 alloy used.

実施例10 成形体を構成する混合物として平均繊維径1゜5μ、平
均謀維長80μのSiCウィスカと平均粒径5μの純N
i粉末と平均粒径20μのKAlF4粉末との重量比で
5:2:1の混合物が使用され、マトリックス金属の溶
湯として湯温的740℃のA1合金(J I 5M1t
8AC8A)の溶湯が使用された点を除き、実施例1の
場合と同一の要領にて複合を4料を製造した。
Example 10 The mixture constituting the molded body was SiC whiskers with an average fiber diameter of 1.5μ and an average fiber length of 80μ and pure N with an average particle diameter of 5μ.
A mixture of A1 powder and KAlF4 powder with an average particle size of 20μ in a weight ratio of 5:2:1 was used as the molten metal for the matrix metal.
Four composite materials were prepared in the same manner as in Example 1, except that molten metal 8AC8A) was used.

この実施例の複合材料に於ても、SiCウィスカは凝集
しておらず複合材料全体に均一に分散されており、Si
CウィスカとA1合金との密着も良好であることが認め
られた。尚SiCウィスカの体積率は約596であった
。また複合材料のマトリックス金属のA1合金のNi含
有量は166%であり、使用されたA1合金溶湯のNi
含有量1゜296に比して増大しており、これにより複
合材料の高7H強度が向上されたものと推測される。
Also in the composite material of this example, the SiC whiskers are not aggregated and are uniformly dispersed throughout the composite material, and the SiC whiskers are not aggregated and are uniformly dispersed throughout the composite material.
It was also found that the adhesion between the C whisker and the A1 alloy was good. The volume fraction of SiC whiskers was approximately 596. In addition, the Ni content of the A1 alloy, which is the matrix metal of the composite material, is 166%, and the Ni content of the A1 alloy molten metal used is 166%.
The content is increased compared to 1°296, and it is presumed that this improves the high 7H strength of the composite material.

実施例11 成形体を構成する混合物として平均粒径40μのSiC
粒子と平均粒径100μの純Mg粉末と平均粒径40μ
のKA I F、粉末との重量比で100:50:1の
混合物が使用され、マトリックス金属の溶湯として湯温
的800℃のMg合金(JIS規格MC2)の溶湯が使
用された点を除き、実施例1の場合と同一の要領にて複
合材料を製造した。
Example 11 SiC with an average particle size of 40μ as a mixture constituting a molded body
Particles and pure Mg powder with an average particle size of 100μ and an average particle size of 40μ
A mixture of KAIF and powder in a weight ratio of 100:50:1 was used, and a molten Mg alloy (JIS standard MC2) at a temperature of 800°C was used as the molten metal for the matrix metal. A composite material was produced in the same manner as in Example 1.

この実施例の複合材料に於ても、SiC粒子は凝集して
おらず複合材料全体に均一に分散されており、S i 
C’粒子とA1合金との密着も良好であることが認めら
れた。尚SiC粒子の体積率は約15%であった。また
添加されたMgは使用されたMg合金溶湯の主成分であ
るので、複合材料のマトリックス金属の組成は使用され
たMg合金溶湯の組成と実質的に同一であった。
In the composite material of this example as well, the SiC particles are not aggregated and are uniformly dispersed throughout the composite material, and the SiC particles are uniformly dispersed throughout the composite material.
It was also observed that the adhesion between the C' particles and the A1 alloy was good. The volume fraction of SiC particles was about 15%. Furthermore, since the added Mg is the main component of the molten Mg alloy used, the composition of the matrix metal of the composite material was substantially the same as the composition of the molten Mg alloy used.

以上に於ては本発明を特定の実施例について詳細に説明
したが、本発明はこれらの実施例に限定されるものでは
なく、本発明の範囲内にて他の種々の実施例が可能であ
ることは当業者にとって明らかであろう。
Although the present invention has been described in detail with respect to specific embodiments above, the present invention is not limited to these embodiments, and various other embodiments are possible within the scope of the present invention. This will be obvious to those skilled in the art.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は本発明による金属基複合材料の製造
方法の一つの実施例を示す工程図である。 第1図 10 ・S i C粒子、  12=−に2 Z r 
F6粉末。 14・・・成形体、16・・・A1合金の溶湯、18・
・・プロペラ 特  許 代 出 理 願人 人 トヨタ自動車株式会社
1 to 4 are process diagrams showing one embodiment of the method for manufacturing a metal matrix composite material according to the present invention. Figure 1 10 ・S i C particle, 2 Z r to 12=-
F6 powder. 14... Molded body, 16... Molten metal of A1 alloy, 18.
...Propeller patent applicant: Toyota Motor Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)離散的な強化材と金属フッ化物の微細片とを含む
成形体を形成し、該成形体をAl、Mg、Al合金、及
びMg合金よりなる群より選択されたマトリックス金属
の溶湯中に導入し、前記溶湯を撹拌することを含む金属
基複合材料の製造方法。
(1) Forming a molded body containing discrete reinforcing materials and fine pieces of metal fluoride, and placing the molded body in a molten metal of a matrix metal selected from the group consisting of Al, Mg, Al alloy, and Mg alloy. A method for producing a metal matrix composite material, the method comprising introducing the molten metal into a molten metal and stirring the molten metal.
(2)離散的な強化材と金属の微細片と金属フッ化物の
微細片とを含む成形体を形成し、該成形体をAl、Mg
、Al合金、及びMg合金よりなる群より選択されたマ
トリックス金属の溶湯中に導入し、前記溶湯を撹拌する
ことを含む金属基複合材料の製造方法。
(2) Forming a molded body containing a discrete reinforcing material, fine pieces of metal, and fine pieces of metal fluoride, and
A method for producing a metal matrix composite material, the method comprising introducing a matrix metal selected from the group consisting of , Al alloy, and Mg alloy into a molten metal, and stirring the molten metal.
JP26493788A 1988-10-20 1988-10-20 Manufacture of metal matrix composite material Pending JPH02111825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26493788A JPH02111825A (en) 1988-10-20 1988-10-20 Manufacture of metal matrix composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26493788A JPH02111825A (en) 1988-10-20 1988-10-20 Manufacture of metal matrix composite material

Publications (1)

Publication Number Publication Date
JPH02111825A true JPH02111825A (en) 1990-04-24

Family

ID=17410262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26493788A Pending JPH02111825A (en) 1988-10-20 1988-10-20 Manufacture of metal matrix composite material

Country Status (1)

Country Link
JP (1) JPH02111825A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07300633A (en) * 1994-04-28 1995-11-14 Nagasaki Pref Gov Production of ceramic composite magnesium alloy
WO1998006880A1 (en) * 1996-08-08 1998-02-19 London & Scandinavian Metallurgical Co. Limited Metal matrix composite alloys

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027004A (en) * 1973-07-13 1975-03-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027004A (en) * 1973-07-13 1975-03-20

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07300633A (en) * 1994-04-28 1995-11-14 Nagasaki Pref Gov Production of ceramic composite magnesium alloy
WO1998006880A1 (en) * 1996-08-08 1998-02-19 London & Scandinavian Metallurgical Co. Limited Metal matrix composite alloys

Similar Documents

Publication Publication Date Title
JPH0641702A (en) High strength aluminum alloy
JPS61149449A (en) Composite material for lead frame for semiconductor device and its production
US3441392A (en) Preparation of fiber-reinforced metal alloy composites by compaction in the semimolten phase
JPH0561333B2 (en)
US5236032A (en) Method of manufacture of metal composite material including intermetallic compounds with no micropores
US5603780A (en) Light weight, high strength beryllium-aluminum alloy
US5858460A (en) Metal matrices reinforced with silver coated boron carbide particles
JPH02111825A (en) Manufacture of metal matrix composite material
JPH07268510A (en) High-strength al alloy and its production
US3525609A (en) Copper alloy material
JPH06158197A (en) Production of composite material
EP0408257B1 (en) Method of manufacture of metal matrix composite material including intermetallic compounds with no micropores
JPH0331433A (en) Production of metal matrix composite
JPH01287234A (en) Production of metal-base composite material
JPS5839757A (en) Manufacture of composite body
JPH01279720A (en) Manufacture of metal-based composite material
JP2541298B2 (en) Manufacturing method of metal matrix composite material
JPH02101129A (en) Manufacture of metal matrix composite
JPH07100834B2 (en) Manufacturing method of metal matrix composite material
JPH0892671A (en) Production of metal matrix composite material
JPH01287279A (en) Method for multiply reinforcing surface of light metallic material
JPH01279719A (en) Manufacture of metal-based composite material
JPH02101127A (en) Manufacture of metal matrix composite
JP2005068469A (en) Magnesium-based composite material and manufacturing method therefor
JPH02194131A (en) Manufacture of metal matrix composite