JPH02101129A - Manufacture of metal matrix composite - Google Patents

Manufacture of metal matrix composite

Info

Publication number
JPH02101129A
JPH02101129A JP25245488A JP25245488A JPH02101129A JP H02101129 A JPH02101129 A JP H02101129A JP 25245488 A JP25245488 A JP 25245488A JP 25245488 A JP25245488 A JP 25245488A JP H02101129 A JPH02101129 A JP H02101129A
Authority
JP
Japan
Prior art keywords
molten
metal
molten metal
reinforcement
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25245488A
Other languages
Japanese (ja)
Inventor
Tetsuya Nukami
額見 哲也
Tetsuya Suganuma
菅沼 徹哉
Takashi Morikawa
隆 森川
Atsuo Tanaka
淳夫 田中
Yoshiaki Kajikawa
義明 梶川
Masahiro Kubo
雅洋 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP25245488A priority Critical patent/JPH02101129A/en
Publication of JPH02101129A publication Critical patent/JPH02101129A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To easily and inexpensively manufacture a uniform metal matrix composite by introducing a reinforcement into a molten matrix metal, such as Al and Mg, through a layer of molten halide-type flux formed on the above molten metal and then mixing and dispersing the reinforcement into the molten metal. CONSTITUTION:Powdered halide, such as KAlF4, is put into a molten matrix metal, such as Al, Mg, Al alloy, and Mg alloy, to undergo melting, by which the molten halide-type flux is disposed into a state of layer on the surface of the above molten metal. Subsequently, a discrete reinforcement, such as powdered Si3N4, is introduced into the above molten metal through the above layer of molten flux, and the reinforcement and the molten metal are mixed by agitation. Since the wettability of the reinforcement to the molten metal is improved due to the flux, the reinforcement can be uniformly dispersed into the molten metal. Then, the above molten metal is solidified, by which the metal matrix composite in which the reinforcement is uniformly dispersed in the matrix metal with superior adhesive strength can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、複合材料に係り、更に詳細にはコンポキャス
ティング法を応用した金属基複合材料の製造方法に係る
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a composite material, and more particularly to a method for manufacturing a metal matrix composite material using a compocasting method.

従来の技術 例えばト」本軽金属学会の主催により昭和60年7月1
5〜1611に熱海市に於て開催された第3回金属成形
セミナーに於て頒布された「アルミニウム複合材料(F
RM)の成形」と題する小冊rに記載されている如く、
強化材が短繊維や¥i丁−である場合に於ける複合材料
の製造方法の一つとしてコンポキャスティング法が従来
より知られている。このコンポキャスティング法によれ
ば、他の方法に比して強化材の体積率の小さい複合材料
を容易に製造することかできる。
Conventional technology, for example,
The “Aluminum Composite Materials (F
As stated in the booklet entitled ``Formation of RM)'',
Compocasting has been known as one of the methods for producing composite materials when the reinforcing material is short fibers or fibers. According to this compocasting method, it is possible to easily produce a composite material with a small volume fraction of reinforcing material compared to other methods.

発明が解決しようとする課題 しかしこのコンポキャスティング法に於ては、強化材及
びマトリックス金属の溶湯の万いに他に対する濡れ性が
良好でなければならす、そのため例えばマトリックス金
属がアルミニウム合金である場合には従来より強化材の
濡れを向上させる「1的でMgやCaが添加されており
、従ってマトリックス金属の組成が限定されるという問
題がある。
Problems to be Solved by the Invention However, in this composite casting method, the reinforcing material and the molten matrix metal must have good wettability with respect to each other. Therefore, for example, when the matrix metal is an aluminum alloy, Conventionally, Mg and Ca have been added to improve the wetting of the reinforcing material, and therefore there is a problem in that the composition of the matrix metal is limited.

また強化材及びマトリックス金属の比重が相Jj4に大
きく相違する場合には、強化材かマトリックス金属中に
均一に分散された複合材料を製造することが困難である
。更にコンポキャスティング法に於ては、固液共存状態
にてマトリックス金属の溶湯と強化材とが混合されるの
で、マトリックス金属の溶湯の温度が厳密に管理されな
ければならないという問題がある。
Furthermore, when the specific gravity of the reinforcing material and the matrix metal are significantly different in phase Jj4, it is difficult to produce a composite material in which the reinforcing material is uniformly dispersed in the matrix metal. Furthermore, in the compocasting method, since the molten matrix metal and the reinforcing material are mixed in a solid-liquid coexistence state, there is a problem in that the temperature of the molten matrix metal must be strictly controlled.

本発明は、従来のコンポキャスティング法に於ける上述
の如き問題に鑑み、強化材がマトリックス金属中に均一
に分散され、強化材とマトリックス金属との密着も良好
な金属基複合材料を容易に且装置に製造することをnI
能にする方法であって、マトリックス金属の組成が制限
を受けない製造方法を提供することを目的としている。
In view of the above-mentioned problems in the conventional composite casting method, the present invention facilitates the production of metal matrix composite materials in which the reinforcing material is uniformly dispersed in the matrix metal and the reinforcing material and the matrix metal have good adhesion. equipment to manufacture nI
The object of the present invention is to provide a manufacturing method in which the composition of the matrix metal is not restricted.

課題を解決するための手段 上述の如きト1的は、本発明によれば、Al、Mg、A
l合金、及びMg合金よりなる群より選択されたマトリ
ックス金属の溶湯の表面にハロゲン化物系のフラックス
の溶融液を層状に配置し、前記溶融液の層を経て前記溶
湯内に離散的な強化材を導入して前記溶湯と前記強化材
とを混合し、前記溶湯を凝固させる金属基複合材料の製
造方法によって達成される。
Means for Solving the Problem According to the present invention, the above-mentioned point 1 is
A molten halide flux is arranged in a layer on the surface of a molten matrix metal selected from the group consisting of Mg alloys and Mg alloys, and discrete reinforcing materials are introduced into the molten metal through the layer of the molten liquid. This is achieved by a method for manufacturing a metal matrix composite material, which includes introducing a molten metal, mixing the molten metal with the reinforcing material, and solidifying the molten metal.

発明の作用及び効果 本発明によれば、マトリックス金属の溶湯の表面にハロ
ゲン化物系のフラックスの溶融液が層状に配置され、溶
融液の層を経て溶湯内に離散的な強化材が導入される。
Effects and Effects of the Invention According to the present invention, a molten halide flux is arranged in a layer on the surface of a molten matrix metal, and discrete reinforcing materials are introduced into the molten metal through the layer of the molten metal. .

フラックスはマトリックス金属の溶湯及び強化材の表面
の酸化膜を除去して強化材と溶湯との濡れを改善する。
The flux removes the oxide film on the surface of the molten matrix metal and the reinforcing material to improve wetting between the reinforcing material and the molten metal.

従って強化キイはマトリックス金属の溶湯に良好に濡れ
ることによって溶湯と均一に混合され、これにより強化
材がマトリックス金属中に均一に分散され目、マトリッ
クス金属に良好に密着した複合材料が製造される。
Therefore, the reinforcing key is well wetted with the molten metal of the matrix metal and is uniformly mixed with the molten metal, so that the reinforcing material is uniformly dispersed in the matrix metal, and a composite material having good adhesion to the matrix metal is produced.

また本発明によれば、強化材はフラックスの溶融液の層
を経てマトリックス金属の溶湯中に導入されるので、少
くとも初期段階に於ては強化材はフラックスの溶融液の
層にて被覆された状態にある。従ってフラックスの溶融
液が使用されない従来の方法の場合に比して、強化材が
マトリックス金属の溶湯と反応することによる劣化が防
止若しくは低減され、これによりマトリックス金属が良
好に複合強化された複合材料を製造することができる。
Further, according to the present invention, the reinforcing material is introduced into the molten matrix metal through a layer of molten flux, so that at least in the initial stage, the reinforcing material is coated with a layer of molten flux. is in a state of Therefore, compared to the conventional method in which a molten flux is not used, deterioration caused by the reaction of the reinforcing material with the molten matrix metal is prevented or reduced, resulting in a composite material in which the matrix metal is well reinforced. can be manufactured.

また本発明の方法によれば、マトリックス金属は組成の
制限を受けず、強化材とマトリックス金属との間に比較
的大きい比重差がある場合にも強化材がマトリックス金
属中に均一に分散された複合材料を容易に製造すること
ができ、またマトリックス金属の溶湯の温度を厳密に管
理する必要がないので、従来のコンポキャスティング法
の場合に比して複合材料を容易に且装置に製造すること
ができる。
Furthermore, according to the method of the present invention, the matrix metal is not subject to compositional limitations, and even when there is a relatively large specific gravity difference between the reinforcing material and the matrix metal, the reinforcing material can be uniformly dispersed in the matrix metal. Composite materials can be easily manufactured, and there is no need to strictly control the temperature of the molten matrix metal, making it easier to manufacture composite materials than in the case of conventional composite casting methods. Can be done.

また本発明によれば、マトリックス金属の溶湯に対する
強化材の濡れ性を向上させるべく、従来のコンポキャス
ティング法に於ける如く強化材を予熱することが不要で
あるので、このことによっでも複合材料を容易に且装置
に製造することかできる。
Furthermore, according to the present invention, it is not necessary to preheat the reinforcing material as in the conventional composite casting method in order to improve the wettability of the reinforcing material with respect to the molten metal of the matrix metal. can be easily manufactured into a device.

本発明の方法に於ては、フラックスはフッ化物系、塩化
物系、及びこれらの混合物であってよく、例えばに2 
ZrFB 、K2 TiF5 、’KAlF4、K:]
 AlF6 、K2 AlF3  ・H20、CsAl
F4 、CsAlF3  ・H20の如く、アルカリ金
属、アルカリ土類金属、希土類金属の如き電気的に正の
元素と結合したTi、Zr5Hf、V、Nb、Taの如
き遷移金属又はAlを含むフッ化物や、従来よりアルミ
ニウムはんだ用フラックスとして使用されているKCI
、NaC1、L i CI。
In the method of the invention, the flux may be fluoride-based, chloride-based, and mixtures thereof, such as
ZrFB,K2TiF5,'KAlF4,K:]
AlF6, K2 AlF3 ・H20, CsAl
Fluorides containing transition metals or Al such as Ti, Zr5Hf, V, Nb, and Ta combined with electrically positive elements such as alkali metals, alkaline earth metals, and rare earth metals, such as F4, CsAlF3 ・H20, KCI has traditionally been used as a flux for aluminum soldering.
, NaC1, L i CI.

ZnCl5NH4Cl5CaC12、S rC12、S
nC12、NaF等であることが好ましい。
ZnCl5NH4Cl5CaC12,S rC12,S
Preferred are nC12, NaF, and the like.

尚本発明の方法に於ては、離散的な強化材は短繊維、ウ
ィスカ、粒子、フレークの如き1f意の形態のものであ
ってよい。
In the method of the present invention, the discrete reinforcing material may be in any form such as short fibers, whiskers, particles, flakes, etc.

以下に添付の図を参照しつつ、本発明を実施例について
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention will be explained in detail below by way of example embodiments with reference to the accompanying figures.

実施例1 第1図及び第2図に示されている如く、約740℃のア
ルミニウム合金(JIS規格AC4C)の溶湯10を用
意し、次いで平均粒径30μのKAlF4粉末12(古
河型]二株式益社製)を溶湯の表面に層状に配置し、K
A I F4粉末を溶湯の熱により溶融させることによ
ってKA I F4の溶融液]4を形成し、溶湯10の
表面を溶融液14にて覆った。
Example 1 As shown in Figs. 1 and 2, a molten aluminum alloy (JIS standard AC4C) 10 at about 740°C was prepared, and then KAlF4 powder 12 (Furukawa type) with an average particle size of 30 μm was added. (manufactured by Masuksha) is arranged in a layer on the surface of the molten metal,
A KA IF 4 melt] 4 was formed by melting the A IF 4 powder using the heat of the molten metal, and the surface of the molten metal 10 was covered with the molten liquid 14.

次いで第3図に示されている如く、平均粒径20μのS
i:(N4粉末]6(昭和電工株式会社製)を溶融液1
4の層を経て溶湯中に導入した。この場合Si3N4粉
末は少なくともアルミニウム合金の溶湯中に導入された
直後に於てはKA I F4の溶融液の層にて覆われて
いたものと考えられる。
Next, as shown in Figure 3, S with an average particle size of 20μ
i: (N4 powder) 6 (manufactured by Showa Denko Co., Ltd.) in molten liquid 1
It was introduced into the molten metal through 4 layers. In this case, it is considered that the Si3N4 powder was covered with a layer of KAIF4 melt at least immediately after being introduced into the molten aluminum alloy.

次いてかくしてSi3N4粉末が導入されたアルミニウ
ム合金の溶湯]Oをプロペラ18によって十分に撹拌し
、しかる後溶湯を凝固させた。
Next, the molten aluminum alloy into which the Si3N4 powder was introduced was sufficiently stirred by the propeller 18, and then the molten metal was solidified.

次いてかくして得られた凝固体を切断し、その断面を研
磨して光学顕微鏡にて観察したところ、凝固体の最上部
にはK A I F 4の巻込みと思われる部分か存在
していたが、それ以外の部分に於ては5i3N4粉末が
アルミニウム合金中に均一に分散された複合材料が良好
に形成されており、Si3N4粉末とアルミニウム合金
との密着も良好であることか認められた。尚Si3N4
粉末の体積率は約6%であった。
Next, the thus obtained coagulated body was cut, its cross section was polished and observed under an optical microscope, and it was found that there was a portion at the top of the coagulated body that appeared to be engulfed by K A I F 4. However, in other parts, a composite material in which the 5i3N4 powder was uniformly dispersed in the aluminum alloy was well formed, and it was observed that the adhesion between the Si3N4 powder and the aluminum alloy was also good. Furthermore, Si3N4
The volume fraction of the powder was approximately 6%.

実施例2 KAlF4粉末の代りに平均粒径]、 50μのI(2
ZrF6粉末(三津和化学薬品株式会社製)が使用され
、7トリツクス金属の溶湯として湯温800℃のマグネ
シウム合金(JIS規格MC2)の溶湯が使用され、強
化材として平均繊維径03μ、平均繊維長30μのSi
Cウィスカ(東海カーボン株式会社製)が使用された点
を除き実施例1と同様の要領にて複合材料を製造した。
Example 2 Instead of KAlF4 powder, average particle size], 50μ I(2
ZrF6 powder (manufactured by Mitsuwa Chemical Co., Ltd.) was used, molten magnesium alloy (JIS standard MC2) with a hot water temperature of 800°C was used as the molten metal of the 7 trix metal, and average fiber diameter of 03μ and average fiber length were used as the reinforcing material. 30μ Si
A composite material was produced in the same manner as in Example 1 except that C whiskers (manufactured by Tokai Carbon Co., Ltd.) were used.

この実施例の複合材料に於てもその全体に亙りSiCウ
ィスカがマグネシウム合金中に均一に分散されており、
SiCウィスカとマグネシウム合金との密着も良好であ
ることが認められた。尚SiCウィスカの体積率は約4
%であった。
In the composite material of this example, SiC whiskers are uniformly dispersed throughout the magnesium alloy,
It was also found that the adhesion between the SiC whiskers and the magnesium alloy was good. The volume fraction of SiC whiskers is approximately 4.
%Met.

実施例3 KA I F4粉末の代りに粒径1.50μ以ドのC5
AIF4粉末(自家製)が使用され、マトリックス金属
の溶湯として湯温760℃の純アルミニウムの溶湯が使
用され、強化材として厚さ0.5μにてNiが無電解め
っきされた平均粒径2oμのAl2O3粒子か使用され
た点を除き実施例1と同様の要領にて複合材料を製造し
た。
Example 3 C5 with a particle size of 1.50μ or more instead of KA I F4 powder
AIF4 powder (homemade) was used, pure aluminum molten metal at a temperature of 760°C was used as the matrix metal molten metal, and Al2O3 with an average particle size of 2oμ was electrolessly plated with Ni to a thickness of 0.5μ as a reinforcing material. A composite material was prepared in the same manner as in Example 1 except that particles were used.

この実施例の複合材料に於てもその全体に亙りAl2O
3粒子か純アルミニウム中に均一に分散されており、A
l2O3粒子と純アルミニウムとの密着も良好であるこ
とが認められた。尚Al2O3粒子の体積率は約20%
であった。
The composite material of this example also contains Al2O throughout its entirety.
3 particles are uniformly dispersed in pure aluminum, A
It was also found that the adhesion between the l2O3 particles and pure aluminum was good. The volume fraction of Al2O3 particles is approximately 20%.
Met.

尚実施例1〜3について、比較の目的でフラックスの溶
融液を使用せずに複合材料の製造を試みたところ、強化
材か金属溶湯の表面に浮上したり、溶湯中にて偏析した
りすることに起因して強化材をマトリックス金属中に均
一に分散させることができず、また強化材とマトリック
ス金属との密着状態も良好ではなかった。
Regarding Examples 1 to 3, when we attempted to manufacture composite materials without using the molten flux for the purpose of comparison, we found that the reinforcing material floated to the surface of the molten metal or segregated in the molten metal. As a result, the reinforcing material could not be uniformly dispersed in the matrix metal, and the adhesion between the reinforcing material and the matrix metal was also not good.

以上に於ては本発明を幾つかの実施例について詳細に説
明したが、本発明はこれらの実施例に限定されるもので
はなく、本発明の範囲内にて他の種々の実施例かl’l
J能であることは当業者にとって明らかであろう。例え
ばフラックスの溶融液はフラックスの粉末等を加熱する
ことにより形成され、しかる後7トリツクス金属の表面
に配置されてもよい。
Although the present invention has been described in detail with reference to several embodiments above, the present invention is not limited to these embodiments, and may be modified from various other embodiments within the scope of the present invention. 'l
It will be clear to those skilled in the art that this is the case. For example, a flux melt may be formed by heating a flux powder or the like and then placed on the surface of the 7 trix metal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本発明による金属基複合H料の製造
方法の一つの実施例の一連の上程を示す工程図である。 10・・・アルミニウム合金の溶湯 12・・KAlF
4粉末、14・・・KAlF4の溶融液 16・・Si
3N4粉末、18・・・プロペラ 特  許  出  願  人    トヨタ自動小株式
会社代     理     人   弁理士  明 
 石  昌  毅第 図 第 図 第 図 10・・、アルミニウム合金のiti&16・・・3i
3N4術本
1 to 3 are process diagrams showing a series of steps in one embodiment of the method for producing a metal matrix composite H material according to the present invention. 10... Molten aluminum alloy 12... KAlF
4 powder, 14...KAlF4 melt 16...Si
3N4 powder, 18...Propeller patent Applicant: Toyota Motor Corporation Representative: Akira Patent Attorney
Takeshi Ishi, Figure 10..., Aluminum alloy iti&16...3i
3N4 technique book

Claims (1)

【特許請求の範囲】[Claims] Al、Mg、Al合金、及びMg合金よりなる群より選
択されたマトリックス金属の溶湯の表面にハロゲン化物
系のフラックスの溶融液を層状に配置し、前記溶融液の
層を経て前記溶湯内に離散的な強化材を導入して前記溶
湯と前記強化材とを混合し、前記溶湯を凝固させる金属
基複合材料の製造方法。
A molten halide flux is arranged in a layer on the surface of a molten metal of a matrix metal selected from the group consisting of Al, Mg, Al alloy, and Mg alloy, and dispersed into the molten metal through the layer of the molten liquid. A method for manufacturing a metal matrix composite material, which comprises introducing a reinforcing material, mixing the molten metal with the reinforcing material, and solidifying the molten metal.
JP25245488A 1988-10-06 1988-10-06 Manufacture of metal matrix composite Pending JPH02101129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25245488A JPH02101129A (en) 1988-10-06 1988-10-06 Manufacture of metal matrix composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25245488A JPH02101129A (en) 1988-10-06 1988-10-06 Manufacture of metal matrix composite

Publications (1)

Publication Number Publication Date
JPH02101129A true JPH02101129A (en) 1990-04-12

Family

ID=17237606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25245488A Pending JPH02101129A (en) 1988-10-06 1988-10-06 Manufacture of metal matrix composite

Country Status (1)

Country Link
JP (1) JPH02101129A (en)

Similar Documents

Publication Publication Date Title
RU2159823C2 (en) METALLIC COMPOSITE MATERIALS ON BASE OF ALUMINUM ALLOYS REINFORCED WITH CERAMIC PARTICLES TiB2
Hashim et al. Metal matrix composites: production by the stir casting method
US4713111A (en) Production of aluminum-SiC composite using sodium tetrasborate as an addition agent
US5244748A (en) Metal matrix coated fiber composites and the methods of manufacturing such composites
JPS6326281A (en) Welding using metal-ceramic composite body
US3827129A (en) Methods of producing a metal and carbon fibre composite
JP2007291450A (en) Particle-reinforced aluminum alloy composite, and production method therefor
JPS63195235A (en) Fiber-reinforced metallic composite material
JPH02101129A (en) Manufacture of metal matrix composite
US5858460A (en) Metal matrices reinforced with silver coated boron carbide particles
JPH0623416B2 (en) Abrasion resistant aluminum composite material and method for producing the same
JPH0132297B2 (en)
WO2003033750A1 (en) Grain refining agent for cast aluminum products
JPH0372039A (en) Aluminum-base composite material and its manufacture
JPH0987778A (en) Production of magnesium base composite material
JPH02111825A (en) Manufacture of metal matrix composite material
JPH01287234A (en) Production of metal-base composite material
JPH02101128A (en) Manufacture of metal matrix composite
唐鹏 et al. Effects of Cu content on microstructure and mechanical properties of 7075 aluminum alloy
JP2002522636A (en) Method of manufacturing composite material
JPH02101127A (en) Manufacture of metal matrix composite
US5556486A (en) Composite material having an intermetallic matrix of AlNi reinforced by silicon carbide particles
JPH02101126A (en) Manufacture of metal matrix composite
JPH0230726A (en) Fiber-reinforced metallic composite material
GB2288189A (en) Ceramic reinforced metal-matrix composites.