JPH01287234A - Production of metal-base composite material - Google Patents

Production of metal-base composite material

Info

Publication number
JPH01287234A
JPH01287234A JP11739688A JP11739688A JPH01287234A JP H01287234 A JPH01287234 A JP H01287234A JP 11739688 A JP11739688 A JP 11739688A JP 11739688 A JP11739688 A JP 11739688A JP H01287234 A JPH01287234 A JP H01287234A
Authority
JP
Japan
Prior art keywords
metal
reinforcements
molten
reinforcing material
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11739688A
Other languages
Japanese (ja)
Inventor
Yoshiaki Kajikawa
義明 梶川
Tetsuya Suganuma
菅沼 徹哉
Takashi Morikawa
隆 森川
Atsuo Tanaka
淳夫 田中
Masahiro Kubo
雅洋 久保
Tetsuya Nukami
額見 哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP11739688A priority Critical patent/JPH01287234A/en
Publication of JPH01287234A publication Critical patent/JPH01287234A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To easily produce a metal-base composite material in which reinforcements are uniformly dispersed with superior wettability by allowing the fine pieces of metal fluoride to adhere to the surface of reinforcements, adding and mixing the above reinforcements into a molten matrix metal of Al, etc., and then solidifying the above molten metal. CONSTITUTION:Reinforcements 10 (SiC whiskers, etc.) are added into an aqueous solution 12 of metal fluoride (K2TiF6, etc.), and, after the aqueous solution 12 is agitated by means of a propeller 14, the above reinforcements 10 are taken out and dried, by which the metal fluoride 12 is finely recrystallized on the surface of the reinforcements 10. Subsequently, the resulting reinforcements 10' are added to a molten matrix metal 16 (selected from Al, Mg, Al alloy, and Mg alloy), which is sufficiently agitated by means of a propeller 18 and then solidified. By this method, the composite material in which the reinforcements 10 are uniformly dispersed in the matrix metal 16 and allowed to adhere to the matrix metal 16 in a superior state can be manufactured easily and inexpensively.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、複合材料に係り、更に詳細にはコンポキャス
ティング法を応用した金属基複合材料の製造方法に係る
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a composite material, and more particularly to a method for manufacturing a metal matrix composite material using a compocasting method.

従来の技術 例えば日本軽金属学会の主催により昭和60年7月15
〜16日に熱海布に於て開催された第3回金属成形セミ
ナーに於て頒布された[アルミニウム複合材料(FRM
)の成形」と題する小冊子に記載されている如く、強化
材が短繊維や粒子である場合に於ける複合材料の製造方
法の一つとしてコンポキャスティング法が従来より知ら
れている。このコンポキャスティング法によれば、他の
方法に比して強化材の体積率の小さい複合材料を容易に
製造することができる。
Conventional technology For example, on July 15, 1985, sponsored by the Japan Society of Light Metals.
This was distributed at the 3rd Metal Forming Seminar held in Atakaifu on the 16th
As described in the brochure entitled "Formation of Composite Materials", the compocasting method has been known as one of the methods for producing composite materials when the reinforcing material is short fibers or particles. According to this compocasting method, a composite material with a smaller volume fraction of reinforcing material can be easily produced compared to other methods.

発明が解決しようとする課題 しかしこのコンポキャスティング法に於ては、強化材及
びマトリックス金属の溶湯の互いに他に対する濡れ性が
良好でなければならず、そのため例えばマトリックス金
属がアルミニウム合金である場合には従来より強化材の
濡れを向上させる目的でMgやCaが添加されており、
従ってマトリックス金属の組成が限定されるという問題
がある。
Problems to be Solved by the Invention However, in this composite casting method, the molten metal of the reinforcing material and the matrix metal must have good wettability with each other, and therefore, for example, when the matrix metal is an aluminum alloy, Conventionally, Mg and Ca have been added to improve the wettability of reinforcing materials.
Therefore, there is a problem that the composition of the matrix metal is limited.

また強化材及びマトリックス金属の比重か相互に大きく
相違する場合には、強化材がマトリックス金属中に均一
に分散された複合材料を製造することが困難である。更
にコンポキャスティング法に於ては、固液共存状態にて
マトリックス金属の溶湯と強化材とが混合されるので、
マトリックス金属の溶湯の温度が厳密に管理されなけれ
ばならないという問題がある。
Furthermore, if the specific gravity of the reinforcing material and the matrix metal are significantly different from each other, it is difficult to manufacture a composite material in which the reinforcing material is uniformly dispersed in the matrix metal. Furthermore, in the composite casting method, the molten matrix metal and reinforcing material are mixed in a solid-liquid coexistence state.
There is a problem in that the temperature of the molten matrix metal must be strictly controlled.

本発明は、従来のコンポキャスティング法に於ける上述
の如き問題iこ鑑み、強化材がマトリックス金属中に均
一に分散され、強化材とマトリックス金属との密着も良
好な金属基複合材料を容易に且低廉に製造することを可
能にする方法であって、マトリックス金属の組成が制限
を受けない製造方法を提供することを目的としている。
In view of the above-mentioned problems in the conventional composite casting method, the present invention makes it possible to easily produce a metal matrix composite material in which the reinforcing material is uniformly dispersed in the matrix metal and the reinforcing material and the matrix metal have good adhesion. Moreover, it is an object of the present invention to provide a method that allows manufacturing at a low cost and does not impose any restrictions on the composition of the matrix metal.

課題を解決するための手段 上述の如き目的は、本発明によれば、強化材の表面に金
属フッ化物の微細片を付着させ、その強化材をA15M
g、Al合金、及びMg合金よりなる群より選択された
マトリックス金属の溶湯に添加して混合し、前記溶湯を
凝固させる金属基複合材料の製造方法によって達成され
る。
Means for Solving the Problems According to the present invention, fine pieces of metal fluoride are attached to the surface of a reinforcing material, and the reinforcing material is made of A15M.
This is achieved by a method for producing a metal matrix composite material, which includes adding and mixing a matrix metal selected from the group consisting of g, Al alloy, and Mg alloy to a molten metal, and solidifying the molten metal.

発明の作用及び効果 本発明によれば、強化材の表面に金属フッ化物の微細片
が付着される。金属フッ化物はマトリックス金属の溶湯
の酸化膜を除去して強化材と溶湯との濡れを改善する。
Functions and Effects of the Invention According to the present invention, fine pieces of metal fluoride are attached to the surface of the reinforcing material. The metal fluoride removes the oxide film of the molten matrix metal and improves the wetting of the reinforcing material with the molten metal.

従って強化材はマトリックス金属の溶湯に良好に濡れる
ことによって溶湯と均一に混合され、これにより強化材
がマトリックス金属中に均一に分散され且マトリックス
金属に良好に密着した複合材料が製造される。
Therefore, the reinforcing material is uniformly mixed with the molten metal by being well wetted with the molten metal of the matrix metal, thereby producing a composite material in which the reinforcing material is uniformly dispersed in the matrix metal and has good adhesion to the matrix metal.

また本発明の方法によれば、マトリックス金属は組成の
制限を受けず、強化材とマトリックス金属との間に比較
的大きい比重差がある場合にも強化材がマトリックス金
属中に均一に分散された複合材料を容易に製造すること
ができ、またマトリックス金属の溶湯の温度を厳密に管
理する必要がないので、従来のコンポキャスティング法
の場合に比して複合材料を容易に且低廉に製造すること
ができる。
Furthermore, according to the method of the present invention, the matrix metal is not subject to compositional limitations, and even when there is a relatively large specific gravity difference between the reinforcing material and the matrix metal, the reinforcing material can be uniformly dispersed in the matrix metal. Composite materials can be manufactured easily and there is no need to strictly control the temperature of the molten matrix metal, so composite materials can be manufactured more easily and at a lower cost than in the case of conventional composite casting methods. I can do it.

また本発明によれば、マトリックス金属の溶湯に対する
強化材の濡れ性を向上させるべく、従来のコンポキャス
ティング法に於ける如く強化材を予熱することが不要で
あるので、このことによっても複合材料を容易に且低廉
に製造することができる。
Furthermore, according to the present invention, it is not necessary to preheat the reinforcing material as in conventional composite casting methods in order to improve the wettability of the reinforcing material with respect to the molten matrix metal. It can be manufactured easily and inexpensively.

本発明の方法に於ては、強化材の表面に金属フッ化物の
微細片を付着させることは、■金属フッ化物が懸濁され
たスラリー中に強化材を混入してそれを乾燥させる方法
、■金属フッ化物の水溶液中に強化材を浸漬し、その溶
液を冷却して強化材の表面に金属フッ化物を微細に再結
晶させる方法、■金属フッ化物の微細片が分散された金
属にて強化材の表面を被覆する方法等により行われてよ
い。
In the method of the present invention, attaching fine pieces of metal fluoride to the surface of the reinforcing material includes: (1) mixing the reinforcing material into a slurry in which metal fluoride is suspended and drying it; ■ A method in which a reinforcing material is immersed in an aqueous solution of metal fluoride and the solution is cooled to finely recrystallize the metal fluoride on the surface of the reinforcing material. This may be carried out by a method such as coating the surface of the reinforcing material.

特に上述の■の方法の場合には、金属はFe。Particularly in the case of the above-mentioned method (2), the metal is Fe.

Cr、NtSCuSTt、Zn、At、Mg、Sn、M
n5Co’、Ag、Pb、S t、及びこれらの何れか
を主成分とする合金よりなる群より選択された金属、特
にNi、Fe、Co、Cu、Ti。
Cr, NtSCuSTt, Zn, At, Mg, Sn, M
A metal selected from the group consisting of n5Co', Ag, Pb, St, and alloys containing any of these as main components, especially Ni, Fe, Co, Cu, and Ti.

St、ZnSSn、又はこれらの何れかを主成分とする
合金であることが好ましい。
Preferably, it is St, ZnSSn, or an alloy containing any of these as a main component.

また本発明の方法に於ては、金属フッ化物は任意の金属
元素のフッ化物であってよいが、例えばに2 ZrFB
 、K2 TiF6 、KAlF4 、K3AlF6 
、K2 AIFB  ・H20,C8A I F4、C
s A I F 5  ΦH20の如く、アルカリ金属
、アルカリ土類金属、希土類金属の如き電気的に正の−
5= 元素と結合したTi5Zr、Hf、VSNb、Taの如
き遷移金属又はAIを含むフッ化物であることが好まし
い。従って本発明の一つの詳細な特徴によれば、金属フ
ッ化物は電気的に正の金属元素と結合した遷移金属又は
Alを含むフッ化物である。
Further, in the method of the present invention, the metal fluoride may be a fluoride of any metal element, but for example, 2 ZrFB
, K2TiF6 , KAlF4 , K3AlF6
, K2 AIFB ・H20, C8A I F4, C
s A I F 5 ΦH20, electrically positive − such as alkali metals, alkaline earth metals, and rare earth metals
5= Preferably a fluoride containing a transition metal such as Ti5Zr, Hf, VSNb, Ta or AI combined with the element. According to one particular feature of the invention, therefore, the metal fluoride is a fluoride containing a transition metal or Al in combination with an electrically positive metal element.

尚本発明の方法に於ては、強化材は短繊維、ウィスカ、
粒子の如き離散的な任意の形態のものであってよい。
In the method of the present invention, the reinforcing material is short fibers, whiskers,
It may be of any discrete form, such as particles.

以下に添付の図を参照しつつ、本発明を実施例について
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention will be explained in detail below by way of example embodiments with reference to the accompanying figures.

実施例1 第1図に示されている如く、平均繊維径0.5μm1平
均繊維長150μmのSiCウィスカ10を90℃の過
飽和に2TiF6水溶液12に添加し、プロペラ14に
よって水溶液を撹拌し、しかる後ウィスカを水溶液より
取出して約120℃にて乾燥することにより、ウィスカ
の表面にに2TiF6を微細に再結晶させた。
Example 1 As shown in FIG. 1, SiC whiskers 10 having an average fiber diameter of 0.5 μm and an average fiber length of 150 μm were added to a supersaturated 2TiF6 aqueous solution 12 at 90° C., the aqueous solution was stirred by a propeller 14, and then The whiskers were taken out of the aqueous solution and dried at about 120° C., thereby finely recrystallizing 2TiF6 on the surface of the whiskers.

次いで第2図に示されている如く、かくしてに2TiF
6の微細片が付着されたSiCウィスカ10′を約74
0℃のアルミニウム合金(JIS規格AC4C)の溶湯
16中に添加し、該溶湯をプロペラ18によって十分に
撹拌し、しかる後溶湯を凝固させた。
Then, as shown in FIG.
SiC whisker 10' with 6 minute pieces attached is about 74
It was added to a molten metal 16 of an aluminum alloy (JIS standard AC4C) at 0° C., the molten metal was sufficiently stirred by a propeller 18, and then the molten metal was solidified.

次いでかくして得られた凝固体を切断し、その断面を研
磨して光学顕微鏡にて観察したところ、凝固体全体に亙
りSiCウィスカがアルミニウム合金中に均一に分散さ
れており、SiCウィスカとアルミニウム合金との密着
も良好であることか認められた。尚SiCウィスカの体
積率は約5%であった。
Next, the thus obtained solidified body was cut, and its cross section was polished and observed under an optical microscope. It was found that SiC whiskers were uniformly dispersed in the aluminum alloy throughout the solidified body, and the SiC whiskers and the aluminum alloy were separated. Good adhesion was also observed. The volume percentage of SiC whiskers was approximately 5%.

実施例2 平均粒径20μ川のSi3N4粉末を約90℃の過飽和
に2ZrF6水溶液中に浸漬し、その水溶液をゆっくり
と撹拌しつつ約40℃に冷却し、これによりSi3N4
粉末の表面にに2ZrF6を微細に再結晶させた。
Example 2 Si3N4 powder with an average particle size of 20μ is immersed in a supersaturated 2ZrF6 aqueous solution at about 90°C, and the aqueous solution is slowly cooled to about 40°C with stirring, thereby forming Si3N4
2ZrF6 was finely recrystallized on the surface of the powder.

次いでかくしてに2ZrF6の微細片が付着されたSi
3N4粉末を乾燥させ、しかる後約800℃のマグネシ
ウム合金(JIS規格MC2)の溶湯中に添加し、該溶
湯をプロペラにより十分に撹拌した後これを凝固させた
Then the Si to which the fine pieces of 2ZrF6 were attached
The 3N4 powder was dried, then added to a molten metal of magnesium alloy (JIS standard MC2) at about 800°C, and the molten metal was thoroughly stirred with a propeller and then solidified.

次いでかくして得られた凝固体を切断し、その断面を研
磨して光学顕微鏡にて観察したところ、凝固体全体に亙
りSi3N4粒子がマグネシウム合金中に均一に分散さ
れており、粒子とマグネシウム合金との密着も良好であ
ることが認められた。
Next, the thus obtained solidified body was cut, and its cross section was polished and observed under an optical microscope. It was found that the Si3N4 particles were uniformly dispersed in the magnesium alloy throughout the solidified body, and the particles and the magnesium alloy were clearly dispersed throughout the solidified body. Good adhesion was also observed.

尚Si3N4粒子の体積率は約8%であった。The volume fraction of Si3N4 particles was approximately 8%.

実施例3 KA I F4粉末が懸濁されたNiめっき浴中に、平
均繊維径15μm1平均繊維長2+nmのSiC繊維を
浸漬し、各繊維の表面に厚さ10μmのNiを無電解め
っきした。この場合Niめっき層中には体積率約5%に
てKA I F4粉末が分散されていた。
Example 3 SiC fibers having an average fiber diameter of 15 μm and an average fiber length of 2+ nm were immersed in a Ni plating bath in which KA I F4 powder was suspended, and the surface of each fiber was electrolessly plated with Ni to a thickness of 10 μm. In this case, KA IF4 powder was dispersed in the Ni plating layer at a volume fraction of about 5%.

次いでかくしてめっきされたSiC繊維を約760℃の
純A1の溶湯中に添加し、該溶湯をプロペラによって十
分に撹拌し、しかる後溶湯を凝固させた。
The thus plated SiC fibers were then added to a molten metal of pure A1 at about 760° C., the molten metal was sufficiently stirred by a propeller, and then the molten metal was solidified.

次いでかくして得られた凝固体を切断し、その断面を光
学顕微鏡にて観察したところ、凝固体全体に亙りSiC
繊維がAI中に均一に分散されており、SiC繊維とA
1との密着も良好であることが認められた。尚SiC繊
維の体積率は約5%であった。
Next, the thus obtained coagulated body was cut, and its cross section was observed with an optical microscope.
The fibers are uniformly dispersed in AI, and the SiC fibers and A
It was also observed that the adhesion with No. 1 was good. The volume percentage of SiC fibers was about 5%.

以上に於ては本発明を幾つかの実施例について詳細に説
明したが、本発明はこれらの実施例に限定されるもので
はなく、本発明の範囲内にて他の種々の実施例が可能で
あることは当業者にとって明らかであろう。
Although the present invention has been described above in detail with reference to several embodiments, the present invention is not limited to these embodiments, and various other embodiments are possible within the scope of the present invention. It will be clear to those skilled in the art that

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はSiCウィスカかに2TiF6水溶液中に浸漬
され、水溶液がプロペラにて撹拌されている状態を示す
解図、第2図は表面にに2TiF6の微細片が付着され
たSiCウィスカがアルミニウム合金の溶湯中に添加さ
れ混合される状態を示す解図である。 10・・・SiCウィスカ、12・・・K2TiF6水
溶液、14・・・プロペラ、16・・・アルミニウム合
金の溶湯、18・・・プロペラ 特 許 出 願 人  トヨタ自動車株式会社代   
  理     人   弁理士  明  石  昌 
 毅−1〇 − 101・・SiCライ、 16・・アルミニラ。 スカ ム合金の溶湯
Figure 1 is an illustration showing that SiC whiskers are immersed in a 2TiF6 aqueous solution and the aqueous solution is stirred by a propeller. Figure 2 shows that SiC whiskers with fine pieces of 2TiF6 attached to the surface are made of an aluminum alloy. FIG. 2 is an illustrative diagram showing the state in which molten metal is added to and mixed with molten metal. 10...SiC whisker, 12...K2TiF6 aqueous solution, 14...propeller, 16...molten aluminum alloy, 18...propeller patent applicant Toyota Motor Corporation representative
Patent Attorney Masa Akashi
Takeshi-1〇-101...SiC Li, 16...Aluminira. Molten scum alloy

Claims (1)

【特許請求の範囲】[Claims] 強化材の表面に金属フッ化物の微細片を付着させ、その
強化材をAl、Mg、Al合金、及びMg合金よりなる
群より選択されたマトリックス金属の溶湯に添加して混
合し、前記溶湯を凝固させる金属基複合材料の製造方法
Fine pieces of metal fluoride are attached to the surface of the reinforcing material, and the reinforcing material is added to and mixed with a molten metal of a matrix metal selected from the group consisting of Al, Mg, Al alloy, and Mg alloy, and the molten metal is mixed. A method for manufacturing a metal matrix composite material by solidifying it.
JP11739688A 1988-05-13 1988-05-13 Production of metal-base composite material Pending JPH01287234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11739688A JPH01287234A (en) 1988-05-13 1988-05-13 Production of metal-base composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11739688A JPH01287234A (en) 1988-05-13 1988-05-13 Production of metal-base composite material

Publications (1)

Publication Number Publication Date
JPH01287234A true JPH01287234A (en) 1989-11-17

Family

ID=14710616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11739688A Pending JPH01287234A (en) 1988-05-13 1988-05-13 Production of metal-base composite material

Country Status (1)

Country Link
JP (1) JPH01287234A (en)

Similar Documents

Publication Publication Date Title
US3936298A (en) Metal composition and methods for preparing liquid-solid alloy metal composition and for casting the metal compositions
US3951651A (en) Metal composition and methods for preparing liquid-solid alloy metal compositions and for casting the metal compositions
RU2159823C2 (en) METALLIC COMPOSITE MATERIALS ON BASE OF ALUMINUM ALLOYS REINFORCED WITH CERAMIC PARTICLES TiB2
AU2003247334B2 (en) High strength aluminum alloy for high temperature applications
US4713111A (en) Production of aluminum-SiC composite using sodium tetrasborate as an addition agent
US5858460A (en) Metal matrices reinforced with silver coated boron carbide particles
JPH0636984B2 (en) Method for manufacturing partial composite member
DE2339747A1 (en) PROCESS FOR PREPARING A LIQUID SOLID MIXTURE BASED ON METAL ALLOYS FOR THE CASTING PROCESS
JPH01287234A (en) Production of metal-base composite material
JPH0623416B2 (en) Abrasion resistant aluminum composite material and method for producing the same
JPH0132297B2 (en)
CN105132766A (en) Al-Ti-Zn intermediate alloy and preparation method thereof
CN105154718B (en) Zinc-aluminium tantalum intermediate alloy and its preparation method and application
JPS6411093B2 (en)
JPH02111825A (en) Manufacture of metal matrix composite material
JPH05255709A (en) Joining method for material to be joined selected from metals or ceramics and joining agent used therein
JPH0987778A (en) Production of magnesium base composite material
EP0608299B1 (en) CAST COMPOSITE MATERIAL HAVING ALUMINUM OXIDE REINFORCEMENT IN AN Al-Mg-Sr-MATRIX
CN111304474A (en) Al-Ti-B-Sr-RE intermediate alloy and preparation method thereof
JPH02101129A (en) Manufacture of metal matrix composite
JPH0681068A (en) Method for casting heat resistant mg alloy
JP2002522636A (en) Method of manufacturing composite material
JPH0372039A (en) Aluminum-base composite material and its manufacture
JPH02101128A (en) Manufacture of metal matrix composite
CN107245605B (en) The thinning method of nascent η-Zn crystal grain in hypoeutectic Zn-Al alloy