JPH02194131A - Manufacture of metal matrix composite - Google Patents

Manufacture of metal matrix composite

Info

Publication number
JPH02194131A
JPH02194131A JP1000389A JP1000389A JPH02194131A JP H02194131 A JPH02194131 A JP H02194131A JP 1000389 A JP1000389 A JP 1000389A JP 1000389 A JP1000389 A JP 1000389A JP H02194131 A JPH02194131 A JP H02194131A
Authority
JP
Japan
Prior art keywords
metal
matrix
alloy
melting point
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1000389A
Other languages
Japanese (ja)
Inventor
Toron Ron Tan
トロン ロン タン
Takanobu Nishimura
隆宣 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1000389A priority Critical patent/JPH02194131A/en
Publication of JPH02194131A publication Critical patent/JPH02194131A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily and efficiently manufacture a homogeneous metal matrix composite at a low cost by adding a rapidly solidified alloy powder in which low-melting metal is finely and uniformly dispersed and a reinforcement to a semimolten slurry of matrix metal and then mixing the above. CONSTITUTION:A molten metal consisting of a matrix metal and a metal having a melting point lower than that of the above matrix metal is subjected to rapid solidification treatment. As the above low-melting metal, Sn, Pb, In, Bi, etc., are used, and, as the above matrix metal, Al alloy, Mg alloy, and Cu alloy are used. By the above treatment, a rapidly solidified alloy powder in which the above matrix metal is finely and uniformly dispersed is prepared. On the other hand, the above matrix metal is heated up to a temp. of its solidus temp. or above to undergo partial melting, by which a semimolten slurry is formed. Subsequently, the above rapidly solidified alloy powder and a reinforcement composed of ceramics are added to the above slurry, and these are mixed by agitation and formed into a composite material. As the above reinforcement, at least one kind among whiskers, fibers, and grains is used. By this method, the homogeneous metal matrix composite in which the low-melting metal having a lubricating function and the reinforcement increasing wear resistance are uniformly dispersed and which has superior characteristics of low friction and wear resistance can be obtained.

Description

【発明の詳細な説明】 (発明の目的) (産業上の利用分野) 本発明は、低*1*特性と耐摩耗特性とに優れた金属基
複合材料の製造方法に係り、特にコンポキャスティング
法を使用して複合化を図る場合に、構成成分である低融
点金属をマトリックス金属中に均一に分散することが可
能な金属基複合材料の製造方法に関する。
Detailed Description of the Invention (Objective of the Invention) (Industrial Application Field) The present invention relates to a method for producing a metal matrix composite material having excellent low *1* properties and wear resistance properties, and particularly relates to a method for producing a metal matrix composite material having excellent low*1* properties and wear resistance properties, and particularly to The present invention relates to a method for producing a metal matrix composite material, in which a low melting point metal as a constituent component can be uniformly dispersed in a matrix metal when the composite is produced using a matrix metal.

(従来の技術) 近年、炭化ケイ素、アルミナ等のセラミックス繊維また
はヒラミックス粒子で強化された金属基複合材料が新素
材の1つとして注目されている。
(Prior Art) In recent years, metal matrix composite materials reinforced with ceramic fibers such as silicon carbide and alumina or Hiramix particles have been attracting attention as one of the new materials.

その巾でも耐摩耗特性や高温強度に優れた硬いセラミッ
クス繊維を、マトリックス金属中に分散させた金属基複
合材料が、宇宙機器、ロボット1.自動中、航空機等の
幅広い産業分野で普及している。
Metal matrix composite materials, in which hard ceramic fibers with excellent wear resistance and high temperature strength are dispersed in a matrix metal, are used for space equipment, robots, etc. It is widespread in a wide range of industrial fields such as automatic vehicles and aircraft.

ところで従来から耐摩耗特性に優れた複合材料として、
セラミックスウィスカ、セラミックス繊維もしくはセラ
ミックス粒子を、アルミニウム合金、マグネシウム合金
、銅合金で形成されたマトリックス金属中に均一に分散
させた金属基複合材料が開発されている。
By the way, as a composite material with excellent wear resistance properties,
Metal matrix composite materials have been developed in which ceramic whiskers, ceramic fibers, or ceramic particles are uniformly dispersed in a matrix metal made of aluminum alloy, magnesium alloy, or copper alloy.

これらの複合材料は、硬度が高いセラミックス製強化材
を含有しているため、耐摩耗特性が極めて優れている。
These composite materials contain ceramic reinforcements with high hardness and therefore have extremely good wear resistance properties.

一方低摩擦係数を有する金属合金として、Aj金合金M
q金合金しくはCu合金で形成した母材中に3n、pb
、Bi、Inなどの11滑性に優れた低融点金属元素を
添加したものも実用化されている。
On the other hand, as a metal alloy with a low coefficient of friction, Aj gold alloy M
3n, pb in the base material formed of q gold alloy or Cu alloy
, Bi, In, and other low melting point metal elements with excellent lubricity have also been added to the material.

しかしながら、硬いセラミックス強化材を含有した従来
の金属基複合材料で摺動部品を形成した場合、硬いセラ
ミックス強化材が摺動時に相手材を激しく削り取る、い
わゆるアブレシプ摩耗が多発し、相手材の寿命を縮めて
しまう問題点がある。
However, when sliding parts are formed from conventional metal matrix composite materials containing hard ceramic reinforcement, so-called abrasion wear, in which the hard ceramic reinforcement violently scrapes away at the mating material during sliding, occurs frequently, which shortens the life of the mating material. There is a problem with shrinking it.

また同時にS擦抵抗も著しく増大するため、摺動部を駆
動するm器の負荷が増大してしまう。
At the same time, the S friction resistance also increases significantly, so the load on the m device that drives the sliding portion increases.

一方、AN合金0Mg合金もしくはCu合金中にSn、
pb、ei、inなどの低融点金属を添加した合金材料
は、Sn、PbなどのrR8I作用によって、その19
!擦係数を著しく低減することができるが、合金材料全
体が軟質化するため、摩耗が著しく増大する欠点がある
On the other hand, Sn in AN alloy 0Mg alloy or Cu alloy
Alloy materials to which low-melting point metals such as pb, ei, in, etc. are added, have their 19
! Although the coefficient of friction can be significantly reduced, the overall alloy material becomes soft, resulting in a significant increase in wear.

ところでマトリックス金属にセラミックス[ffなどの
強化材を分散させた金属基複合材料の製造方法としては
、一般に粉末冶金法、コンポキャスティング法あるいは
溶湯含浸加圧鋳造法(」ス下「溶浸法」という。)が知
られている。
By the way, methods for manufacturing metal matrix composite materials in which reinforcing materials such as ceramics [ff] are dispersed in a matrix metal are generally powder metallurgy, composite casting, or molten metal impregnation pressure casting (referred to as ``infiltration method''). .)It has been known.

粉末冶金法はマトリックスとなる原料金属粉末とセラミ
ックス製強化材とを充分に混合した後に、得られた混合
体を加圧成形し、真空または不活性ガス雰囲気において
高温度に加熱したり、ホットプレスによって成形複合化
する方法である。
In the powder metallurgy method, the raw metal powder that serves as the matrix and the ceramic reinforcing material are thoroughly mixed, then the resulting mixture is pressure-formed, heated to high temperature in a vacuum or inert gas atmosphere, or hot pressed. This is a method of molding and compounding.

またコンポキャスティング法は、原料合金の液相と固相
とが共存する半溶融状態になるまで1.すなわち固相線
温度を越えるまでマトリックス原料を加熱し、イの状態
でセラミックス製強化材を添加混合し、強化材が均一に
分散した段階でマトリックス原料を固化けしめ複合材料
を形成する方法である。
In addition, in the composite casting method, 1. In other words, the matrix raw material is heated until it exceeds the solidus temperature, the ceramic reinforcing material is added and mixed in the state shown in (a), and the matrix raw material is solidified to form a composite material when the reinforcing material is uniformly dispersed. .

ざらに?Ti浸法は、まずセラミックス製強化材で所定
の形状および体積率を有する予備成形体(プリフォーム
)を形成し、この予備成形体を金型内に配置して所定温
石に加熱し、しかる後にマトリックス金属の溶湯を金型
内に注入し、さらに注入した溶湯をピストン等で直接加
圧することにより、予備成形体の内部空間に溶湯を含浸
させて複合化する方法である。
Zarani? In the Ti immersion method, first, a preform having a predetermined shape and volume ratio is formed from a ceramic reinforcement, this preform is placed in a mold and heated to a predetermined temperature, and then This is a method of injecting molten matrix metal into a mold and directly pressurizing the injected molten metal with a piston or the like to impregnate the interior space of the preform with the molten metal to form a composite.

(発明が解決しようとする課題) しかしながら上記粉末冶金法においては、原材料混合プ
ロセス、焼結設備、ホットプレス設備、真空機器や不活
性ガス設備等が必要であり、溶浸法と比較して設備およ
び製造工程が複雑で生産性が低く、複合材料の製造コス
トが高騰化するなどの問題点がある。
(Problem to be solved by the invention) However, the powder metallurgy method described above requires a raw material mixing process, sintering equipment, hot press equipment, vacuum equipment, inert gas equipment, etc. Also, there are problems such as the manufacturing process is complicated, productivity is low, and the manufacturing cost of composite materials is rising.

また従来のコンポキャスティング法および溶浸法におい
ては、低融点金属をマトリックス金属中に均一に分散す
ることが困難であり、均一な特性を有する金属基複合材
料を得ることは困難であった。すなわち潤滑成分として
含有されるSn。
Furthermore, in the conventional compocasting method and infiltration method, it is difficult to uniformly disperse a low melting point metal in a matrix metal, and it is difficult to obtain a metal matrix composite material having uniform properties. That is, Sn is contained as a lubricating component.

Pb、In、Biなどの低融点金属は、マトリックス金
属となる軒昂なAnやMOおよびその合金と比較して比
重が大きいため、マトリックス金属を高温度で溶解する
工程を含む従来の溶浸法やコンポキャスティング法では
、低融点金属が比重差によって重力偏析を起こし金型底
部に沈積してしまう欠点がある。
Low-melting point metals such as Pb, In, and Bi have a higher specific gravity than An, MO, and their alloys, which are the matrix metals. The compocasting method has the disadvantage that low melting point metals cause gravitational segregation due to the difference in specific gravity and are deposited at the bottom of the mold.

本発明は上記の問題点を解決するためになされたもので
あり、製造設備が簡素で生産性が高いコシボキャスティ
ング法を使用し、低融点金属をマトリックス金属中に均
一に分散することが可能な金属基複合材料の製造方法を
提供することを目的とする。
The present invention was made to solve the above problems, and uses the Kosibo casting method, which requires simple manufacturing equipment and high productivity, and enables a low melting point metal to be uniformly dispersed in a matrix metal. The purpose of the present invention is to provide a method for manufacturing a metal matrix composite material.

(発明の構成) (11題を解決するための手段) 上記目的を達成するため本発明は、マトリックス金属よ
り低い融点を有する低融点金属を含有し、微細なセラミ
ックス製強化材をマトリックス金属中に分散した金属基
複合材料の製造方法において、低融点金属とマトリック
ス金属とから成る溶湯を急速冷却処理することにより低
融点金属を微細かつ均一に分散させた急冷凝固合金粉末
を調製する一方、マトリックス金属をその固相線湿度以
上に加熱し部分的に溶融せしめて半溶融スラリーを形成
し、上記急冷凝固合金粉末およびセラミックス製強化材
を上記半溶融スラリーに添加し、撹拌混合して複合化す
ることを特徴とする。
(Structure of the Invention) (Means for Solving Problem 11) In order to achieve the above object, the present invention contains a low melting point metal having a melting point lower than that of the matrix metal, and a fine ceramic reinforcing material is inserted into the matrix metal. In a method for manufacturing a dispersed metal matrix composite material, a molten metal consisting of a low melting point metal and a matrix metal is rapidly cooled to prepare a rapidly solidified alloy powder in which the low melting point metal is finely and uniformly dispersed. is heated above its solidus humidity to partially melt it to form a semi-molten slurry, and the rapidly solidified alloy powder and ceramic reinforcing material are added to the semi-molten slurry and mixed by stirring to form a composite. It is characterized by

(作用) 上記構成に係る金属基複合材料の製造方法によれば、r
rJWI作用を有する低融点金属は、予め急速冷却処理
によって調製された急冷凝固合金粉末中に微細にかつ均
一に分散した状態で保持される。
(Function) According to the method for manufacturing a metal matrix composite material having the above configuration, r
The low melting point metal having the rJWI effect is maintained in a finely and uniformly dispersed state in the rapidly solidified alloy powder prepared in advance by rapid cooling treatment.

そして上記急冷凝固合金粉末を、マトリックス金属の固
相II温度以上の′ts瀉度に加熱された半溶融スラリ
ー中に添加した場合においても、急冷凝固合金粉末中の
低融点金属粒子は溶解するが、その周囲の粒子を構成す
るマトリックス金属は溶解らないため、低融点金属相互
の凝集は発生りず急冷凝固したままの分散状態が保持さ
れる。
Even when the above-mentioned rapidly solidified alloy powder is added to a semi-molten slurry heated to a temperature higher than the solid phase II temperature of the matrix metal, the low melting point metal particles in the rapidly solidified alloy powder are dissolved. Since the matrix metal constituting the surrounding particles does not dissolve, the low melting point metals do not aggregate with each other, and the rapidly solidified dispersed state is maintained.

また急冷凝固合金粉末は、比重が大ぎい低融点金属を含
有するため、その比重が増大する。しかし半溶融スラリ
ー中に存在する7トリツクス金属の初晶粒子によって機
械的に捕捉される結果、沈降および凝集が防止され゛、
マトリックス金属中に均一に分散する状態が維持される
Moreover, since the rapidly solidified alloy powder contains a low melting point metal with a large specific gravity, its specific gravity increases. However, as a result of being mechanically trapped by the primary crystal particles of the 7-trix metal present in the semi-molten slurry, sedimentation and aggregation are prevented.
A state of uniform dispersion in the matrix metal is maintained.

一方添加されたセラミックス製強化材についても同様に
、半溶融スラリー中の初晶粒子による捕捉作用により、
浮上、沈降および凝集が防止されるとともに、添加後の
混合時間の増加に伴い、強化材と液相との結合反応が促
進され、濡れ性の悪い強化材であってもマトリックス金
属との結合力が高まり強固な7トリツクスを形成する。
On the other hand, regarding the added ceramic reinforcement, due to the trapping effect of the primary crystal particles in the semi-molten slurry,
In addition to preventing flotation, sedimentation, and agglomeration, increasing the mixing time after addition promotes the bonding reaction between the reinforcement and the liquid phase, increasing the bonding strength with the matrix metal even for reinforcements with poor wettability. increases and forms a strong 7 Tricks.

従って、低融点金属および強化材が均一に分散した均質
な金属基複合材料を提供することができる。
Therefore, it is possible to provide a homogeneous metal matrix composite material in which the low melting point metal and reinforcing material are uniformly dispersed.

(実施例) 次に本発明の一実施例について添付図面を参照してより
具体的に説明する。
(Example) Next, an example of the present invention will be described in more detail with reference to the accompanying drawings.

まずアルミニウム(Al)と鉛(Pb)との混合物を加
熱溶融して溶湯を調製し、アトマイズ法によって、急速
冷却処理を行い、平均粒径が100μmで、pbを30
重石%含有する急冷凝固合金粉末を得た。急冷凝固合金
粉末中には平均粒径が5μmのpb粉粒子均一に分散さ
れていた。
First, a mixture of aluminum (Al) and lead (Pb) is heated and melted to prepare a molten metal, which is then rapidly cooled by the atomization method, with an average particle size of 100 μm and a Pb concentration of 30 μm.
A rapidly solidified alloy powder containing % of weight was obtained. PB powder particles having an average particle size of 5 μm were uniformly dispersed in the rapidly solidified alloy powder.

次に81を6重量%およびMgを1.5重量%含有する
アルミニウム基合金を、その同相ね温度をわずかに超え
る585℃に加熱して溶解せしめ、半溶融スラリーを製
造した。
Next, an aluminum-based alloy containing 6% by weight of 81 and 1.5% by weight of Mg was melted by heating to 585° C., which slightly exceeds its in-phase temperature, to produce a semi-molten slurry.

次に強化材として、平均粒径20μmのSiC粒子を体
積含有率が15%となるように撹拌しながら上記半溶融
スラリー中に添加し、均一に分散せしめた。さらに上記
半溶融スラリーに対して、pb粉子を含有する上記急冷
凝固合金粉末を15重量%まで徐々に添加して撹拌し、
複合化した優に、鋳型内で急冷凝固させて角棒状の金属
基複合材料を鋳造した。
Next, as a reinforcing material, SiC particles having an average particle diameter of 20 μm were added to the semi-molten slurry with stirring so that the volume content was 15% and uniformly dispersed. Further, the rapidly solidified alloy powder containing PB powder is gradually added to the semi-molten slurry up to 15% by weight and stirred,
The composite material was rapidly solidified in a mold to cast a rectangular bar-shaped metal matrix composite material.

得られた金属基複合材料の底部付近より検鏡試料を採取
し、電解研磨後、走査電子顕微鏡で観察し、強化材とし
てのSiC粒子および低融点金属としてのpb粉粒子分
散状態を確認したところ、第1図に示す結果が得られた
A microscopic sample was taken from near the bottom of the obtained metal matrix composite material, and after electrolytic polishing, it was observed with a scanning electron microscope to confirm the dispersion state of SiC particles as a reinforcing material and PB powder particles as a low melting point metal. , the results shown in FIG. 1 were obtained.

すなわち、An−6重置%5i−1.5重量%Mgの組
成を有するマトリックス金属1中にSiC粒子2および
急冷凝固合金粉末3が相互に隔離された状態で均一に分
散されており、また上記急冷凝固合金粉末3中には微小
なpb粒子4が均一に分散されており、全体として均質
な金属基複合材料が得られた。
That is, the SiC particles 2 and the rapidly solidified alloy powder 3 are uniformly dispersed in a mutually isolated state in the matrix metal 1 having a composition of An-6 superimposed %5i-1.5% by weight Mg, and Fine PB particles 4 were uniformly dispersed in the rapidly solidified alloy powder 3, and an overall homogeneous metal matrix composite material was obtained.

一方比較例として、上記実施例と同一条件でSiC粒子
を体積含有率15%の割合で均一に分aLりAj −6
ffiffi%S i −1、5tlJI!i%MQt
fiら成る半溶融スラリー中に、Pbを単体として4重
け%まで徐々に添加し、複合化した後に鋳型にてvI選
し、金属基複合材料を形成した。
On the other hand, as a comparative example, SiC particles were uniformly distributed at a volume content of 15% under the same conditions as in the above example.
ffiffi%S i -1, 5tlJI! i%MQt
Into the semi-molten slurry consisting of fi, Pb was gradually added as a simple substance up to 4% by weight, and after forming a composite, vI was selected in a mold to form a metal matrix composite material.

得られた金属基複合材料を同様に検鏡し表向状態を確認
したところ、第2図に示す結果が得られた。
When the obtained metal matrix composite material was similarly examined under a microscope to confirm the surface state, the results shown in FIG. 2 were obtained.

1なわちSiC粒子2についてはマトリックス金属1巾
に均一に分散させることが可能であるが、Pbを単体で
半溶融スラリー中に添加した場合は、比重差により重力
偏析が起こり、pb粒子4aは鋳型底部に凝集沈降し均
一な分散状態を得ることができなかった。
1, that is, SiC particles 2 can be uniformly dispersed in the width of the matrix metal, but when Pb is added alone to a semi-molten slurry, gravitational segregation occurs due to the difference in specific gravity, and the Pb particles 4a It aggregated and settled at the bottom of the mold, making it impossible to obtain a uniform dispersion state.

上記実施例および比較例から明らかなように、本実施例
方法によれば動力偏析を起こし易い低融点金属を予めマ
トリックス金属の一部となる合金粉末中に微細かつ均一
に分散した状態で固定した後に、コンポキャスティング
法により半溶融スラリー中に添加しているため、複合化
の際にも低融点金属はマトリックス金属中に均一に分散
した状態が保持され、低摩擦特性に優れた均質な金属基
複合材料とすることができる。
As is clear from the above Examples and Comparative Examples, according to the method of this Example, a low melting point metal that is likely to cause dynamic segregation is fixed in advance in a fine and uniformly dispersed state in the alloy powder that becomes a part of the matrix metal. Since it is then added to the semi-molten slurry using the compocasting method, the low melting point metal remains uniformly dispersed in the matrix metal even during composite formation, creating a homogeneous metal base with excellent low friction properties. It can be a composite material.

また生産効率が高く、製造設備が簡素なコンポキャステ
ィング法を使用しているため、金属基複合材料の製造コ
ストが低減される。
Furthermore, since the composite casting method, which has high production efficiency and simple manufacturing equipment, is used, the manufacturing cost of the metal matrix composite material is reduced.

上記実施例および比較例ににおいでは、低融点金属とし
てpbを使用した例で示しているが、他のSn、In、
Biを単体で、または合金化した低融点金属を使用した
場合にも同様な作用効果が得られる。
In the above Examples and Comparative Examples, PB is used as the low melting point metal, but other Sn, In,
Similar effects can be obtained when Bi is used alone or when a low melting point metal is used as an alloy.

またマトリックス金属としてAJ合合金量Mg合金しく
はCu合金を使用した場合においても同様な効果が得ら
れる。
Similar effects can also be obtained when an AJ alloy Mg alloy or a Cu alloy is used as the matrix metal.

さらに強化材としては、複合材料の所要強度に応じて、
Aj203、SiCなどの廿うミックスウイスカ、セラ
ミックス繊緒、セラミックス粒子を単体または28以上
混合して使用した場合にも同様な作用効果を得ることが
できた。
Furthermore, depending on the required strength of the composite material, reinforcing materials such as
Similar effects could be obtained when a mixture of Aj203, SiC, etc., mixed whiskers, ceramic fibers, and ceramic particles were used alone or in a mixture of 28 or more.

特に安価なセラミックス粒子を使用することにより、複
合材料の製造コストを低減することができる。
Particularly by using inexpensive ceramic particles, the manufacturing costs of the composite material can be reduced.

なおマトリックス金属中にMQを0.5〜1゜5重量%
添加することにより、強化材とマトリックス金属とのぬ
れ性を向上させることができる。
Furthermore, MQ is contained in the matrix metal in an amount of 0.5 to 1.5% by weight.
By adding it, the wettability between the reinforcing material and the matrix metal can be improved.

〔発明の効果〕〔Effect of the invention〕

以上説明の通り、本発明に係る金属基複合材料のlI造
方法によれば、動力偏析を起こし易い低融点金属をマト
リックス金属の一部となる急冷凝固合金粉末中に微細か
つ均一に分散した状態で予め固定した後に、半FfJ融
スラリー中に添加している。そのため低融点金属を分散
した急冷凝固合金粉末が、マトリックス金属の初晶粒子
によって機械的に捕捉される結果、低融点金属もマトリ
ックス金属中に均一に分散される。
As explained above, according to the method for producing a metal matrix composite material according to the present invention, a low melting point metal that tends to cause dynamic segregation is finely and uniformly dispersed in the rapidly solidified alloy powder that becomes a part of the matrix metal. After fixing in advance, it is added to the semi-FfJ melt slurry. Therefore, the rapidly solidified alloy powder in which the low melting point metal is dispersed is mechanically captured by the primary crystal particles of the matrix metal, so that the low melting point metal is also uniformly dispersed in the matrix metal.

一方、強化材についても同様に、半溶融スラリー中の初
晶粒子による捕捉作用により、浮上、沈降および凝集が
防止され、マトリックス金属中に均一に分散される。
On the other hand, similarly, the reinforcing material is prevented from flotation, sedimentation, and agglomeration due to the trapping action of the primary crystal particles in the semi-molten slurry, and is uniformly dispersed in the matrix metal.

従ってr66重用を有する低融点金属および耐摩耗強度
を増進する強化材が均一に分散した低rf1wA耐摩耗
特性に優れた均質な金a基複合材料を提供することがで
きる。
Therefore, it is possible to provide a homogeneous gold-alpha-based composite material with excellent low rf1wA wear resistance properties, in which a low melting point metal having a heavy R66 content and a reinforcing material that increases wear resistance strength are uniformly dispersed.

また半溶融スラリー中に強化材などの異種材料を添加す
る、いわゆるコンホキ1?スデイング法を使用している
ため、生産効率が高く、製造1iQ(!Iaも面素であ
り、金a基複合材料の製造コストを低減することができ
る。
Also, what is called Konhoki 1, which adds different materials such as reinforcing materials to the semi-molten slurry? Since the Sding method is used, the production efficiency is high, and the production 1iQ (!Ia is also a plane element, making it possible to reduce the production cost of the gold a-based composite material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法によって得られる金属基複合材料の
表面組織を示す図、第2図は従来法によって得られる金
属基複合材料の表面組織を示す図である。
FIG. 1 is a diagram showing the surface structure of a metal matrix composite material obtained by the method of the present invention, and FIG. 2 is a diagram showing the surface structure of a metal matrix composite material obtained by the conventional method.

Claims (1)

【特許請求の範囲】 1、マトリックス金属より低い融点を有する低融点金属
を含有し、微細なセラミックス製強化材をマトリックス
金属中に分散した金属基複合材料の製造方法において、
低融点金属とマトリックス金属とから成る溶湯を急速冷
却処理することにより低融点金属を微細かつ均一に分散
させた急冷凝固合金粉末を調製する一方、マトリックス
金属をその固相線温度以上に加熱し部分的に溶融せしめ
て半溶融スラリーを形成し、上記急冷凝固合金粉末およ
びセラミックス製強化材を上記半溶融スラリーに添加し
、撹拌混合して複合化することを特徴とする金属基複合
材料の製造方法。 2、低融点金属としてSn、Pb、In、Biから選択
された少くとも1種の金属元素を使用する請求項1記載
の金属基複合材料の製造方法。 3、マトリックス金属としてAl合金、Mg合金および
Cu合金から選択された少くとも1種の合金を使用する
請求項1記載の金属基複合材料の製造方法。 4、強化材としてセラミックスウィスカ、セラミックス
繊維、セラミックス粒子から選択された少くとも1種を
使用する請求項1記載の金属基複合材料の製造方法。
[Claims] 1. A method for producing a metal matrix composite material containing a low melting point metal having a melting point lower than that of the matrix metal, and in which fine ceramic reinforcing materials are dispersed in the matrix metal,
A rapidly solidified alloy powder in which the low melting point metal is finely and uniformly dispersed is prepared by rapidly cooling a molten metal consisting of a low melting point metal and a matrix metal, while the matrix metal is heated to a temperature higher than its solidus temperature. A method for producing a metal matrix composite material, comprising: melting the slurry to form a semi-molten slurry, adding the rapidly solidified alloy powder and ceramic reinforcing material to the semi-molten slurry, and stirring and mixing to form a composite. . 2. The method for producing a metal matrix composite material according to claim 1, wherein at least one metal element selected from Sn, Pb, In, and Bi is used as the low melting point metal. 3. The method for producing a metal matrix composite material according to claim 1, wherein at least one alloy selected from Al alloy, Mg alloy, and Cu alloy is used as the matrix metal. 4. The method for producing a metal matrix composite material according to claim 1, wherein at least one selected from ceramic whiskers, ceramic fibers, and ceramic particles is used as the reinforcing material.
JP1000389A 1989-01-20 1989-01-20 Manufacture of metal matrix composite Pending JPH02194131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1000389A JPH02194131A (en) 1989-01-20 1989-01-20 Manufacture of metal matrix composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1000389A JPH02194131A (en) 1989-01-20 1989-01-20 Manufacture of metal matrix composite

Publications (1)

Publication Number Publication Date
JPH02194131A true JPH02194131A (en) 1990-07-31

Family

ID=11738243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1000389A Pending JPH02194131A (en) 1989-01-20 1989-01-20 Manufacture of metal matrix composite

Country Status (1)

Country Link
JP (1) JPH02194131A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6544636B1 (en) 1999-02-02 2003-04-08 Hiroshima University Ceramic-reinforced metal-based composite material and a method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6544636B1 (en) 1999-02-02 2003-04-08 Hiroshima University Ceramic-reinforced metal-based composite material and a method for producing the same

Similar Documents

Publication Publication Date Title
US4657065A (en) Composite materials having a matrix of magnesium or magnesium alloy reinforced with discontinuous silicon carbide particles
US4662429A (en) Composite material having matrix of aluminum or aluminum alloy with dispersed fibrous or particulate reinforcement
Mehrabian et al. Preparation and casting of metal-particulate non-metal composites
US4753690A (en) Method for producing composite material having an aluminum alloy matrix with a silicon carbide reinforcement
CA2094369C (en) Aluminum-base metal matrix composite
US5143795A (en) High strength, high stiffness rapidly solidified magnesium base metal alloy composites
US5791397A (en) Processes for producing Mg-based composite materials
EP0099195A1 (en) Metal composite friction materials
Dash et al. Studies on synthesis of magnesium based metal matrix composites (MMCs)
US5149496A (en) Method of making high strength, high stiffness, magnesium base metal alloy composites
JP4220598B2 (en) Method for producing metal / ceramic composite material for casting
JPH02194131A (en) Manufacture of metal matrix composite
JP4121733B2 (en) Method for producing graphite-containing aluminum alloy and sliding member
JP2010043297A (en) Method for producing ceramic-particle-reinforced aluminum composite material
US5513688A (en) Method for the production of dispersion strengthened metal matrix composites
JPH029099B2 (en)
JPH11170027A (en) Ingot for metal-ceramic composite and production thereof
JP4167317B2 (en) Method for producing metal / ceramic composite material for casting
US3985557A (en) Method of producing a high strength composite of zircon
US5256183A (en) Process for production of reinforced composite materials and products thereof
JPH01268830A (en) Manufacture of sic dispersion cast composite material
JP3087913B2 (en) Particle-dispersed composite material and method for producing the same
Almadhoni et al. Particle Size Dependence of MnO Reduction for Fabrication of Composite vir Stir Casting
JPH06264170A (en) Aluminum alloy having high strength and wear resistance
JPH05214477A (en) Composite material and its manufacture