JPH0144002B2 - - Google Patents

Info

Publication number
JPH0144002B2
JPH0144002B2 JP12241082A JP12241082A JPH0144002B2 JP H0144002 B2 JPH0144002 B2 JP H0144002B2 JP 12241082 A JP12241082 A JP 12241082A JP 12241082 A JP12241082 A JP 12241082A JP H0144002 B2 JPH0144002 B2 JP H0144002B2
Authority
JP
Japan
Prior art keywords
main
core
winding
gap
secondary winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12241082A
Other languages
Japanese (ja)
Other versions
JPS5913314A (en
Inventor
Katamasa Harumoto
Eiji Kawagoe
Kazutaka Misawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Kansai Denryoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd, Kansai Denryoku KK filed Critical Nissin Electric Co Ltd
Priority to JP12241082A priority Critical patent/JPS5913314A/en
Publication of JPS5913314A publication Critical patent/JPS5913314A/en
Publication of JPH0144002B2 publication Critical patent/JPH0144002B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Description

【発明の詳細な説明】 この発明は三相用可変容量型分路リアクトル装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a three-phase variable capacitance shunt reactor device.

可変容量型分路リアクトルにおいて、ギヤツプ
を有する主鉄心に、電力線路に接続される主巻線
と、両端が選択的に短絡開放される2次巻線とを
巻装し、又前記主巻線と2次巻線との間にギヤツ
プを有する中間鉄心を設けた構成は別途提案され
ているところである。第1図はその構成を示し、
1はギヤツプ2を存する主鉄心で、これに主巻線
3及び2次巻線4を巻装し、又この2次巻線4の
両端に開閉器5を接続する。6は主巻線3と2次
巻線4との間に配置された中間鉄心で、ギヤツプ
7を有し、8はヨーク鉄心で主鉄心1、中間鉄心
6の両端を磁気的に短絡する。
In a variable capacity shunt reactor, a main winding connected to a power line and a secondary winding whose ends are selectively short-circuited and opened are wound around a main iron core having a gap, and the main winding A configuration in which an intermediate core having a gap is provided between the core and the secondary winding has been proposed separately. Figure 1 shows its configuration,
Reference numeral 1 denotes a main iron core having a gap 2, around which a main winding 3 and a secondary winding 4 are wound, and a switch 5 is connected to both ends of the secondary winding 4. 6 is an intermediate core disposed between the main winding 3 and the secondary winding 4, and has a gap 7; 8 is a yoke core that magnetically short-circuits both ends of the main core 1 and the intermediate core 6.

以上の構成において開閉器5を開放した場合は
主巻線3によつて発生する磁束φは主鉄心1及び
中間鉄心6に分流し、これが合流してヨーク鉄心
8を経て還流し、これによつて主鉄心1のギヤツ
プ2による磁気抵抗と中間鉄心6のギヤツプ7に
よる磁気抵抗が並列に存在する磁気抵抗に相当す
る磁化アンペアターンを与える電流が主巻線3に
流れる。又開閉器5を閉成した場合は前記主磁束
は主鉄心1を通らず、すべて中間鉄心6を通るよ
うになり、このギヤツプ7による磁気抵抗に相当
する磁化アンペアターンを与える電流が主巻線3
に流れる。したがつて前記主鉄心1による並列磁
気抵抗が除かれるため主磁束φの磁路の磁気抵抗
が増し、開閉器5の開路により主巻線3に流れる
電流との積で表わされるリアクトル容量が増加す
ることになる。
In the above configuration, when the switch 5 is opened, the magnetic flux φ generated by the main winding 3 is divided into the main iron core 1 and the intermediate iron core 6, which join together and return through the yoke iron core 8. A current flows through the main winding 3 to provide a magnetizing ampere turn corresponding to the magnetic resistance in which the magnetic resistance due to the gap 2 of the main core 1 and the magnetic resistance due to the gap 7 of the intermediate core 6 exist in parallel. When the switch 5 is closed, the main magnetic flux does not pass through the main iron core 1, but all passes through the intermediate iron core 6, and the current that gives the magnetization ampere turns corresponding to the magnetic resistance due to the gap 7 flows through the main winding. 3
flows to Therefore, since the parallel magnetic resistance caused by the main iron core 1 is removed, the magnetic resistance of the magnetic path of the main magnetic flux φ increases, and when the switch 5 is opened, the reactor capacity, which is expressed as the product of the current flowing through the main winding 3, increases. I will do it.

ところでこのような構成を三相線路に使用する
ときは、上記構成の分路リアクトルを3台用意し
これを並設すればよいのであるが、主巻線3の外
側にヨーク鉄心8が突出されるので、3台並置し
た場合にはその全体の構成が大型化し、又スペー
スも広くなるといつた欠点がある。
By the way, when such a configuration is used for a three-phase line, it is sufficient to prepare three shunt reactors with the above configuration and install them in parallel, but the yoke core 8 protrudes outside the main winding 3. Therefore, when three devices are arranged side by side, the overall structure becomes large and the space becomes large, which is a drawback.

この発明は可変容量型の三相用分路リアクトル
装置の小型化を図ることを目的とする。
The object of the present invention is to reduce the size of a variable capacity three-phase shunt reactor device.

この発明の実施例を第2図によつて説明する。
A〜Cは第1図の構成と原理的には同じの分路リ
アクトルを示し、それぞれ主鉄心1A〜1C、中
間鉄心6A〜6C、主巻線3A〜3C及び2次巻
線4A〜4Cを備え、主鉄心1A〜1Cのそれぞ
れに主巻線3A〜3C、2次巻線4A〜4Cのそ
れぞれを巻装する。各主巻線3A〜3Cと2次巻
線4A〜4Cとの間にそれぞれ中間鉄心6A〜6
Cのそれぞれが配置される。
An embodiment of this invention will be explained with reference to FIG.
A to C indicate shunt reactors that are basically the same in configuration as the one shown in FIG. The main windings 3A to 3C and the secondary windings 4A to 4C are wound around the main cores 1A to 1C, respectively. Between each main winding 3A to 3C and the secondary winding 4A to 4C, intermediate iron cores 6A to 6 are provided.
C are arranged.

これらの構成は第1図の構成と大差はないが、
第1図の構成ではヨーク鉄心8を主巻線3の外周
側に延長して配置するのに対し、第2図の実施例
では各主鉄心1A〜1Cの上端間及下端間をヨー
ク鉄心10で連結し、及び中間鉄心8A〜8Cの
上端間及び下端間を同じようにヨーク鉄心11で
連結する。
These configurations are not much different from the configuration in Figure 1, but
In the configuration shown in FIG. 1, the yoke core 8 is arranged extending to the outer circumferential side of the main winding 3, whereas in the embodiment shown in FIG. The upper ends and lower ends of the intermediate cores 8A to 8C are similarly connected by a yoke core 11.

このように構成した場合、開閉器(これは各2
次巻線の両端に接続されてある。ただし各2次巻
線につきひとつの開閉器を共用するようにしても
よい。)を開放した状態では、前述のように各主
鉄心1A〜1C及び中間鉄心6A〜6Cに主磁束
が分流して発生するが、三相線路ではこの主鉄心
1A〜1Cが中間鉄心6A〜6Cを分流する主磁
束のベクトル和はそれぞれ零であるから図のよう
にヨーク鉄心10で主鉄心1A〜1Cの両端を磁
気的に結合しておけば、各主鉄心及び中間鉄心に
は所定の主磁束に分成されるような分流磁束が発
生して還流するとともにそれらのベクトル和は零
となる。
When configured in this way, the switch
It is connected to both ends of the next winding. However, one switch may be shared for each secondary winding. ) is open, the main magnetic flux is divided into the main cores 1A to 1C and the intermediate cores 6A to 6C as described above, but in a three-phase line, the main cores 1A to 1C are divided into the intermediate cores 6A to 6C. Since the vector sum of the main magnetic flux that divides each of A shunt magnetic flux that is divided into magnetic fluxes is generated and circulated, and their vector sum becomes zero.

同じように開閉器を閉成して各2次巻線を短絡
した場合は各中間鉄心に磁束が発生するが、ヨー
ク鉄心11で連結されているので、各中間鉄心の
磁束は還流し、かつそのベクトル和は零である。
すなわち開閉器が開放、閉成の如何を問わず、各
鉄心に発生する磁束は第1図に示すようなヨーク
鉄心8で各鉄心を磁気的に短絡しなくとも、還流
するようになる。そしてヨーク鉄心8を使用しな
いですむことにより、主巻線の外側に延長する鉄
心がなくそれだけ小型に製作でき、かつ軽量化も
可能となり、設置スペースの縮少も図ることがで
きる。
Similarly, if the switch is closed and each secondary winding is short-circuited, magnetic flux will be generated in each intermediate core, but since they are connected by the yoke core 11, the magnetic flux of each intermediate core will return and The vector sum is zero.
That is, regardless of whether the switch is open or closed, the magnetic flux generated in each core will circulate without magnetically short-circuiting each core with the yoke core 8 as shown in FIG. By not using the yoke core 8, there is no core extending to the outside of the main winding, so the device can be made smaller and lighter, and the installation space can be reduced.

以上の実施例は主巻線を2次巻線の外側に配置
した構成としているが、これとは逆に第4図に示
すように2次巻線4A〜4Cを主巻線3A〜3C
の外側に配置するようにしてもよい。
The above embodiment has a structure in which the main winding is arranged outside the secondary winding, but on the contrary, as shown in FIG.
It may also be placed outside the .

以上詳述したようにこの発明は可変容量型分路
リアクトルの3台をもつて三相用とする場合に、
その構成の小型化、軽量化が可能となり、かつ設
置スペースの縮少化が期待できるといつた効果を
奏する。
As explained in detail above, this invention is applicable when three variable capacity shunt reactors are used for three-phase operation.
The structure can be made smaller and lighter, and the installation space can be expected to be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の原理的な構成を示す断面
図、第2図はこの発明の実施例を示す平面図、第
3図は同断面図、第4図はこの発明の別の実施例
を示す平面図、第5図は同断面図である。 1A〜1C……主鉄心、2……ギヤツプ、3A
〜3C……主巻線、4A〜4C……2次巻線、5
……開閉器、6A〜6C……中間鉄心、7……ギ
ヤツプ、10,11……ヨーク鉄心。
FIG. 1 is a cross-sectional view showing the basic configuration of this invention, FIG. 2 is a plan view showing an embodiment of this invention, FIG. 3 is a sectional view of the same, and FIG. 4 is a diagram showing another embodiment of this invention. The plan view shown in FIG. 5 is a sectional view of the same. 1A to 1C... Main iron core, 2... Gap, 3A
~3C...Main winding, 4A~4C...Secondary winding, 5
...Switch, 6A to 6C... Intermediate core, 7... Gap, 10, 11... Yoke core.

Claims (1)

【特許請求の範囲】[Claims] 1 ギヤツプを有する主鉄心に、主巻線と、選択
的に短絡開放される2次巻線とを巻装するととも
に、前記主巻線と2次巻線との間にギヤツプを有
する中間鉄心を配置してなる可変容量型の分路リ
アクトルの3台を並置し、前記分路リアクトルの
主巻線を三相線路のそれぞれに接続せしめるとと
もに、前記各主鉄心の上端及び下端をヨーク鉄心
で連結し、及び前記各中間鉄心の上端及び下端を
ヨーク鉄心で連結してなる三相用可変容量型分路
リアクトル装置。
1. A main winding and a secondary winding that is selectively short-circuited and opened are wound around a main core having a gap, and an intermediate core having a gap is provided between the main winding and the secondary winding. three variable capacity shunt reactors arranged in parallel, the main windings of the shunt reactors are connected to each of the three-phase lines, and the upper and lower ends of each of the main cores are connected by a yoke core. and a three-phase variable capacitance shunt reactor device in which the upper and lower ends of each of the intermediate cores are connected by a yoke core.
JP12241082A 1982-07-13 1982-07-13 Three-phase shunt reactor device of variable capacitance type Granted JPS5913314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12241082A JPS5913314A (en) 1982-07-13 1982-07-13 Three-phase shunt reactor device of variable capacitance type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12241082A JPS5913314A (en) 1982-07-13 1982-07-13 Three-phase shunt reactor device of variable capacitance type

Publications (2)

Publication Number Publication Date
JPS5913314A JPS5913314A (en) 1984-01-24
JPH0144002B2 true JPH0144002B2 (en) 1989-09-25

Family

ID=14835111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12241082A Granted JPS5913314A (en) 1982-07-13 1982-07-13 Three-phase shunt reactor device of variable capacitance type

Country Status (1)

Country Link
JP (1) JPS5913314A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60160604A (en) * 1984-01-31 1985-08-22 Nissin Electric Co Ltd Shunt reactor
JP2762588B2 (en) * 1989-07-20 1998-06-04 株式会社デンソー Fuel injection timing adjustment device

Also Published As

Publication number Publication date
JPS5913314A (en) 1984-01-24

Similar Documents

Publication Publication Date Title
EP0557378B1 (en) A power supply circuit with integrated magnetic components
JPH0691335B2 (en) Shield of electromagnetic equipment
JPH0144002B2 (en)
JP2001068359A5 (en)
US2342084A (en) Transformer tap-changing circuit
JP4532034B2 (en) Zero phase current transformer
JPS645448B2 (en)
JPH023283B2 (en)
JP3663249B2 (en) Neutral point grounding reactor device
US4626815A (en) Polyphase assembly
RU2047262C1 (en) Single-phase-to-three-phase voltage changer
JPH0635457Y2 (en) Common mode choke coil
JPS6228736Y2 (en)
JPS61170010A (en) Transformer iron core
SU525192A1 (en) Device for differential directional protection of parallel lines
JPS5930453Y2 (en) Multidirectional magnetization device for magnetic flaw detection
JP2540696Y2 (en) Constant voltage transformer
JPH02206359A (en) Noise filter
JPS60134737A (en) Magnetic flux controller
JPS6013287B2 (en) split winding transformer
JPS57197816A (en) Shunt reactor
JPH0572086B2 (en)
JPS5915484B2 (en) three phase transformer
JPS60133710A (en) Super conductive winding
JPS5936915A (en) Split-type transformer