JPS5913314A - Three-phase shunt reactor device of variable capacitance type - Google Patents

Three-phase shunt reactor device of variable capacitance type

Info

Publication number
JPS5913314A
JPS5913314A JP12241082A JP12241082A JPS5913314A JP S5913314 A JPS5913314 A JP S5913314A JP 12241082 A JP12241082 A JP 12241082A JP 12241082 A JP12241082 A JP 12241082A JP S5913314 A JPS5913314 A JP S5913314A
Authority
JP
Japan
Prior art keywords
main
core
cores
flux
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12241082A
Other languages
Japanese (ja)
Other versions
JPH0144002B2 (en
Inventor
Katamasa Harumoto
春本 容正
Eiji Kawagoe
川越 英二
Kazuhiro Misawa
一敞 三沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Nissin Electric Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Nissin Electric Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP12241082A priority Critical patent/JPS5913314A/en
Publication of JPS5913314A publication Critical patent/JPS5913314A/en
Publication of JPH0144002B2 publication Critical patent/JPH0144002B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To realize a miniaturization of the titled device, by a method wherein three shunt reactors of variable capacitance type are arranged in parallel, each reactor comprising an intermediate core with a gap disposed between a main winding and a secondary winding, and the main windings are connected to three-phase lines respectively. CONSTITUTION:If switches are opened, main flux is generated in distribution in main cores 1A-1C and intermediate cores 6A-6C. In three-phase lines, vector sum of main flux distributed in the main cores 1A-1C and intermediate cores 6A-6C becomes zero. Both ends of the main cores 1A-1C are magnetically connected by a yoke core 10, thereby each main core and intermediate core have partial flux circulating therein so as to constitute prescribed main flux and vector sum of the partial flux becomes zero. If the switches are closed and secondary windings are shortcircuited, flux is produced in intermediate cores. Since the intermediate cores are connected by a yoke core 11, flux in each intermediate core is circulated and vector sum thereof is zero. Irrespective of whether the switches are opened or closed, flux produced in each core is circulated even if the core is not magnetically shortcircuited by a yoke core 8. Since the yoke core 8 needs not be used, the device is produced in light weight.

Description

【発明の詳細な説明】 この発明は三相用可変容量型分路リアクトル装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a three-phase variable capacity shunt reactor device.

可変容量型分路リアクトルにおいて、ギャップを有する
主鉄心に、電力線路に接続される主巻線と、両端が選択
的に短絡開放される2次巻線とを巻装し、又前記主巻線
と2次巻線との間にギャップを有する中間鉄心を設けた
構成は別過提案されているところである0第1図はその
構成を示し、1Fiギヤツプ2を存する主鉄心で、これ
に主巻締3及び2次巻@4を巻装し、又この2次巻@4
0両端に開閉器5を接続する。6は主巻線5と2次巻@
4との間に配置された中間鉄心で、ギャップ7を有し、
8Fiヨーク鉄心で主鉄心1.中間鉄心60両端を磁気
的に短絡すゐ。
In a variable capacity shunt reactor, a main winding connected to a power line and a secondary winding whose ends are selectively shorted and opened are wound around a main iron core having a gap, and the main winding A configuration in which an intermediate core is provided with a gap between the main winding and the secondary winding has been proposed separately. Figure 1 shows this configuration. Wrap the tightening 3 and secondary volume @ 4, and also this secondary volume @ 4
0. Connect the switch 5 to both ends. 6 is the main winding 5 and the secondary winding @
4, having a gap 7,
Main iron core 1. with 8Fi yoke iron core. Both ends of the intermediate core 60 are magnetically shorted.

以上の構成において開閉器5を開放した場合は主巻線3
によって発生する磁束φは主鉄心1及び中間鉄心6に分
流し、仁れが合流して璽−り鉄心8を経て還流し、これ
によって主鉄心1のギャップ2による磁気抵抗と中間鉄
心6のギャップ7による磁気抵抗が並列に存在する磁気
抵抗に相当する磁化アンペアターンを与える電流が主巻
@5J/C流れる。又開閉器5を閉成した場合は前記主
磁束は主鉄心1を通らず、すべて中間鉄心6を通るよう
にカリ、このギャップ7による磁気抵抗に相当する磁化
アンペアターンを与える電流が主巻13に流れる。し九
がって前記主鉄心1による並列磁気抵抗が除かれる九め
主磁束すの磁路の磁気抵抗が増し、開閉器5の開路によ
抄主IM3に流れる電流との積で表わされるリアクトル
存置が増加するしとKなる。
In the above configuration, when the switch 5 is opened, the main winding 3
The magnetic flux φ generated by A current flows through the main winding @5J/C, giving a magnetizing ampere-turn corresponding to the magnetoresistance with a magnetoresistance of 7 in parallel. When the switch 5 is closed, the main magnetic flux does not pass through the main core 1, but entirely through the intermediate core 6, and the current that gives the magnetization ampere turns corresponding to the magnetic resistance due to this gap 7 flows through the main winding 13. flows to As a result, the parallel magnetic resistance due to the main iron core 1 is removed, and the magnetic resistance of the magnetic path of the main magnetic flux increases, resulting in a reactor represented by the product of the current flowing through the main IM 3 when the switch 5 is opened. As the number increases, it becomes K.

ところでこのようカ構成を三相線路に使用すると自・は
、上記構成の分路リアクトルを3台用意しこれを並設す
ればよいのであるが、主巻413の外側に目−り鉄心8
が空出されるので、3台並置した場合にはその全体の構
成が大型化し、又スペースも広くなるといった欠点があ
る。
By the way, if such a power configuration is used for a three-phase line, all that is required is to prepare three shunt reactors with the above configuration and install them in parallel.
Since these devices are empty, if three devices are arranged side by side, the overall structure becomes large and the space is also large.

このi明は可変容量型の三相用分路リアクトル、1− 装置の白州化を図ることを目的とする。This item is a variable capacity type three-phase shunt reactor, 1- The purpose is to standardize the equipment.

この発明の1!施例を第2図によって説明する。Part 1 of this invention! An example will be explained with reference to FIG.

A w CFi第1図の構成と原理的には同じの分路リ
アクトルを示し、それぞれ主鉄心1A〜1C,中間鉄心
6A〜6C9主#f線3A〜3C及び2次巻線4A〜4
Cを備え、主鉄心11〜1Cのそれぞれに主巻線31〜
3C12次を線4A〜4Cのそれぞれを巻装する。
A w CFi shows a shunt reactor that is basically the same in configuration as that shown in FIG.
C, and each of the main cores 11 to 1C has main windings 31 to 1C.
Wrap each of the wires 4A to 4C with the 3C12 wire.

各主巻@3A〜3Cと2次巻線4A〜4Cとの間にそれ
ぞれ中間鉄心6A〜6Cのそれぞれが配置されるO これらの構成は第1図の構成と大差はないが、第1図の
構成で祉ヨーク鉄心8を主巻線゛3の外周側に延長して
配置するのに対し、第2図の1!鉤例では各主鉄心1A
〜1Cの上端間及下端間を冒−り鉄心10で連結し、及
び中間鉄心8A〜BcO上端間及び下端間を同じように
璽−り鉄心11 で連結する。
Intermediate cores 6A to 6C are arranged between each main winding 3A to 3C and each secondary winding 4A to 4C. These configurations are not much different from the configuration shown in FIG. In the configuration shown in Figure 2, the safety yoke core 8 is extended to the outer periphery of the main winding 3, whereas in the configuration 1! In the hook example, each main core is 1A
The upper ends and lower ends of the intermediate cores 8A to 1C are connected by a twisted iron core 10, and the upper ends and lower ends of the intermediate iron cores 8A to BcO are similarly connected by a twisted iron core 11.

このように構成した場合、開閉器(これは各2次巻線の
両端に接続されである。ただし各2次巻線につきひとつ
の開閉器を共用するようにしてもよい、)を開放した状
態では、前述のように各主鉄心1A〜1C及び中間鉄心
6A〜60に主磁束が分流して発生するが、三相線路で
はこの主鉄心1A〜1Cが中間鉄心6A〜6Cを分流す
る主磁束のベクトル和はそれぞれ零でbるかも図のよう
に璽−り鉄心10で主鉄心1A〜1COPii端を磁気
的に結合しておけば、各主鉄心及び中間鉄心には所定の
主磁束に発成されるような分流磁束が発生して還流する
とともkそれらのベクトル和は零となる。
When configured in this way, the switch (which is connected to both ends of each secondary winding; however, one switch may be shared for each secondary winding) is in an open state. As mentioned above, the main magnetic flux is generated by branching to each main core 1A to 1C and intermediate cores 6A to 60, but in a three-phase line, the main magnetic flux is generated by main cores 1A to 1C branching to intermediate cores 6A to 6C. The vector sum of each is zero and b.If the ends of the main cores 1A to 1COPii are magnetically coupled with the coiled core 10 as shown in the figure, each main core and intermediate core will have a predetermined main magnetic flux. When a shunt magnetic flux is generated and circulated, the vector sum of these fluxes becomes zero.

同じように開閉器を閉成して各2次巻l5t−短絡した
場合は各中間鉄心に磁束が発生するが、冒−り鉄心11
で連結されていゐので、各中間鉄心の磁束は還流し、か
つそのペク)/l・和は零である。すなわち開閉器が開
放、閉成の如何を問わず、各鉄心に発生する磁束は81
図に示すような曹−り鉄心8で各鉄心を磁気的に短絡し
なくとも、還流するよう((なる、セして冒−り鉄心8
を使用しfkいですむことによシ、主4I@の外側に延
長する鉄心がなくそれだけ小型に製作でき、かつ軽量化
も可能となシ、設置スペースの縮少も図ることができる
0 以上の実施例は主巻線を2次巻線の外側に配置@した構
成としているが、これとは逆に第4図に示すように2次
巻線4A〜4Cを主巻@3A〜3Cの外側に配置するよ
うKしてもよい。
Similarly, when the switch is closed and each secondary winding 15t is short-circuited, magnetic flux is generated in each intermediate core, but
Therefore, the magnetic flux of each intermediate core circulates, and its sum is zero. In other words, regardless of whether the switch is open or closed, the magnetic flux generated in each core is 81
As shown in the figure, even if each core is not magnetically short-circuited with the core 8, reflux can be achieved.
By using fk, there is no iron core extending outside the main 4I@, so it can be made smaller and lighter, and the installation space can be reduced. The embodiment has a structure in which the main winding is placed outside the secondary winding, but on the contrary, as shown in FIG. K may be placed outside.

以上詳述したように仁の発明は可変存置型分路リアクト
ルの5台をもって三相用とする場合K。
As detailed above, Jin's invention is suitable for three-phase use with five variable placement type shunt reactors.

そO構成の小型化、軽量化が可能となり、かつ設備スペ
ースの縮費化が期待できるといった効果を奏する。
It is possible to make the O configuration smaller and lighter, and it is possible to expect a reduction in equipment space costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の原理的な構成を示す断面図、第2図
はこの発明の実施例を示す平面図、tSS図は同断面図
、第4図はこの発明の別の実施例を示す平面図、第5図
は同断面図である。 1A〜1c 、、、、主鉄心、2 、、、、ギャップ、
5A〜5C008,主巻線、 4A〜4C、、、、2次
巻線、5 、、、、開閉器、6A〜6c 、、、、中間
鉄心17・・・・ギャップ−10、11、、、、!−り
鉄心 特許出願人 関西電力株式会社 他1名 代理人 中沢謹之助
FIG. 1 is a cross-sectional view showing the basic configuration of this invention, FIG. 2 is a plan view showing an embodiment of this invention, tSS diagram is a cross-sectional view of the same, and FIG. 4 is another embodiment of this invention. The plan view and FIG. 5 are the same sectional views. 1A to 1c, Main core, 2, Gap,
5A to 5C008, Main winding, 4A to 4C, Secondary winding, 5, Switch, 6A to 6c, Intermediate core 17... Gap -10, 11,... ,! - Iron core patent applicant Kansai Electric Power Co., Ltd. and one other agent Kinnosuke Nakazawa

Claims (1)

【特許請求の範囲】 ギャップを有する主鉄心に、主巻線と、選択的に短絡開
放される2次巻線とを巻装するとともK。 前記主巻線と2次巻線との間にギャップを有する中間鉄
心を配置してなる可変容量型の分路リアクトルの3台を
並置し、前記分路リアクトルの主巻線を三相線路のそれ
ぞれに接続せしめるとともに、前記各主鉄心の上端及び
下端をヨーク鉄心で連結し、及び前記各中間鉄心・の上
端及び下端をヨーク鉄心で連結してなる三相用可変容l
型分路リアクトル装置
[Claims] A main winding and a secondary winding that is selectively short-circuited and opened are wound around a main core having a gap. Three variable capacitance type shunt reactors each having an intermediate core with a gap between the main winding and the secondary winding are arranged side by side, and the main winding of the shunt reactor is connected to the three-phase line. a three-phase variable capacity l formed by connecting the upper and lower ends of each of the main iron cores with a yoke iron core, and connecting the upper and lower ends of each of the intermediate iron cores with a yoke iron core;
type shunt reactor device
JP12241082A 1982-07-13 1982-07-13 Three-phase shunt reactor device of variable capacitance type Granted JPS5913314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12241082A JPS5913314A (en) 1982-07-13 1982-07-13 Three-phase shunt reactor device of variable capacitance type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12241082A JPS5913314A (en) 1982-07-13 1982-07-13 Three-phase shunt reactor device of variable capacitance type

Publications (2)

Publication Number Publication Date
JPS5913314A true JPS5913314A (en) 1984-01-24
JPH0144002B2 JPH0144002B2 (en) 1989-09-25

Family

ID=14835111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12241082A Granted JPS5913314A (en) 1982-07-13 1982-07-13 Three-phase shunt reactor device of variable capacitance type

Country Status (1)

Country Link
JP (1) JPS5913314A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60160604A (en) * 1984-01-31 1985-08-22 Nissin Electric Co Ltd Shunt reactor
JPH0354330A (en) * 1989-07-20 1991-03-08 Nippondenso Co Ltd Adjusting device for fuel injection timing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60160604A (en) * 1984-01-31 1985-08-22 Nissin Electric Co Ltd Shunt reactor
JPH0367330B2 (en) * 1984-01-31 1991-10-22 Nissin Electric Co Ltd
JPH0354330A (en) * 1989-07-20 1991-03-08 Nippondenso Co Ltd Adjusting device for fuel injection timing

Also Published As

Publication number Publication date
JPH0144002B2 (en) 1989-09-25

Similar Documents

Publication Publication Date Title
US4916425A (en) Electromagnetic device
CA1303155C (en) Electromagnetic shield for electromagnetic apparatus
JPS5913314A (en) Three-phase shunt reactor device of variable capacitance type
US3023386A (en) Winding for electrical apparatus
JP2001068359A5 (en)
JP2737876B2 (en) Reactor
JP4532034B2 (en) Zero phase current transformer
US4533892A (en) Split structure type transformer
US3465272A (en) Internal bus connection for highcurrent ring - connected transformers and the like
JP4912563B2 (en) Split track type zero phase current transformer
US3173112A (en) Three-phase reactor
JP6717874B2 (en) Polyphase transformers and polyphase transformer assemblies
JPS5821309A (en) On-load tap-changing transformer
US4638177A (en) Rotating flux transformer
JP3327460B2 (en) Current transformer
JP2723322B2 (en) Transformer for cyclo converter
JPH08335520A (en) Scott connected transformer
JPH023283B2 (en)
JP3280609B2 (en) Current limiting device to limit fault current
Hoshino et al. Electromagnetic Properties of Large-Capacity SuperconductingCables for a 1000 kVA-Class Power Transformer
JPH05258956A (en) Inductor
JPH0231879Y2 (en)
JPH02142106A (en) Parallel coil for electromagnetic induction equipment
WO2018055664A1 (en) Three-phase through-type current transformer
JPH09320862A (en) Core-type single-phase transformer