JPS60160604A - Shunt reactor - Google Patents

Shunt reactor

Info

Publication number
JPS60160604A
JPS60160604A JP59016275A JP1627584A JPS60160604A JP S60160604 A JPS60160604 A JP S60160604A JP 59016275 A JP59016275 A JP 59016275A JP 1627584 A JP1627584 A JP 1627584A JP S60160604 A JPS60160604 A JP S60160604A
Authority
JP
Japan
Prior art keywords
power
shunt reactor
distribution
substation
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59016275A
Other languages
Japanese (ja)
Other versions
JPH0367330B2 (en
Inventor
Kaneyoshi Murotani
室谷 金義
Kazutaka Misawa
一敞 三沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP59016275A priority Critical patent/JPS60160604A/en
Publication of JPS60160604A publication Critical patent/JPS60160604A/en
Publication of JPH0367330B2 publication Critical patent/JPH0367330B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To easily install a shunt reactor in the side of substation for power distribution through alleviation of power transmission loss and without increase of installation space by providing a main winding and a secondary winding for power transformation having a winding ratio corresponding to a distribution voltage for such main winding. CONSTITUTION:The titled 3-phase shunt reactor provides the main windings 16a-16c to an iron core leg 15 having a gap 14 of iron core 13, further adds the secondary windings 17a-17c for distribution voltage and sets the winding ratio in order to drop the voltage to 3.3-22kV from 66-154kV. A reactive power is reduced by setting the phase delay component of shunt reactor TrR corresponding to the phase lead component of a power capacitor 9 and it can be replaced with a transformer at the power substation 3 for power distribution by the effect of transformation. The power distribution facilities for shunt reactor including the power distribution elements such as a line breaker P and a circuit breaker Q, etc. can be abbreviated by providing the shunt reactor TrR which also operates as the transformer in place of the conventional transformer and thereby the facilities can be as much simplified and moreover expansion of the field and premises of power substation 3 for power distribution is no longer required.

Description

【発明の詳細な説明】 この発明は分路リアクトルに関するものである。[Detailed description of the invention] This invention relates to a shunt reactor.

現在の電力系統を第1図に示している。すなわち、Aは
220〜500に■の超々高圧系統、■は220〜50
0KV/66〜154KVの1次変電所、2は66〜1
’54に■送電線、3は66〜154KV/6.6〜2
2KV配電用変電所、4は6.6〜22KV配電線、5
は6.6〜22KV受電需要家、6は6.6〜22KV
/100〜400V柱上変圧器、7は電灯需要家である
The current power system is shown in Figure 1. In other words, A is 220-500 and ■ ultra-super high voltage system, ■ is 220-500
0KV/66~154KV primary substation, 2 is 66~1
'54 ■Power line, 3 is 66-154KV/6.6-2
2KV distribution substation, 4 is 6.6-22KV distribution line, 5
is 6.6-22KV power receiving consumer, 6 is 6.6-22KV
/100-400V pole transformer, 7 is an electric light consumer.

このような電力系統において、従来第2図のように並列
コンデンサ8以外に、需要家5,7に設置された電力用
コンデンサ9が多く、しかも深夜になって負荷が少なく
なった場合でも電力用コンデンサ9が切離されるケース
が少ないため、進相骨の突き上げが多くなるという問題
がある。そこでこれを補償するため1次変電所1に分路
リアクトル10を設置して超々高圧系統Aへ流入する無
効電力が少なくなるようにしている。
In such power systems, conventionally, as shown in Fig. 2, in addition to the parallel capacitor 8, there are many power capacitors 9 installed at consumers 5 and 7, and even when the load decreases late at night, the power capacitors 9 Since there are few cases in which the capacitor 9 is disconnected, there is a problem in that the phase-accelerating bone is often pushed up. Therefore, in order to compensate for this, a shunt reactor 10 is installed in the primary substation 1 to reduce the amount of reactive power flowing into the ultra-super high voltage system A.

ところで、このような分路リアクトル10は、1次変電
所1側に設置するよりも第2図の破線および第3図のよ
うに配電用変電所3側に分路リアクトル11.12を設
置する方が送2電線2に流れる無効電力が少ないため、
送電損失の軽減上有利である。しかし、配電用変電所3
に設置する場合、分路リアクトル11.12の容量が5
〜20MVAと比較的小容量となり、1次変電所lで使
用されている20〜120MVAの大容量のものに比較
して容量当りの費用が高価になる。また配電用変電所3
内にスペースや開閉装置用の用地が新たに必要となる。
By the way, rather than installing such a shunt reactor 10 on the primary substation 1 side, the shunt reactor 11.12 is installed on the distribution substation 3 side as shown by the broken line in FIG. 2 and in FIG. 3. Since less reactive power flows to the transmission line 2,
This is advantageous in reducing power transmission losses. However, distribution substation 3
If the capacity of shunt reactor 11.12 is 5.
It has a relatively small capacity of ~20 MVA, and the cost per capacity is higher than the large capacity of 20 to 120 MVA used in the primary substation I. Also, distribution substation 3
Additional space and land for the switchgear will be required within the building.

とくに分路リアクトルを置く必要があるのはケーブル系
の多い人口密度の高い都心部分であるため、なおさら変
電所用地の確保が困難な場所である。したがって配電用
変電所3への設置が困難であり、現在の電力系統では配
電用変電所3に分路リアクトル11.’12が設置され
ることはほとんどない。
In particular, it is necessary to install shunt reactors in densely populated urban areas with many cable systems, making it even more difficult to secure land for substations. Therefore, it is difficult to install the shunt reactor 11 in the distribution substation 3 in the current power system. '12 is rarely installed.

したがって、この発明の目的は、送電損失の軽減を図り
、設置スペースを増大しないで配電用変電所側に容易に
設置することができる分路リアクトルを提供することで
ある。
Therefore, an object of the present invention is to provide a shunt reactor that reduces power transmission loss and can be easily installed at a power distribution substation without increasing installation space.

この発明の一実施例を第4図ないし第6図に示す。すな
わち、この3相用分路リアクトルは、鉄心13のギヤン
グ14を有する鉄心脚15に主巻線16a〜16cを設
け、さらに配電電圧用2次巻線17a−17cを付加し
、巻数比を66〜154に■/3.3〜22KVに降圧
されるようにしたものである。第5図はこの分路リアク
トルTrRの等価回路であり、分路リアクトルTrRの
遅相分を電力用コンデンサ9の進相分に対応させること
により無効電力を低減し、また変圧作用により配電用変
電所3における変圧器に代用するごとができることとな
る。
An embodiment of this invention is shown in FIGS. 4 to 6. That is, in this three-phase shunt reactor, main windings 16a to 16c are provided on the core leg 15 having the gearing 14 of the core 13, and secondary windings 17a to 17c for power distribution voltage are further added, and the turns ratio is 66. -154, the voltage is stepped down to /3.3-22KV. FIG. 5 shows an equivalent circuit of this shunt reactor TrR, which reduces reactive power by making the lagging phase component of the shunt reactor TrR correspond to the leading phase component of the power capacitor 9, and also transforms the distribution substation through the transformer action. This means that it can be used in place of the transformer at point 3.

このように、変圧作用を兼ねた分路リアクトルTrRを
第6図のように従来の変圧器に代えて設置することによ
り、第3図との比較からも明らかなように断路器P、シ
ゃ断器Q等の電路要素を含む分路リアクトル用配電設備
が省略されるため設備が簡素になり、また配電用変電所
3の用地や建物等を新に増大することがなく、従来の配
電用変圧器とほぼ同一の用地、および機器コストのもの
で配電用変電所3において遅相無効電力を供給すること
が可能になる。したがって系統全体での合理的な無効電
力のバランスがとれ、送電線での送電損失の軽減を図る
ことができる。
In this way, by installing the shunt reactor TrR that also functions as a transformer in place of the conventional transformer as shown in Figure 6, the disconnector P and the Because the distribution equipment for the shunt reactor, including circuit elements such as the disconnector Q, is omitted, the equipment is simplified, and there is no need to add new land or buildings for the distribution substation 3, making it possible to replace the existing distribution equipment. It becomes possible to supply delayed phase reactive power at the distribution substation 3 using almost the same site and equipment cost as a transformer. Therefore, it is possible to achieve a reasonable balance of reactive power in the entire system, and to reduce power transmission losses on power transmission lines.

第7図は単相用分路リアクトル、第8図は3相用分路リ
アクトルの他の実施例で主巻線16′。
FIG. 7 shows a single-phase shunt reactor, and FIG. 8 shows another embodiment of a three-phase shunt reactor, with the main winding 16'.

16’a”16’cに複数のタップ18を設けてタップ
I8を切換えるようにした負荷電圧調整器19を有する
ものである。Nは中性点、20ば負荷である。
A plurality of taps 18 are provided at 16'a'' and 16'c, and a load voltage regulator 19 is provided to switch the tap I8.N is a neutral point, and 20 is a load.

以上のように、この発明の分路リアクトルは、配電電圧
用2次巻線を設けたため、従来に比してスペースを増大
することなく配電用変電所に設置することができ、しか
も配電用変電所の設備を簡素化でき、さらに送電損失を
軽減することができるという効果がある。
As described above, since the shunt reactor of the present invention is provided with a secondary winding for distribution voltage, it can be installed in a distribution substation without increasing the space compared to the conventional one. This has the effect of simplifying local equipment and further reducing power transmission losses.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は現在の電力系統図、第2図はその一部を示す詳
細系統図、第3図はその配電用変電所における系統図、
第4図はこの発明の一実施例の分路リアクトルの断面図
、第5図はその等価回路図、第6図は配電用変電所にお
ける系統図、第7図は他の実施例の単相用分路リアクト
ルの回路説明図、第8図はさらに他の実施例における3
相用分路リアクトルの回路説明図である。 16’ 、l 6 a〜l 6 c、 16’a 〜1
6’c −・・主巻線、17.17a〜17c・・・2
次巻線、19・・・電圧稠整器 第4図 第5図 第6図 第7図 第8図
Figure 1 is the current power system diagram, Figure 2 is a detailed diagram showing part of it, Figure 3 is the diagram of the distribution substation,
Fig. 4 is a sectional view of a shunt reactor according to an embodiment of the present invention, Fig. 5 is an equivalent circuit diagram thereof, Fig. 6 is a system diagram in a distribution substation, and Fig. 7 is a single-phase reactor of another embodiment. FIG. 8 is a circuit explanatory diagram of a shunt reactor for use in another embodiment.
It is a circuit explanatory diagram of a phase shunt reactor. 16', l6a~l6c, 16'a~1
6'c - Main winding, 17.17a to 17c...2
Next winding, 19... Voltage regulator Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8

Claims (1)

【特許請求の範囲】 +11 主巻線と、この主巻線に対して配電電圧に相当
する巻数比をもつ変圧用2次巻線とを備えた分路リアク
トル。 (2) 前記主巻線は、負荷時の電圧調整器を有する特
許請求の範囲第(11項記載の分路リアクトル。
[Claims] +11 A shunt reactor comprising a main winding and a secondary transformer winding having a turns ratio corresponding to the distribution voltage with respect to the main winding. (2) The shunt reactor according to claim 11, wherein the main winding has a voltage regulator during load.
JP59016275A 1984-01-31 1984-01-31 Shunt reactor Granted JPS60160604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59016275A JPS60160604A (en) 1984-01-31 1984-01-31 Shunt reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59016275A JPS60160604A (en) 1984-01-31 1984-01-31 Shunt reactor

Publications (2)

Publication Number Publication Date
JPS60160604A true JPS60160604A (en) 1985-08-22
JPH0367330B2 JPH0367330B2 (en) 1991-10-22

Family

ID=11911991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59016275A Granted JPS60160604A (en) 1984-01-31 1984-01-31 Shunt reactor

Country Status (1)

Country Link
JP (1) JPS60160604A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913314A (en) * 1982-07-13 1984-01-24 Kansai Electric Power Co Inc:The Three-phase shunt reactor device of variable capacitance type

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913314A (en) * 1982-07-13 1984-01-24 Kansai Electric Power Co Inc:The Three-phase shunt reactor device of variable capacitance type

Also Published As

Publication number Publication date
JPH0367330B2 (en) 1991-10-22

Similar Documents

Publication Publication Date Title
Das Electrical power systems
Dos Santos et al. Power transmission over long distances: economic comparison between HVDC and half-wavelength line
Kaipia et al. Field test environment for LVDC distribution-implementation experiences
Railing et al. Cross sound cable project second generation VSC technology for HVDC
KR20090127636A (en) A replacement system of distribution transformers and line without outage by power bypass device
US20070114978A1 (en) System for transmission of electric power
CN101118803B (en) Distributing transformator electronic type loaded automatic wide region voltage regulating device
CN107579520B (en) Gas insulation power supply device
CN106877306B (en) Distribution network arc suppression coil and distribution transformer integrated distributed compensation device
JPS60160604A (en) Shunt reactor
Breuer et al. HVDC's increasing popularity
Jonsson et al. Evaluation of classical, CCC and TCSC converter schemes for long cable projects
JP2503385B2 (en) Substation equipment for distribution
Li Voltage balancing on three-phase low voltage feeder
JPH07264777A (en) Transformation panel board
Zimmermann et al. Comparison of GIS and AIS systems for urban supply networks
CN201113802Y (en) Distributing transformer electronic type on-load automatic wide region voltage regulating device
RU2261511C2 (en) Auxiliary power supply system for power station unit
KR101630716B1 (en) Distribution line apparatus using two-phase transformer
KR20230072785A (en) Multi switch transformer for power distribution
Coetzee Improvement of power transfer in an existing power system by means of series and shunt compensation
Karady et al. Concept of energy transmission and distribution
JPH0320976B2 (en)
Ragheb High Voltage Direct Current Power Transmission
Chua Feasibility Studies of Implementation of HVDC Distribution Network in Malaysia