JPH023283B2 - - Google Patents

Info

Publication number
JPH023283B2
JPH023283B2 JP57122411A JP12241182A JPH023283B2 JP H023283 B2 JPH023283 B2 JP H023283B2 JP 57122411 A JP57122411 A JP 57122411A JP 12241182 A JP12241182 A JP 12241182A JP H023283 B2 JPH023283 B2 JP H023283B2
Authority
JP
Japan
Prior art keywords
core
main
secondary winding
winding
iron core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57122411A
Other languages
Japanese (ja)
Other versions
JPS5913315A (en
Inventor
Katamasa Harumoto
Eiji Kawagoe
Kazutaka Misawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Kansai Denryoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd, Kansai Denryoku KK filed Critical Nissin Electric Co Ltd
Priority to JP57122411A priority Critical patent/JPS5913315A/en
Publication of JPS5913315A publication Critical patent/JPS5913315A/en
Publication of JPH023283B2 publication Critical patent/JPH023283B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】 この発明は可変容量型分路リアクトルに関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a variable capacitance shunt reactor.

この種分路リアクトルにおいて、その容量を可
変とすることによつて電力線路の遅相容量を制御
するようにしたものはすでに提案をみているとこ
ろである。第1図は既提案の構成を示し、主鉄心
1に主巻線(これは電力線路に接続される。)2
と2次巻線3とを同軸に巻装し、2次巻線3の両
端間に短絡用の開閉器4が接続される。主鉄心1
の両端間はヨーク鉄心5によつて磁気的に短絡さ
れてある。この例では所定の容量変化率を得るた
めに、主鉄心1としてギヤツプ6を有する鉄心を
使用している。
In this type of shunt reactor, we have already seen proposals for controlling the lagging phase capacitance of the power line by making the capacitance variable. Figure 1 shows the previously proposed configuration, with a main iron core 1 and a main winding (which is connected to the power line) 2.
and a secondary winding 3 are wound coaxially, and a short-circuit switch 4 is connected between both ends of the secondary winding 3. Main core 1
Both ends of the yoke are magnetically short-circuited by a yoke iron core 5. In this example, an iron core having a gap 6 is used as the main iron core 1 in order to obtain a predetermined rate of change in capacity.

第1図に示す構成の作用を概略説明すると、開
閉器4を開放した場合は、主磁束φ1は点線で示
すように主鉄心1とヨーク鉄心5とを還流し、こ
れによつて主鉄心1のギヤツプ6による磁気抵抗
に相当する磁化アンペアターンを与える電流が主
巻線2に流れる。又開閉器4を閉成すると、主磁
束φ′1は実線で示すように主に主巻線2と2次巻
線3との間及びヨーク鉄心5を還流する。しかし
この磁路は鉄心窓の空間を含むためこの磁路の磁
気抵抗は主鉄心1のギヤツプ6による磁気抵抗よ
りも明らかに大きい。そしてこの磁気抵抗に相当
する磁化アンペアターンを与える電流が主巻線2
を流れる。この場合線路電圧は一定であるから、
線路電圧と主巻線電流との積で表わされるリアク
トル容量は、開閉器4を閉成した場合の方が、こ
れを開放している場合よりも増大するようにな
る。すなわち開閉器4の開閉によつてリアクトル
容量が可変とされるのである。
Briefly explaining the operation of the configuration shown in FIG. 1, when the switch 4 is opened, the main magnetic flux φ 1 circulates through the main iron core 1 and the yoke iron core 5 as shown by the dotted line, and thereby A current flows through the main winding 2 giving a magnetizing ampere-turn corresponding to the reluctance due to the gap 6 of 1. When the switch 4 is closed, the main magnetic flux φ' 1 mainly circulates between the main winding 2 and the secondary winding 3 and through the yoke core 5, as shown by the solid line. However, since this magnetic path includes the space of the core window, the magnetic resistance of this magnetic path is clearly larger than the magnetic resistance due to the gap 6 of the main core 1. The current that gives the magnetizing ampere turns corresponding to this magnetic resistance is the main winding 2.
flows. In this case, the line voltage is constant, so
The reactor capacity, which is expressed as the product of the line voltage and the main winding current, increases when the switch 4 is closed than when it is opened. That is, the reactor capacity is made variable by opening and closing the switch 4.

しかしこのような構成によると、開閉器4を閉
成したときの主磁束φ′1が通る磁路の磁気抵抗は、
前述したように主鉄心1のギヤツプ6の磁気抵抗
に比較してはるかに大きいので、たとえば2次巻
線3を開閉器4によつて短絡したことによつて主
巻線2のアンペアターンを2倍にしてリアクトル
容量を倍増しようとしても、主磁束の磁束密度を
高めることができない。これを解決するためには
磁路の断面積を増せばよいのであるが、この断面
積を増すことは主巻線2と2次巻線3との間隔を
広げることを意味し、そのため外側の巻線(図の
例では主巻線2)の径が大きくなり、重量、損失
並びに鉄心の重量の増大を招くことになる。第1
図では主巻線2を外側に、2次巻線3を内側に巻
装しているが、逆に主巻線2を内側に、2次巻線
3を外側に巻装した場合でも同じことが言える。
However, according to such a configuration, the magnetic resistance of the magnetic path through which the main magnetic flux φ' 1 passes when the switch 4 is closed is:
As mentioned above, the magnetic resistance is much larger than the magnetic resistance of the gap 6 of the main core 1, so for example, by short-circuiting the secondary winding 3 with the switch 4, the ampere turns of the main winding 2 can be reduced to 2. Even if you try to double the reactor capacity by doubling it, you cannot increase the magnetic flux density of the main magnetic flux. In order to solve this problem, it is possible to increase the cross-sectional area of the magnetic path, but increasing this cross-sectional area means widening the distance between the main winding 2 and the secondary winding 3, so the outer The diameter of the winding (main winding 2 in the example shown) increases, leading to an increase in weight, loss, and weight of the iron core. 1st
In the figure, the main winding 2 is wound on the outside and the secondary winding 3 is wound on the inside, but the same thing can be done if the main winding 2 is wound on the inside and the secondary winding 3 is wound on the outside. I can say that.

又前記のように主巻線2と2次巻線3との間隔
を広げると、この間隔の全断面積に対して、この
間隔の上下端部におけるヨーク鉄心5との対向面
積の比率が小さくなるから、この間隔部分以外の
他の磁路部分を通る磁束が増すことになる。この
磁束は洩れ磁束となつて付加損、局部加熱の発生
原因となり、その防止のために特別なシールドを
設けなければならないことになる。更に前記間隔
部分を通る磁束の一部は巻線内をも通るので、こ
れにより巻線を構成している電線内にうず電流が
発生して、リアクトル全体の損失が増加するよう
になる。
Furthermore, when the distance between the main winding 2 and the secondary winding 3 is widened as described above, the ratio of the area facing the yoke core 5 at the upper and lower ends of this distance to the total cross-sectional area of this distance is small. Therefore, the magnetic flux passing through other magnetic path portions other than this interval portion increases. This magnetic flux becomes leakage magnetic flux, causing additional loss and local heating, and a special shield must be provided to prevent this. Furthermore, a portion of the magnetic flux passing through the space also passes through the windings, which causes eddy currents to occur in the wires that make up the windings, increasing the loss of the entire reactor.

この発明は、主巻線と2次巻線との間隔を広げ
ることなくリアクトル容量を可変可能とすること
によつて寸法、重量の縮少並びに損失の低減を図
ることを目的とする。
An object of the present invention is to reduce dimensions, weight, and loss by making the reactor capacity variable without increasing the distance between the main winding and the secondary winding.

この発明は主巻線と2次巻線との間に、ギヤツ
プ入の鉄心を設置したことを特徴とするものであ
る。
This invention is characterized in that an iron core with a gap is installed between the main winding and the secondary winding.

この発明の実施例を第2図以降の各図によつて
説明する。なお第1図と同じ符号を附した部分は
同一又は対応する部分を指す。第2図の実施例で
は、主巻線2と2次巻線3との間にギヤツプ8を
有する中間鉄心9を設ける。中間鉄心9の両端は
ヨーク鉄心5によつて主鉄心1とともに磁気的に
短絡されている。
Embodiments of the present invention will be described with reference to FIG. 2 and subsequent figures. Note that parts with the same reference numerals as in FIG. 1 refer to the same or corresponding parts. In the embodiment shown in FIG. 2, an intermediate core 9 having a gap 8 is provided between the main winding 2 and the secondary winding 3. Both ends of the intermediate core 9 are magnetically short-circuited together with the main core 1 by a yoke core 5.

このような構成によると、開閉器4を開放した
状態では第1図の場合とその動作を異にすること
はないが、開閉器4を閉成したとき、主磁束は中
間鉄心9を通るようになる。このときの磁気抵抗
は第1図の場合よりも小さいことは明らかである
から、この主磁束の磁速密度を高めることができ
るようになる。すなわち第1図の構成では主巻線
2と2次巻線3との間隔を広げる必要があつたの
対し、第2図の構成ではこのような間隔の広がり
を何ら必要とすることなく磁束密度を高めること
ができるようになるのである。これによつて主巻
線の径を大きくする必要はなくなり、これにとも
なつて重量、損失並びにこれにともなう鉄心の重
量が増大することが回避できる。更に洩れ磁束も
減少するからこれによる付加損、局部加熱並びに
うず電流による損失を軽減することができるよう
になる。
According to such a configuration, when the switch 4 is open, the operation is the same as in the case shown in FIG. 1, but when the switch 4 is closed, the main magnetic flux passes through the intermediate core 9. become. Since it is clear that the magnetic resistance at this time is smaller than that in the case of FIG. 1, the magnetic velocity density of this main magnetic flux can be increased. In other words, in the configuration shown in Figure 1, it was necessary to increase the distance between the main winding 2 and the secondary winding 3, whereas in the configuration shown in Figure 2, the magnetic flux density can be increased without any need for such an increase in the distance. This makes it possible to increase the This eliminates the need to increase the diameter of the main winding, and the accompanying increase in weight, loss, and weight of the core can be avoided. Furthermore, since the leakage magnetic flux is also reduced, additional loss caused by this, local heating, and loss due to eddy current can be reduced.

この場合、中間鉄心9はギヤツプ入りであるこ
とが必要で、これがギヤツプを有していないと、
即閉器4の開放時、短絡時にかかわらず主磁束が
主鉄心1を通らずに中間鉄心9にほとんど通るよ
うになり、リアクトルの容量がほとんど零となつ
てしまうからである。又2次巻線3の短絡によつ
てリアクトル容量をn倍とするときは中間鉄心9
の磁気抵抗を主鉄心1の磁気抵抗の(n−1)倍
とする必要がある。ここで主鉄心の磁気抵抗に
は、主鉄心外部を通り2次巻線に鎖交する磁気抵
抗を主鉄心のみを通る磁束に対する磁気抵抗に並
列に含み、又中間鉄心の磁気抵抗には、中間鉄心
外部を通り主巻線にのみ鎖交する磁束に対する磁
気抵抗を中間鉄心のみを通る磁束に対する磁気抵
抗に並列に含むものとする。又主巻線2と2次巻
線3のアンペアターンは等しくなるので、両巻線
はこのアンペアターンに相当する電流を支障なく
流すことができる構造とする必要がある。なおこ
れらについては、後に詳述する。
In this case, the intermediate core 9 must have a gap, and if it does not have a gap,
This is because, regardless of whether the instant breaker 4 is open or short-circuited, most of the main magnetic flux passes through the intermediate iron core 9 without passing through the main iron core 1, and the capacity of the reactor becomes almost zero. Also, when increasing the reactor capacity by n times by short-circuiting the secondary winding 3, the intermediate iron core 9
It is necessary to make the magnetic resistance of the main iron core 1 (n-1) times that of the main iron core 1. Here, the magnetic resistance of the main core includes the magnetic resistance that passes outside the main core and interlinks with the secondary winding in parallel to the magnetic resistance for the magnetic flux that passes only through the main core, and the magnetic resistance of the intermediate core includes The magnetic resistance to the magnetic flux passing outside the core and interlinking only to the main winding is included in parallel to the magnetic resistance to the magnetic flux passing only through the intermediate core. Furthermore, since the ampere-turns of the main winding 2 and the secondary winding 3 are equal, both windings must have a structure that allows current corresponding to the ampere-turns to flow therethrough without any problem. Note that these will be explained in detail later.

第2図、第3図の構成では中間鉄心9を2次巻
線3の両側に配置し、したがつてヨーク鉄心5も
主巻線2の両側に延長して配置しているが、これ
に代えて中間鉄心9を2次巻線3の一方の側にの
み配置してもよい。その実施例を示したのが第4
図である。この図を用いて主、中間両鉄心の磁気
抵抗を検討することにする。同図においてφn
1次電圧(線路電圧)に対する主磁束、φ1を2
次巻線3の開放時における主鉄心1の磁束、φ2
を同じく2次巻線3の開放時における中間鉄心9
の磁束、φ3を2次巻線3の短絡時における2次
巻線3に流れる電流による逆アンペアターンによ
り生ずる磁束とする。まず2次巻線3の開放時を
検討すると第4図から φn=φ1+φ2 (1) φ1Rn1=φ2Rn2=√2N1I1 (1′) ただしRn1は主鉄心1の磁気抵抗、Rn2は中間
鉄心9の磁気抵抗、I1は主巻線2に流れる電流、
N1は主巻線2の巻数、√2N1I1は1次アンペア
ターン(波高値表示)である。
In the configurations shown in FIGS. 2 and 3, the intermediate core 9 is arranged on both sides of the secondary winding 3, and therefore the yoke core 5 is also extended and arranged on both sides of the main winding 2. Alternatively, the intermediate core 9 may be arranged only on one side of the secondary winding 3. The fourth example shows an example of this.
It is a diagram. Using this diagram, we will examine the magnetic resistance of both the main and intermediate cores. In the same figure, φ n is the main magnetic flux for the primary voltage (line voltage), and φ 1 is 2
Magnetic flux of main core 1 when secondary winding 3 is open, φ 2
Similarly, when the secondary winding 3 is open, the intermediate core 9
Let φ3 be the magnetic flux generated by the reverse ampere turn caused by the current flowing through the secondary winding 3 when the secondary winding 3 is short-circuited. First, considering when the secondary winding 3 is open, from Fig. 4, φ n = φ 1 + φ 2 (1) φ 1 R n1 = φ 2 R n2 = √2N 1 I 1 (1') However, R n1 is mainly The magnetic resistance of the iron core 1, R n2 is the magnetic resistance of the intermediate iron core 9, I 1 is the current flowing in the main winding 2,
N 1 is the number of turns of the main winding 2, and √2N 1 I 1 is the primary ampere turn (peak value display).

前記両式から各鉄心の磁束と磁気抵抗の関係は φ1=Rn2/Rn1+Rn2φn (2) φ2=Rn1/Rn1+Rn2φn (2′) となる。 From the above equations, the relationship between the magnetic flux and magnetic resistance of each core is as follows: φ 1 =R n2 /R n1 +R n2 φ n (2) φ 2 =R n1 /R n1 +R n2 φ n (2').

次に2次巻線3を短絡したときは第6図から中
間鉄心9の磁気抵抗、磁束と1次アンペアターン
の関係は (φ2+φs)Rn2=√2N1Ip (3) 2次アンペアターン√2I2Rsにより生ずる磁束φs
は主鉄心1と中間鉄心9を通るから φs(Rn1+Rn2)=√2N2Is (4) ただしIpは2次電流Isが流れたときの1次電流、
N2は2次巻線3の巻数である。
Next, when the secondary winding 3 is short-circuited, the relationship between the magnetic resistance, magnetic flux, and primary ampere turns of the intermediate core 9 is (φ 2s )R n2 =√2N 1 I p (3) 2 from Figure 6. Magnetic flux φ s produced by the following ampere turn√2I 2 R s
passes through the main iron core 1 and the intermediate iron core 9, so φ s (R n1 + R n2 )=√2N 2 I s (4) where I p is the primary current when the secondary current I s flows,
N 2 is the number of turns of the secondary winding 3.

(3)(4)式から 2次巻線3を短絡したときは2次巻線と鎖交す
る磁束は0となるから φ1−φs=0 故に φs=φ1 したがつて(5)式を(1′)式を利用して変形すれ
したがつて (6),(7)式から1次アンペアターンと2次アンペ
アターンは等しくなる。
From equations (3) and (4) When the secondary winding 3 is short-circuited, the magnetic flux interlinking with the secondary winding becomes 0, so φ 1 −φ s = 0 Therefore, φ s = φ 1 Therefore, equation (5) can be changed to equation (1'). If you transform using Therefore From equations (6) and (7), the primary ampere turns and secondary ampere turns are equal.

つぎに容量変化率と磁気抵抗との関係をみると
第4図から1次電圧Epは Ep=√2πN1(φ1+φ2) 1次電流Ipは(5′)式から したがつて1次容量Ppは Pp=Ep・Ip =π(φ1+φ2)(φ2+φs)Rn2 (8) 2次巻線3を開放したときはφs=0であるから、
このときの1次容量Ppは(8)式より Pp=πφ2(φ1+φ2)Rn2 (9) 又2次巻線3を短絡したときはφs=φ1であるか
ら、このときの1次容量P1は P1=π(φ1+φ22Rn2 (10) 故に両容量Pp,P1の比nは n=P1/Pp=φ1+φ2/φ2=1+φ1/φ2 (11) 上式に(1′)式を代入すれば n=1+Rn2/Rn1 すなわち Rn2=(n−1)Rn1 (12) すなわち中間鉄心9の磁気抵抗Rn2は主鉄心1
の磁名抵抗Rn1の(n−1)倍とすれば、2次巻
線3の開放時と短絡時との容量比をnとすること
ができるようになる。
Next, looking at the relationship between the capacitance change rate and magnetic resistance, from Figure 4, the primary voltage E p is E p =√2πN 11 + φ 2 ), and the primary current I p is from equation (5'). Therefore, the primary capacitance P p is P p = E p・I p = π (φ 1 + φ 2 ) (φ 2 + φ s ) R n2 (8) When the secondary winding 3 is opened, φ s = 0 Because it is,
The primary capacitance P p at this time is calculated from equation (8) as P p = πφ 212 )R n2 (9) Also, when the secondary winding 3 is short-circuited, φ s = φ 1 , so The primary capacitance P 1 at this time is P 1 = π (φ 1 + φ 2 ) 2 R n2 (10) Therefore, the ratio n of both capacitances P p and P 1 is n = P 1 /P p12 / φ 2 = 1 + φ 12 (11) Substituting equation (1') into the above equation, n = 1 + R n2 /R n1 , that is, R n2 = (n-1) R n1 (12) That is, the magnetism of intermediate core 9 Resistance R n2 is main core 1
If the magnetic resistance R n1 is multiplied by (n-1), the capacitance ratio between the open state and the short-circuit state of the secondary winding 3 can be set to n.

なお(1)式よりRn2=Rn1φ1/φ2であるから、これを (12)式に代入し変形して φ1=(n−1)φ2 (13) 故に主鉄心1の最大磁束をφ1としたとき、2次
巻線短絡時の中間鉄心9の最大磁束は φ2+φ1=nφ2 これを(13)式に代入して整理すれば φ1/φ1+φ2=n−1/n (14) すなわち容量比をnとしたとき、主鉄心1の最
大磁束は2次巻線3の短絡時における中間鉄心の
最大磁束の(n−1)/n倍となる。このため、
主鉄心の断面積を、中間鉄心の断面積に比べて減
らすことができる。このことは主鉄心1から中間
鉄心へと通る最大磁束は中間鉄心9から外側ヨー
クを通つて還流する最大磁束より少ないことを意
味するので、したがつて主鉄心1と中間鉄心9と
を結ぶヨーク鉄心部分の断面積を中間鉄心9の両
端を連結するヨーク鉄心部分の断面積より小さく
することができるようになる。
Furthermore, from equation (1), R n2 = R n1 φ 12 , so by substituting this into equation (12) and transforming it, we get φ 1 = (n-1)φ 2 (13) Therefore, the main core 1's When the maximum magnetic flux is φ 1 , the maximum magnetic flux of the intermediate core 9 when the secondary winding is short-circuited is φ 2 + φ 1 = nφ 2 Substituting this into equation (13) and rearranging, φ 112 =n-1/n (14) In other words, when the capacity ratio is n, the maximum magnetic flux of the main core 1 is (n-1)/n times the maximum magnetic flux of the intermediate core when the secondary winding 3 is short-circuited. . For this reason,
The cross-sectional area of the main core can be reduced compared to the cross-sectional area of the intermediate core. This means that the maximum magnetic flux passing from the main core 1 to the intermediate core is smaller than the maximum magnetic flux circulating from the intermediate core 9 through the outer yoke, so the yoke connecting the main core 1 and the intermediate core 9 The cross-sectional area of the core portion can be made smaller than the cross-sectional area of the yoke core portion that connects both ends of the intermediate core 9.

以上の各実施例は主巻線2を2次巻線3の外側
に配置した構成であるが、第5図に示すように主
巻線2の外側に2次巻線3を配置してもよい。第
5図は第2図に対応する構成を示し、第6図は第
4図に対応する構成を示す。この場合でも、2次
巻線3を短絡することによつてリアクトル容量を
n倍とするときは、中間鉄心9の磁気抵抗を主鉄
心1の磁気抵抗の(n−1)倍とする。又2次巻
線3のアンペアターンは主巻線2のアンペアター
ンのn−1/n倍となるので、2次巻線の導体断
面積を主巻線に比べて減ずることができる。又こ
の場合は主鉄心1、中間鉄心9を通る最大磁束は
等しくなる。
Each of the above embodiments has a configuration in which the main winding 2 is placed outside the secondary winding 3, but the secondary winding 3 may also be placed outside the main winding 2 as shown in FIG. good. FIG. 5 shows a configuration corresponding to FIG. 2, and FIG. 6 shows a configuration corresponding to FIG. 4. Even in this case, when increasing the reactor capacity by n times by short-circuiting the secondary winding 3, the magnetic resistance of the intermediate core 9 is made to be (n-1) times the magnetic resistance of the main core 1. Further, since the ampere turns of the secondary winding 3 are n-1/n times the ampere turns of the main winding 2, the conductor cross-sectional area of the secondary winding can be reduced compared to that of the main winding. Also, in this case, the maximum magnetic fluxes passing through the main core 1 and the intermediate core 9 are equal.

この場合の容量比nと磁気抵抗との関係を第6
図を用いて検討する。
The relationship between the capacitance ratio n and magnetic resistance in this case is expressed as
Consider using diagrams.

まず2次巻線3の開放時においては、φ1とφn
とは等しいから φ1Rn1=φnRn1=√2N1Ip (15) 又2次巻線3の短絡時においては φ1Rn1+φsRn2=√2N1Ip (16) φsRn2=√2N2Is (16′) したがつて N2Is/N1Ip=φsRn2/φ1Rn1+φsRn2 (17) 2次巻線の短絡時は、φs=φ1より、上式は N2Is/N1Ip=Pn2/Rn1+Rn2 (18) 第6図および(16)式から1次電圧Ep91次電流Ip
したがつて1次容量Ppは Pp=Ep,Ip=πφ1 (φ1Rn1+φsRn2) (19) 2次巻線開放時の容量Ppはφs=0から Pp=πφ1 2Rn1 (20) 2次巻線短絡時の容量P1はφs=φ1より P1=πφ1 2(Rn1+Rn2) 故に容量比nは n=P1/Pp=1+Rn2/Rn1 故に Rn2=(n−1)Rn1 (21) すなわち(12)式と同じ関係式となる。
First, when the secondary winding 3 is open, φ 1 and φ n
Since it is equal to φ 1 R n1 = φ n R n1 = √2N 1 I p (15) Also, when the secondary winding 3 is short-circuited, φ 1 R n1s R n2 = √2N 1 I p (16) φ s R n2 =√2N 2 I s (16′) Therefore, N 2 I s /N 1 I ps R n21 R n1s R n2 (17) When the secondary winding is short-circuited From φ s = φ 1 , the above equation is N 2 I s /N 1 I p =P n2 /R n1 +R n2 (18) From Figure 6 and equation (16), primary voltage E p9 Primary current I p
teeth Therefore, the primary capacitance P p is P p = E p , I p = πφ 11 R n1s R n2 ) (19) The capacitance P p when the secondary winding is open is from φ s = 0 to P p = πφ 1 2 R n1 (20) The capacitance P 1 when the secondary winding is shorted is φ s = φ 1. P 1 = πφ 1 2 (R n1 + R n2 ) Therefore, the capacitance ratio n is n = P 1 /P Since p = 1 + R n2 /R n1 , R n2 = (n-1) R n1 (21) That is, the same relational expression as equation (12) is obtained.

又上式を(17)式に代入すれば N2Is/N1Ip=n−1/n すなわち2次巻線3のアンペアターンN2Isは、
主巻線2のアンペアターンN1Ipのn−1/n倍
となる。
Also, by substituting the above equation into equation (17), N 2 I s /N 1 I p =n-1/n, that is, the ampere turns N 2 I s of the secondary winding 3 are:
It is n-1/n times the ampere turn N 1 I p of the main winding 2.

第7図は中間鉄心を主鉄心1に対してその円周
方向に放射状に複数分割して配置した構成を示
す。これによれば前記の実施例に比較して主巻線
2の周囲の空間を有効に利用することができ、重
量、損失の低減が更に可能となる。図の例は主鉄
心1を断面円形としており、たとえばラジアル鉄
心(又はインボリユート鉄心、巻鉄心等)で構成
される。中間鉄心を8個とした例であり、内側の
ヨーク鉄心51は主鉄心1の上下側において円形
となるように衝合させてある。一般には中間鉄心
をm等分した場合はヨーク鉄心51の幅tは次の
ように求められる。すなわちひとつのヨーク鉄心
51の中心角は360゜/mとなるから、幅tは、主
鉄心1の直径をDとすれば t=2D/2sin360゜/2m=Dsin180゜/m すなわち主鉄心1の直径のsin180゜/m倍に幅tを 選べばヨーク鉄心の衝合部分を直径Dの円形とす
ることができるようになる。又ヨーク鉄心51の
高さHは H=πD2/4mt とすると、ヨーク鉄心51の全断面積が主鉄心1
の断面積と等しくなるが、ヨーク鉄心と主鉄心の
磁束密度の相違その他により、必ずしもこの値と
する必要もない。
FIG. 7 shows a configuration in which the intermediate core 1 is divided into a plurality of radial sections in the circumferential direction of the main core 1. According to this, the space around the main winding 2 can be used more effectively than in the embodiments described above, and weight and loss can be further reduced. In the illustrated example, the main core 1 has a circular cross section and is composed of, for example, a radial core (or an involute core, a wound core, etc.). This is an example in which there are eight intermediate cores, and the inner yoke cores 51 are abutted against each other to form a circular shape on the upper and lower sides of the main core 1. Generally, when the intermediate iron core is divided into m equal parts, the width t of the yoke iron core 51 is determined as follows. In other words, since the central angle of one yoke core 51 is 360°/m, the width t is, if the diameter of the main core 1 is D, t=2D/2sin360°/2m=Dsin180°/m. If the width t is selected to be sin180°/m times the diameter, the abutting portion of the yoke core can be made circular with a diameter D. Also, assuming that the height H of the yoke core 51 is H=πD 2 /4mt, the total cross-sectional area of the yoke core 51 is equal to that of the main core 1.
However, due to the difference in magnetic flux density between the yoke core and the main core, it is not necessary to set this value.

主鉄心1の断面積は前記したようにこれと対応
する中間鉄心9部分の断面積より大きくできるの
で、この例のように内側のヨーク鉄心51の断面
積はヨーク鉄心52の断面積より小さくすること
ができる。なお10は主鉄心1のセンタホールで
ここを貫通するスタツドにより主鉄心1を締付け
る。主巻線2の端子はヨーク鉄心52の間から、
又2次巻線3の端子はヨーク鉄心51の間からそ
れぞれ引出せばよい。中間鉄心9の締付けは隣り
合う中間鉄心間の空間部を利用し、締付スタツド
により行なえばよい。
As described above, the cross-sectional area of the main core 1 can be made larger than the cross-sectional area of the corresponding intermediate core 9, so as in this example, the cross-sectional area of the inner yoke core 51 is made smaller than the cross-sectional area of the yoke core 52. be able to. Note that 10 is a center hole of the main iron core 1, and the main iron core 1 is tightened by a stud passing through this center hole. The terminals of the main winding 2 are connected between the yoke core 52,
Further, the terminals of the secondary winding 3 may be drawn out from between the yoke cores 51, respectively. The intermediate cores 9 may be tightened using a tightening stud, making use of the space between adjacent intermediate cores.

第9図は第7図と同様の構成としたもので、2
次巻線3を主巻線2に対して外側に配置した構成
(第5図に対応する構成)を示す。この場合中間
鉄心9とヨーク鉄心5の断面積は、それと対応す
る主鉄心1の端面の面積と等しくすればよいが、
鉄心外を通る磁束量もしくは選定する磁束密度の
値によつては異る断面積としてもよい。
Figure 9 has the same configuration as Figure 7, with 2
A configuration in which the secondary winding 3 is arranged outside the main winding 2 (configuration corresponding to FIG. 5) is shown. In this case, the cross-sectional areas of the intermediate core 9 and the yoke core 5 may be made equal to the area of the corresponding end face of the main core 1;
The cross-sectional area may be different depending on the amount of magnetic flux passing outside the core or the value of the selected magnetic flux density.

これらの構成によれば主巻線2の周囲が中間鉄
心とヨーク鉄心で適当に覆われるので、漏れ磁束
は更に少くなり、磁気シールドは極めて容易であ
る。
According to these configurations, the periphery of the main winding 2 is appropriately covered with the intermediate core and the yoke core, so that leakage magnetic flux is further reduced and magnetic shielding is extremely easy.

第11図は第4図に示す分岐リアクトルを三相
配置した場合の例を示し、すなわち、主巻線2を
長円形とし、その内側の一方に主鉄心1及び2次
巻線3を同心状に設け、他の一方に中間鉄心9を
設ける。主鉄心1と中間鉄心9はヨーク鉄心51
により又中間鉄心9の両端は主巻線2の外側を通
るヨーク鉄心52により磁気的に結合する。この
ように構成される3台の分路リアクトル21〜2
3を図のように並設し、各三相の線路に主巻線2
を接続すればスペース的に極めて有利となる。
FIG. 11 shows an example of a three-phase arrangement of the branch reactor shown in FIG. and an intermediate iron core 9 is provided on the other side. Main iron core 1 and intermediate iron core 9 are yoke iron core 51
In addition, both ends of the intermediate core 9 are magnetically coupled by a yoke core 52 passing outside the main winding 2. Three shunt reactors 21 to 2 configured in this way
3 are installed in parallel as shown in the figure, and the main winding 2 is connected to each three-phase line.
If you connect them, it will be extremely advantageous in terms of space.

以上詳述したように、この発明によれば主巻線
と2次巻線との間にギヤツプ入りの中間鉄心を配
置する構成としたので、従来のように両巻線の間
隔を広げなくともリアクトル容量の増大のために
磁束密度を高めることができ、したがつて従来構
成に比較して、重量、損失を軽減させることがで
きる効果を奏する。
As detailed above, according to the present invention, the gapped intermediate core is disposed between the main winding and the secondary winding, so there is no need to widen the gap between the two windings as in the past. Since the reactor capacity is increased, the magnetic flux density can be increased, and therefore weight and loss can be reduced compared to the conventional configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の断面図、第2図はこの発明の
実施例を示す断面図、第3図は平面図、第4図は
第2図の変形実施例を示す断面図、第5図はこの
発明の他の実施例を示す断面図、第6図は第5図
の変形実施例を示す断面図、第7図はこの発明の
更に別の実施例を示す平面図、第8図は第7図の
半部を断面とした側面図、第9図は第7図の変形
実施例を示す平面図、第10図は第9図の半部を
断面とした側面図、第11図はこの発明の更に別
の実施例を示す平面図、第12図は同断面図であ
る。 1……主鉄心、2……主巻線、3……2次巻
線、4……開閉器、5,51,52……ヨーク鉄
心、9……中間鉄心。
Fig. 1 is a sectional view of a conventional example, Fig. 2 is a sectional view showing an embodiment of the present invention, Fig. 3 is a plan view, Fig. 4 is a sectional view showing a modified embodiment of Fig. 2, and Fig. 5. 6 is a sectional view showing a modified embodiment of FIG. 5, FIG. 7 is a plan view showing still another embodiment of the invention, and FIG. 8 is a sectional view showing another embodiment of the invention. FIG. 9 is a plan view showing a modified embodiment of FIG. 7, FIG. 10 is a side view of the half of FIG. 9 in cross section, and FIG. 11 is a side view of FIG. FIG. 12 is a plan view showing still another embodiment of the present invention, and FIG. 12 is a sectional view thereof. 1... Main iron core, 2... Main winding, 3... Secondary winding, 4... Switch, 5, 51, 52... Yoke iron core, 9... Intermediate iron core.

Claims (1)

【特許請求の範囲】 1 ギヤツプを有する主鉄心に、主巻線と、選択
的に短絡開放される2次巻線とを巻装するととも
に、前記主巻線と2次巻線との間にギヤツプを有
する中間鉄心を配置し、前記主鉄心と中間鉄心と
の各両端部をヨーク鉄心によつて磁気的に短絡し
てなる可変容量型分路リアクトル。 2 中間鉄心はその磁気抵抗を主鉄心の磁気抵抗
の(n−1)倍(ただしnは2次巻線の短絡開放
による可変容量化)としてなる特許請求の範囲第
1項記載の可変容量型分路リアクトル。 3 ギヤツプを有する主鉄心に、主巻線と、選択
的に短絡開放される2次巻線とを巻装するととも
に、前記主巻線と2次巻線との間にギヤツプを有
する中間鉄心を前記主鉄心の周囲に複数分散して
配置し、前記主鉄心と各中間鉄心との各両端部を
それぞれヨーク鉄心によつて磁気的に短絡してな
る可変容量型分路リアクトル。
[Scope of Claims] 1. A main winding and a secondary winding that is selectively short-circuited and opened are wound around a main core having a gap, and between the main winding and the secondary winding, A variable capacity shunt reactor in which an intermediate iron core having a gap is arranged, and both ends of the main iron core and the intermediate iron core are magnetically short-circuited by a yoke iron core. 2. The variable capacitance type according to claim 1, wherein the intermediate core has a magnetic resistance that is (n-1) times the magnetic resistance of the main core (where n is variable capacitance due to short-circuiting and opening of the secondary winding). Shunt reactor. 3. A main winding and a secondary winding that is selectively short-circuited and opened are wound around a main core having a gap, and an intermediate core having a gap is provided between the main winding and the secondary winding. A plurality of variable capacitance shunt reactors are distributed around the main iron core, and each end of the main iron core and each intermediate iron core are magnetically short-circuited by a yoke iron core.
JP57122411A 1982-07-13 1982-07-13 Shunt reactor of variable capacitance type Granted JPS5913315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57122411A JPS5913315A (en) 1982-07-13 1982-07-13 Shunt reactor of variable capacitance type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57122411A JPS5913315A (en) 1982-07-13 1982-07-13 Shunt reactor of variable capacitance type

Publications (2)

Publication Number Publication Date
JPS5913315A JPS5913315A (en) 1984-01-24
JPH023283B2 true JPH023283B2 (en) 1990-01-23

Family

ID=14835138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57122411A Granted JPS5913315A (en) 1982-07-13 1982-07-13 Shunt reactor of variable capacitance type

Country Status (1)

Country Link
JP (1) JPS5913315A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239850A (en) * 1988-07-27 1990-02-08 Ton:Kk Dainty food and production thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4867053B2 (en) * 2004-06-03 2012-02-01 北芝電機株式会社 Reactor
JP4626389B2 (en) * 2005-05-13 2011-02-09 富士電機システムズ株式会社 Combined reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239850A (en) * 1988-07-27 1990-02-08 Ton:Kk Dainty food and production thereof

Also Published As

Publication number Publication date
JPS5913315A (en) 1984-01-24

Similar Documents

Publication Publication Date Title
CA1138543A (en) Electromagnetic inductor for generating a helical field
US2283711A (en) Electrical winding
JPH023283B2 (en)
US4112404A (en) Variable flux transformer
CA1263157A (en) Rotating flux transformer
JPH0644539B2 (en) Inner iron transformer
US2342084A (en) Transformer tap-changing circuit
JP4532034B2 (en) Zero phase current transformer
US2735989A (en) Variable inductance
US4638177A (en) Rotating flux transformer
JPH05159952A (en) Zero-phase current transformer and winding method therefor
JPH0144002B2 (en)
JPS645448B2 (en)
JPH06260353A (en) Multiplexed transformer
US4626815A (en) Polyphase assembly
JPH0635457Y2 (en) Common mode choke coil
US4134089A (en) Electromagnet for an extremely inverse time overcurrent protective relay
JP2829508B2 (en) Single-phase three-wire single-turn transformer
JPH10144549A (en) Double ratio current transformer
JPH0528747Y2 (en)
SU56432A1 (en) Contactless salesman
JPH09326230A (en) Zero phase current transformer
JP3556817B2 (en) Tap-switching autotransformer under load
JPS6040687B2 (en) transformer tap winding
JPH0330306A (en) Current transformer