JPH0132282B2 - - Google Patents

Info

Publication number
JPH0132282B2
JPH0132282B2 JP60196055A JP19605585A JPH0132282B2 JP H0132282 B2 JPH0132282 B2 JP H0132282B2 JP 60196055 A JP60196055 A JP 60196055A JP 19605585 A JP19605585 A JP 19605585A JP H0132282 B2 JPH0132282 B2 JP H0132282B2
Authority
JP
Japan
Prior art keywords
particles
metal particles
metal
metal compound
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60196055A
Other languages
Japanese (ja)
Other versions
JPS6256505A (en
Inventor
Hirohisa Kajama
Motonobu Teramoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP19605585A priority Critical patent/JPS6256505A/en
Publication of JPS6256505A publication Critical patent/JPS6256505A/en
Publication of JPH0132282B2 publication Critical patent/JPH0132282B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は新規な金属超微粒子の製造方法に関
し、詳しくは粒径が5000Å以下の金属超微粒子を
簡単に効率よく製造する方法を提供する。 (従来技術およびその問題点) 一般に平均粒径が1μ以下の金属超微粒子は塊
状物質に見られない多様の特性、例えば磁気的、
化学的、熱的機能が現れるため、近年、幅広い工
業分野での応用検討が行われている。例えば平均
粒径が200Åの鉄−コバルト(Fe−Co)や鉄−ニ
ツケル(Fe−Ni)粒子は、磁気テープとした場
合に従来用いられてきた酸化物粒子に比べて、数
倍の磁気記録能力を有する。また、平均粒径100
Å程度のタングステン(W)粒子は、平均粒径が
数μmのW粒子に比べて、焼結温度が1000℃以上
低下することから、低い温度で焼結が進行し、容
易に緻密化する可能性がある。さらに、ニツケル
(Ni)超微粒子は、例えばトルエンの水素化反応
やイソプロパノール、シクロヘキサノールの脱水
素反応の触媒として優れた活性が達成されること
が知られている。 従来このような金属超微粒子の製造方法として
は、一般に(1)金属の蒸発現象を利用する方法(ガ
ス中蒸発法やプラズマ反応法)、(2)金属塩を含む
水溶液中に水素化ホウ素ナトリウム、ヒドラジン
などの還元剤を加える方法(液相還元法)、(3)金
属の酸化物又はその塩を融点以下の温度で、水素
又は炭素で還元する方法などがある。 しかしながら、上記した方法はそれぞれの長所
を有する反面で種々の欠点がある。例えば、ガス
中蒸発法は、粒度分布がシヤープな超微粒子が得
られるが、高周波誘導加熱器、電気抵抗加熱器を
用い蒸発効果を上げるためには、真空あるいは凝
圧状態で粒子を生成する必要が生じるため、生産
工程が煩雑で生産性(量産性)が低い。また、マ
ンガン(Mn)がマグネシウム(Mg)のような
蒸気圧の高い金属には有効であるが、タングステ
ン(W)、モリブデン(Mo)などの高融点金属
には不適である。プラズマ反応法は高周波プラズ
マ、アーク放電プラズマ(活性水素−溶融金属反
応法)を用いるため、1000〓程度の温度で金属を
蒸発させることが可能で、生産性が高く、高融点
金属にも有効であるが、得られる粒子の粒度分布
がシヤープでない。 液相還元法は、操作工程が簡単ではあるが、得
られる金属粒子中にホウ素(P)やリン(P)な
ど還元剤成分が混入するため高純度な金属粒子が
得難く、また生成粒子が酸化され易い。加熱還元
法は、酸化物あるいは塩等の化合物の粒径、粒子
形態が生成微粒子に及ぼす影響が顕著で、また高
温で反応させるため粒子の焼結が生じ易い等の欠
点があつた。 (問題を解決するための手段) 本発明者等は従来法における問題を解決し、特
に粒径範囲が5000Å以下の金属超微粒子を簡単に
効率よく得るための新規な方法について鋭意検討
した。その結果、金属化合物を特定した溶媒中に
溶解又は懸濁させた状態で、還元性ガスを含むガ
スと共に高温媒体中に噴霧して、該金属化合物を
瞬時に還元することにより、所期の目的が達成さ
れることを見い出し、本発明を提案するに至つ
た。 即ち、本発明は金属化合物のメタノール溶液ま
たはその懸濁液を還元性ガス雰囲気下において、
噴霧状態で加熱し、該金属化合物を還元すること
を特徴とする金属超微粒子の製造方法である。 本発明に用いる金属化合物は特に制限されない
が、Fe、Ni、Co、W、Mo、Cu、Ag等の第a
族、族、b族金属の酸化物、塩化物、硝酸
塩、硫酸塩、リン酸塩、水酸化物、あるいはヘト
ロポリ酸およびその塩が好ましい。 本発明においては、上記した金属化合物を溶解
又は懸濁させる溶媒としてメタノールを用いるこ
とが極めて重要で、メタノール以外の溶媒を用い
た場合には目的とする金属超微粒子を得ることが
出来ない。即ち、例えばエタノール、ベンゼン、
四塩化炭素などメタノール以外の有機溶媒を用い
た場合には、還元性雰囲気下における金属化合物
の加熱分解に際して、該有機溶媒が分解して炭素
を生成するため、目的とする金属超微粒子に混入
し、分離が極めて困難である。また、水を溶媒と
して用いる場合には、加熱分解して酸素を生じる
ため、還元雰囲気下での反応条件が難しく、又、
金属化合物の均一な溶液あるいは懸濁液の調製が
難しいため、還元性ガス雰囲気下において均一な
噴霧状態の形成が難しく、ひいては粒径の揃つた
金属超微粒子を得ることが出来ない。 金属化合物のメタノール溶液又はその懸濁液の
調製は、所定量の金属化合物をメタノール溶液中
に添加し、撹拌あるいは超音波処理を行うことに
より達成される。金属化合物の溶液あるいは懸濁
液の濃度は、所望する金属あるいは粒径により異
なるが、10〜500g(金属化合物)/(メタノ
ール)が一般的である。 このような溶液または懸濁液を噴霧状にする方
法は、公知の方法が特に制限なく用いられるが、
粒径が一定範囲に揃つた金属超微粒子を得るため
には、噴霧滴の形状を均一にすることが必要で、
そのためには例えばネブライザー、超音波噴霧器
を用いることが好ましい。 このようにして得た噴霧滴は、次に還元雰囲気
下で加熱することにより金属超微粒子に還元析出
される。この操作は、一般に前記噴霧滴を還元性
ガスを含むガスと共に、一般に1〜30ml/minの
速度で加熱手段に供給することにより達成され
る。尚、種類の異なる2種以上の金属化合物のメ
タノール溶液あるいは懸濁液を用いることで合金
超微粒子を得ることも出来る。 本発明において還元性ガス雰囲気とは、例えば
水素などの還元性ガスを含むガス雰囲気の総称
で、一般には水素または水素と不活性ガスとの混
合ガス、例えばAr−H2等が用いられる。この
際、水素の量は金属化合物を還元するために必要
な化学量論的な量以上であればよい。また、本発
明において加熱とは、前記金属化合物を含む噴霧
滴を該金属化合物の化学的な還元温度以上の温度
下に一定時間曝すことであり、該温度および曝露
時間は金属の種類や所望する粒径等により異なる
が、一般には反応温度が高く、曝露時間が短い方
が得られる粒径が小さく収率が高くなり、そのた
め600℃以上の温度で5秒以下が一般的で、1000
℃以上の温度で2秒以下が好ましい。また、加熱
手段としては、電気炉、高周波炉等、公知の加熱
手段が特に制限なく用いられる。 本発明の方法によつて粒径が小さく且つ粒度分
布が揃つた金属超微粒子を得るためには、前述の
如く金属化合物の種類等により、加熱温度、曝露
時間、出発原料の供給速度などを精密にコントロ
ールすることが必要であるが、そのほか噴霧滴の
形状を均一に且つ加熱手段中に該噴霧滴が乱流に
ならないようにネブライザー等のノズル形状を工
夫することも大切である。 加熱されて生成した金属粒子は公知の方法によ
り分級、回収される。 本発明の方法に用いられる装置は、上記要件を
満足するものであれば特に制限されない。代表的
な1例について、第2図に基づき説明する。即
ち、第2図に示す金属超微粒子の製造装置は、原
料液タンク1、ガスボンベ2、噴霧装置3、加熱
手段4及び金属超微粒子の回収機器より構成され
る。なお、回収機器は後述するサイクロン9、回
収部(円筒状濾紙)10、強制排気手段7、圧力
制御用タンク8を総括したものである。原料液タ
ンク1より定量ポンプ等の移送手段5により送液
された金属化合物のメタノール溶液又は懸濁液
は、ガスボンベ2より供給される還元ガスを含む
ガスと共に、噴霧装置3に供給され、該装置のノ
ズル6より高速で、加熱手段4中に噴霧されるこ
とにより、瞬時に還元されて金属超微粒子とな
る。加熱手段4の排出側には、エアーポンプ、真
空ポンプ等の強制排気手段7及び加熱手段(反応
系)内の圧力バランスを制御する圧力制御用タン
ク8を有し、これらの装置と加熱手段4の間に
は、サイクロン9及び回収部10を有するため、
前記生成した金属超微粒子はサイクロン9又は回
収部10に回収される。 生成した金属超微粒子を回収する方法は、上記
方法に特に制限されず公知の方法が特に制限なく
用いられる。 (効果) 以上に説明したように、本発明によれば金属化
合物のメタノール溶液または懸濁液を瞬時に加熱
還元して金属粒子を生成させるため、粒径が5000
Å以下の金属超微粒子を得ることが出来る。ま
た、本発明は第2図に示すような装置を用いるた
め、簡単な工程および操作で、迅速に効率よく且
つ容易に所望な金属超微粒子を得ることが出来、
さらに95%以上、場合によつては99%以上の高純
度な金属粒子を得ることが出来るため工業的にも
極めて有用である。 (実施例) 以下、本発明の実施例を示すが、本発明はこれ
らの実施例に特に制限されるものではない。 実施例 1 第2図に示す装置を用いて金属超微粒子の製造
を行つた。第1表に示す各種の金属化合物のメタ
ノール溶液又はその懸濁液(原料液)を、定量ポ
ンプを用い第1表に示す速度でノズルに送り、第
1表に示すガス量で供給されるH2−Arガスと共
に、ノズルの先端より噴霧状にして、反応炉に供
給して金属化合物を加熱還元した。 反応炉における反応温度および反応時間は、第
1表に示すように設定した。生成した金属超微粒
子はサイクロン、円筒濾紙で回収した。この金属
超微粒子をBET法、X−ray回折法及び透過型電
子顕微鏡観察法により粒径を求めた結果を一括し
て第1表に示した。 なお、実験No.2の生成W粒子の純度はチオシア
ン酸塩法(吸光光度法)による分析の結果、95.8
%であつた。また、他の実施例においても同等の
純度の金属超微粉体が得られた。 また、実験No.3で得られた粒子の電子顕微鏡写
真を第1図に示した。
(Industrial Application Field) The present invention relates to a novel method for producing ultrafine metal particles, and specifically provides a method for easily and efficiently producing ultrafine metal particles having a particle size of 5000 Å or less. (Prior art and its problems) In general, ultrafine metal particles with an average particle size of 1μ or less have various properties not found in bulk materials, such as magnetic,
Due to its chemical and thermal functions, applications in a wide range of industrial fields have been investigated in recent years. For example, iron-cobalt (Fe-Co) and iron-nickel (Fe-Ni) particles with an average particle size of 200 Å can record several times more magnetically than conventionally used oxide particles when used in magnetic tape. have the ability. Also, the average particle size is 100
The sintering temperature of tungsten (W) particles in the order of Å is more than 1000°C lower than that of W particles with an average particle size of several μm, so sintering progresses at low temperatures and can be easily densified. There is sex. Furthermore, it is known that nickel (Ni) ultrafine particles achieve excellent activity as a catalyst for, for example, the hydrogenation reaction of toluene and the dehydrogenation reaction of isopropanol and cyclohexanol. Conventional methods for producing such ultrafine metal particles generally include (1) a method that utilizes the evaporation phenomenon of metal (evaporation in gas or plasma reaction method), (2) a method that uses sodium borohydride in an aqueous solution containing a metal salt. , a method of adding a reducing agent such as hydrazine (liquid phase reduction method), and (3) a method of reducing a metal oxide or its salt with hydrogen or carbon at a temperature below its melting point. However, while each of the above methods has its own advantages, it also has various drawbacks. For example, the in-gas evaporation method can obtain ultrafine particles with a sharp particle size distribution, but in order to increase the evaporation effect using a high-frequency induction heater or electric resistance heater, it is necessary to generate particles in a vacuum or condensation state. As a result, the production process is complicated and productivity (mass production) is low. Further, although manganese (Mn) is effective for metals with high vapor pressure such as magnesium (Mg), it is not suitable for high melting point metals such as tungsten (W) and molybdenum (Mo). Since the plasma reaction method uses high-frequency plasma and arc discharge plasma (active hydrogen-molten metal reaction method), it is possible to evaporate metals at a temperature of about 1000°C, resulting in high productivity and being effective for high-melting point metals. However, the particle size distribution of the obtained particles is not sharp. Although the liquid phase reduction method has a simple operation process, it is difficult to obtain high-purity metal particles because reducing agent components such as boron (P) and phosphorus (P) are mixed into the obtained metal particles, and the generated particles are Easy to oxidize. The thermal reduction method has drawbacks such as the particle size and particle morphology of compounds such as oxides or salts having a significant effect on the produced fine particles, and the reaction being carried out at high temperatures, which tends to cause sintering of the particles. (Means for Solving the Problems) The present inventors solved the problems with conventional methods, and in particular, conducted intensive studies on a new method for easily and efficiently obtaining ultrafine metal particles having a particle size range of 5000 Å or less. As a result, by spraying the metal compound dissolved or suspended in a specified solvent into a high-temperature medium together with a gas containing a reducing gas, the metal compound can be instantly reduced to achieve the desired purpose. The present inventors have discovered that this can be achieved, and have proposed the present invention. That is, in the present invention, a methanol solution of a metal compound or a suspension thereof is placed in a reducing gas atmosphere,
This method of producing ultrafine metal particles is characterized by reducing the metal compound by heating it in a sprayed state. The metal compounds used in the present invention are not particularly limited, but include Fe, Ni, Co, W, Mo, Cu, Ag, etc.
Preferred are oxides, chlorides, nitrates, sulfates, phosphates, hydroxides of group metals, group B metals, or heteropolyacids and their salts. In the present invention, it is extremely important to use methanol as a solvent for dissolving or suspending the above-described metal compound; if a solvent other than methanol is used, the desired ultrafine metal particles cannot be obtained. That is, for example, ethanol, benzene,
When an organic solvent other than methanol, such as carbon tetrachloride, is used, the organic solvent decomposes and generates carbon when the metal compound is thermally decomposed in a reducing atmosphere, so it may not mix into the target ultrafine metal particles. , separation is extremely difficult. In addition, when water is used as a solvent, it is thermally decomposed to produce oxygen, so the reaction conditions in a reducing atmosphere are difficult, and
Since it is difficult to prepare a uniform solution or suspension of a metal compound, it is difficult to form a uniform spray state in a reducing gas atmosphere, and as a result, it is impossible to obtain ultrafine metal particles with uniform particle size. Preparation of a methanol solution of a metal compound or a suspension thereof is achieved by adding a predetermined amount of a metal compound to a methanol solution and performing stirring or ultrasonication. The concentration of the metal compound solution or suspension varies depending on the desired metal or particle size, but is generally 10 to 500 g (metal compound)/(methanol). Any known method can be used without particular limitation to form a spray from such a solution or suspension.
In order to obtain ultrafine metal particles with a uniform particle size within a certain range, it is necessary to make the shape of the spray droplets uniform.
For this purpose, it is preferable to use, for example, a nebulizer or an ultrasonic atomizer. The spray droplets thus obtained are then heated in a reducing atmosphere to be reduced and precipitated into ultrafine metal particles. This operation is generally accomplished by feeding the spray droplets together with a gas containing a reducing gas to heating means at a rate generally of 1 to 30 ml/min. Incidentally, ultrafine alloy particles can also be obtained by using a methanol solution or suspension of two or more different types of metal compounds. In the present invention, the reducing gas atmosphere is a general term for a gas atmosphere containing a reducing gas such as hydrogen, and generally hydrogen or a mixed gas of hydrogen and an inert gas, such as Ar-H 2 , is used. At this time, the amount of hydrogen may be at least the stoichiometric amount required to reduce the metal compound. Furthermore, in the present invention, heating means exposing the spray droplets containing the metal compound to a temperature higher than the chemical reduction temperature of the metal compound for a certain period of time, and the temperature and exposure time are determined depending on the type of metal and the desired exposure time. Although it varies depending on the particle size, etc., in general, the higher the reaction temperature and the shorter the exposure time, the smaller the particle size obtained and the higher the yield.
Preferably, the heating time is 2 seconds or less at a temperature of .degree. C. or higher. Further, as the heating means, known heating means such as an electric furnace and a high frequency furnace can be used without particular limitation. In order to obtain ultrafine metal particles with a small particle size and uniform particle size distribution by the method of the present invention, heating temperature, exposure time, feeding rate of starting materials, etc. must be adjusted precisely depending on the type of metal compound as described above. In addition to this, it is also important to devise the shape of the nozzle of the nebulizer or the like so that the shape of the spray droplets is uniform and that the spray droplets do not become turbulent in the heating means. The metal particles generated by heating are classified and recovered by a known method. The apparatus used in the method of the present invention is not particularly limited as long as it satisfies the above requirements. One typical example will be explained based on FIG. 2. That is, the apparatus for producing ultrafine metal particles shown in FIG. 2 is comprised of a raw material liquid tank 1, a gas cylinder 2, a spray device 3, a heating means 4, and an ultrafine metal particle recovery device. The recovery device includes a cyclone 9, a recovery section (cylindrical filter paper) 10, a forced exhaust means 7, and a pressure control tank 8, which will be described later. A methanol solution or suspension of a metal compound sent from a raw material liquid tank 1 by a transfer means 5 such as a metering pump is supplied to a spraying device 3 together with a gas containing a reducing gas supplied from a gas cylinder 2. By being sprayed into the heating means 4 at a higher speed than the nozzle 6, the metal is instantly reduced and becomes ultrafine metal particles. On the discharge side of the heating means 4, there is a forced evacuation means 7 such as an air pump or a vacuum pump, and a pressure control tank 8 for controlling the pressure balance within the heating means (reaction system). In between, there is a cyclone 9 and a recovery section 10,
The generated ultrafine metal particles are collected by the cyclone 9 or the collection unit 10. The method for collecting the produced ultrafine metal particles is not particularly limited to the above method, and any known method can be used without particular limitation. (Effects) As explained above, according to the present invention, a methanol solution or suspension of a metal compound is instantaneously heated and reduced to generate metal particles.
Ultrafine metal particles of Å or less can be obtained. Furthermore, since the present invention uses an apparatus as shown in FIG. 2, desired ultrafine metal particles can be obtained quickly, efficiently, and easily through simple steps and operations.
Furthermore, since it is possible to obtain metal particles with a purity of 95% or more, in some cases 99% or more, it is extremely useful industrially. (Examples) Examples of the present invention will be shown below, but the present invention is not particularly limited to these Examples. Example 1 Ultrafine metal particles were produced using the apparatus shown in FIG. A methanol solution of the various metal compounds shown in Table 1 or a suspension thereof (raw material liquid) is sent to the nozzle using a metering pump at the speed shown in Table 1, and H Together with 2 -Ar gas, it was atomized from the tip of the nozzle and supplied to the reactor to heat and reduce the metal compound. The reaction temperature and reaction time in the reactor were set as shown in Table 1. The generated ultrafine metal particles were collected using a cyclone and a thimble filter. The particle diameters of these ultrafine metal particles were determined by BET method, X-ray diffraction method, and transmission electron microscopy method, and the results are shown in Table 1. The purity of the W particles produced in Experiment No. 2 was 95.8 as a result of analysis using the thiocyanate method (absorption photometry).
It was %. In addition, ultrafine metal powders of comparable purity were obtained in other examples as well. Further, an electron micrograph of the particles obtained in Experiment No. 3 is shown in FIG.

【表】【table】

【表】 比較例 1 実施例1の実験No.5において、原料液タンク1
に、実験No.5と同じH2WO4を300℃で乾燥し
WO3として流動性を与えた粉状体を供給し、同
様の条件で加熱還元した。 その結果、得られた金属微粒子の粒子径は0.7
〜2μmであつた。また、純度は15%であり、多
量のWO3が残存していた。 比較例 2 実施例1の実験No.5において、メタノールに代
えてエタノールを使用した以外は同様な条件で加
熱還元した。 その結果、得られた金属超微粒子は、58%の割
合でカーボンを含有していた。
[Table] Comparative Example 1 In Experiment No. 5 of Example 1, raw material liquid tank 1
Next, the same H 2 WO 4 as in Experiment No. 5 was dried at 300℃.
A powdered material given fluidity as WO 3 was supplied and heated and reduced under the same conditions. As a result, the particle diameter of the obtained metal fine particles was 0.7
It was ~2 μm. Further, the purity was 15%, and a large amount of WO 3 remained. Comparative Example 2 Heat reduction was carried out under the same conditions as in Experiment No. 5 of Example 1, except that ethanol was used instead of methanol. As a result, the obtained ultrafine metal particles contained carbon at a ratio of 58%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によつて得られる粒子の電子顕
微鏡写真を示す。また、第2図は本発明の方法に
用いられる装置の代表的1例を示す。 図中1は原料液タンク、2はガスボンベ、3は
噴霧装置、4は加熱手段、5は移送手段、6はノ
ズル、7は強制排気手段、8は圧力制御用タン
ク、9はサイクロン、10は回収部である。
FIG. 1 shows an electron micrograph of particles obtained according to the invention. Further, FIG. 2 shows a typical example of an apparatus used in the method of the present invention. In the figure, 1 is a raw material liquid tank, 2 is a gas cylinder, 3 is a spraying device, 4 is a heating means, 5 is a transfer means, 6 is a nozzle, 7 is a forced exhaust means, 8 is a pressure control tank, 9 is a cyclone, and 10 is a This is the collection department.

Claims (1)

【特許請求の範囲】[Claims] 1 金属化合物のメタノール溶液またはその懸濁
液を還元性ガス雰囲気下において、噴霧状態で加
熱し、該金属化合物を還元することを特徴とする
金属超微粒子の製造方法。
1. A method for producing ultrafine metal particles, which comprises heating a methanol solution of a metal compound or a suspension thereof in an atomized state in a reducing gas atmosphere to reduce the metal compound.
JP19605585A 1985-09-06 1985-09-06 Production of ultrafine metallic particle Granted JPS6256505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19605585A JPS6256505A (en) 1985-09-06 1985-09-06 Production of ultrafine metallic particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19605585A JPS6256505A (en) 1985-09-06 1985-09-06 Production of ultrafine metallic particle

Publications (2)

Publication Number Publication Date
JPS6256505A JPS6256505A (en) 1987-03-12
JPH0132282B2 true JPH0132282B2 (en) 1989-06-30

Family

ID=16351446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19605585A Granted JPS6256505A (en) 1985-09-06 1985-09-06 Production of ultrafine metallic particle

Country Status (1)

Country Link
JP (1) JPS6256505A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0391779A (en) * 1989-09-04 1991-04-17 Konica Corp Developing method for color image forming device
JPH057696U (en) * 1991-07-09 1993-02-02 日立造船産業株式会社 Filling nozzle
JPH0549699U (en) * 1991-12-10 1993-06-29 花王株式会社 Liquid filling nozzle device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942736A (en) * 1982-09-01 1984-03-09 株式会社東芝 Gas breaker with gas bushing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942736A (en) * 1982-09-01 1984-03-09 株式会社東芝 Gas breaker with gas bushing

Also Published As

Publication number Publication date
JPS6256505A (en) 1987-03-12

Similar Documents

Publication Publication Date Title
KR100288095B1 (en) Manufacturing method of silver powder by aerosol decomposition
EP0591881B1 (en) Method for making palladium and palladium oxide powders by aerosol decomposition
JP5133065B2 (en) Inductive plasma synthesis of nanopowder
US5616165A (en) Method for making gold powders by aerosol decomposition
US20030108459A1 (en) Nano powder production system
TW200946451A (en) Process for producing nitrogen-doped carbon nanotubes
KR102020314B1 (en) Method for manufacturing spherical high purity metal powder
JPH11350010A (en) Production of metal powder
JP5716155B2 (en) Powder for producing nanocarbon and method for producing metal-encapsulated fullerene
JP2004067499A (en) Method for manufacturing magnetic metal occluding carbon nanocapsule
JPH0623405B2 (en) Method for producing spherical copper fine powder
KR101174136B1 (en) Method for Synthesis and Morphological Control of Carbon Nanotubes
JPH0132282B2 (en)
RU2652202C2 (en) Method for producing hollow nanostructured metal microspheres
CN111687425A (en) Core-shell structure nano material and preparation method thereof
CN115889760A (en) Device and method for rapidly preparing carbon nanotube coated superfine high-entropy alloy composite powder
JPS63170212A (en) Production of hyper-fine powder of metal boride
US8888889B2 (en) Method of making non-hollow, non-fragmented spherical metal or metal alloy particles
JP2001254109A (en) Method of producing metallic particulate powder
Amouzegar et al. Nonconventional applications of nebulizers: Nanomaterials synthesis
Chang Plasma synthesis of metal nanopowders
JP2005154834A (en) Ruthenium ultrafine powder and its production method
JP3253175B2 (en) Method for producing spherical silver fine particles
CN115365511B (en) Gas-phase reduction and collection device and method for narrow-distribution superfine molybdenum powder
JPS62188709A (en) Production of pulverized spherical silver powder