JPH01280024A - Production of vapor-phase carbon fiber - Google Patents

Production of vapor-phase carbon fiber

Info

Publication number
JPH01280024A
JPH01280024A JP63107548A JP10754888A JPH01280024A JP H01280024 A JPH01280024 A JP H01280024A JP 63107548 A JP63107548 A JP 63107548A JP 10754888 A JP10754888 A JP 10754888A JP H01280024 A JPH01280024 A JP H01280024A
Authority
JP
Japan
Prior art keywords
reactor
hydrocarbon compound
carbon fiber
raw material
gas mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63107548A
Other languages
Japanese (ja)
Other versions
JP2531739B2 (en
Inventor
Tomio Hirano
富夫 平野
Hitoshi Ushijima
均 牛島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP63107548A priority Critical patent/JP2531739B2/en
Publication of JPH01280024A publication Critical patent/JPH01280024A/en
Application granted granted Critical
Publication of JP2531739B2 publication Critical patent/JP2531739B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve production efficiency in a thermal decomposition furnace and to efficiently obtain the title fiber by sending a raw material gas mixture containing a catalytic component from one end of a high-temperature tubular reactor and feeding a hydrocarbon compound to the shaft center part of the reactor. CONSTITUTION:A raw material gas mixture containing a catalytic component (e.g., a hydrocarbon and ultrafine powder metallic catalyst are mixed with a carrier gas such as hydrogen) is fed from one end of a tubular reactor maintained at high temperature (usually 1,000-1,500 deg.C), a hydrocarbon compound is fed to the shaft center part of the reactor and thermal decomposition of vapor-phase hydrocarbon compound is carried out. For example, a method wherein the hydrocarbon compound is fed through a heat-resistant conduit inserted through the end of the reactor to the reactor may be cited as the method of introducing the hydrocarbon compound to the shaft center part of the reactor. The shaft center part is preferably separated from part wherein the raw material gas mixture is decomposed to form carbon fiber.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は複合材料などに利用するに適した炭素繊維を製
造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing carbon fiber suitable for use in composite materials and the like.

〔従来の技術〕[Conventional technology]

炭素繊維は軽量で機械的強度が優れ、また導電性も良好
なところから、金属やプラスチックスあるいは炭素材料
などを組合わせて複合材料とし、各種の応用分野に利用
されている。また、炭素繊維を高温処理することにより
黒鉛化物とし、あるいはまた、その黒鉛化物に対して種
々の物質を結合させて層間化合物とし、導電材料として
用いることも知ちれている。
Carbon fiber is lightweight, has excellent mechanical strength, and has good electrical conductivity, so it is used in a variety of application fields by combining metals, plastics, carbon materials, etc. into composite materials. It is also known to subject carbon fibers to a graphitized material by subjecting them to high-temperature treatment, or to combine various substances with the graphitized material to form an intercalation compound, which is then used as a conductive material.

かかる炭素繊維を製造する方法としては、炭素質化合物
を紡糸したのち熱分解する方法が知られており、たとえ
ばピッチの溶融紡糸を利用したり、合成繊維を炭化して
炭素質フィラメントを製造する方法がある。しかし、こ
のような方法で得られる繊維は比較的に太くて長いもの
であって、複雑な形状に自由に成形することができる合
成樹脂組成物に対する補強用配合剤などに用いるために
は、短く切断する必要があり、またそのような目的に対
しては径が太すぎる。
Known methods for producing such carbon fibers include spinning a carbonaceous compound and then thermally decomposing it; for example, using pitch melt spinning, or carbonizing synthetic fibers to produce carbonaceous filaments. There is. However, the fibers obtained by this method are relatively thick and long, and in order to be used as a reinforcing compound for synthetic resin compositions that can be freely formed into complex shapes, they must be cut into short lengths. and the diameter is too large for such purposes.

これに対して、複合材料などに配合して用いるに適した
径と長さを有する炭素質ウィスカを製造する方法として
炭化水素類を高温下に気を口部分解する方法が知られて
おり、この場合に炭素繊維成長の触媒核として鉄、ニッ
ケルなどの金属の超微粒子が用いうろこと(特公昭D8
 22571など)、また硫黄化合物の存在下に生成し
た炭化ケイ素の微細結晶も生長触媒核となる二とく特開
昭56−118913、特開昭60−54999など)
、も知られている。
On the other hand, as a method for producing carbonaceous whiskers having a diameter and length suitable for use in composite materials, a method is known in which hydrocarbons are decomposed at high temperature with air. In this case, ultrafine particles of metals such as iron and nickel are used as catalyst nuclei for carbon fiber growth (Special Publication Show D8
22571, etc.), and microcrystals of silicon carbide formed in the presence of sulfur compounds also serve as growth catalyst nuclei (JP-A-56-118913, JP-A-60-54999, etc.)
, is also known.

そして、これろの気相法炭素繊維の製造法はいずれもバ
ッチ式であって生産性が低いために、触媒核を熱分解炉
中に浮遊させることにより原料炭化水素類と触媒核との
接触時間を延長して1バツチ毎の生産量を増加させ、あ
るいは生成炭素繊維の連続取出しを行なう方法(特開昭
58−180615)によって生産効率を高める、など
の提案がなされている。
Since all of these methods for producing vapor-grown carbon fiber are batch-type and have low productivity, contact between the raw material hydrocarbons and the catalyst nuclei is achieved by suspending the catalyst nuclei in a pyrolysis furnace. Proposals have been made to increase the production efficiency by increasing the production amount per batch by extending the time, or by continuously extracting the produced carbon fibers (Japanese Patent Laid-Open No. 180615/1983).

〔発明が解決しようとする課題〕 これら公知の従来技術においては、気相法炭素X11維
装造装置の運転時間を延長しまたは連続運転をすること
によって、装置の運較効率を高めることができるものの
単位時間の生産量が増加することは期待できず、生産性
を高めるには限度があっjこ。
[Problems to be Solved by the Invention] In these known conventional techniques, the operating efficiency of the device can be increased by extending the operating time of the vapor-phase carbon It cannot be expected that the amount of goods produced per unit time will increase, and there are limits to how much productivity can be increased.

そこで本発明に於ては、炭素繊維製造装置とくに熱分解
炉中における生産能率が格段に改良される気1目法炭素
繊維の製造方法を提供しようとするものである。
SUMMARY OF THE INVENTION Therefore, the present invention aims to provide a method for producing carbon fiber using a carbon fiber method, which greatly improves production efficiency in a carbon fiber production apparatus, particularly in a pyrolysis furnace.

〔課題を解決するための手段〕[Means to solve the problem]

前述のような本発明の目的は、気を目次化水素化合物の
熱分解によって炭素繊維を製造するに当り、高温に維持
した管状反応器の一端より炭素繊維生成触媒成分を含有
する原料ガス混合物を送入すると共に該反応器の軸心部
分に炭化水素化合物を供給することを特徴とする気相法
炭素繊維の製造方法によって達成される。
The object of the present invention as described above is to produce carbon fibers by thermally decomposing a hydrogenated compound, and to supply a raw material gas mixture containing a carbon fiber-forming catalyst component from one end of a tubular reactor maintained at a high temperature. This is achieved by a method for producing vapor-grown carbon fiber, which is characterized in that the hydrocarbon compound is introduced into the reactor and also supplied to the axial center of the reactor.

本発明において用いられる炭素繊維製造用の反応器は、
管状のものであってその一端から原料を送太し他端から
分解ガスを排出することができるものである。この管状
反応器は、たとえば外部から高温に加熱できるものであ
り、原料として使用される炭化水素類や採用する触媒な
どにもよるが、通常1000−1500℃の反応温度を
維持できるものであればよい。
The reactor for carbon fiber production used in the present invention is
It is tubular and allows raw material to be delivered from one end and cracked gas to be discharged from the other end. This tubular reactor can be heated to a high temperature from the outside, for example, and can maintain a reaction temperature of usually 1000-1500°C, depending on the hydrocarbons used as raw materials and the catalyst used. good.

本発明において管状反応器の一端より送入される原料ガ
ス混合物は、炭素繊維生成触媒成分を含有するものであ
り、たとえば炭化水素類と超微粒金属触媒とを水素等の
キャリヤガスと混合したもの、あるいは炭化水素類とケ
イ素含有化合物と必要に応じてイオウ含有化合物などと
を水素等のキャリヤガスと混合したものなどであってよ
く、その他選択される反応系によって適宜の組成の原料
ガス混合物を用いうる。
In the present invention, the raw material gas mixture fed from one end of the tubular reactor contains a carbon fiber-forming catalyst component, such as a mixture of hydrocarbons and an ultrafine metal catalyst with a carrier gas such as hydrogen. Alternatively, it may be a mixture of hydrocarbons, a silicon-containing compound, and if necessary a sulfur-containing compound, etc., with a carrier gas such as hydrogen, or a raw material gas mixture of an appropriate composition depending on the reaction system selected. Can be used.

また管状反応器の細心部分に供給される炭化水素化合物
は前記の原料ガス混合物において用いられる炭化水素類
と同一のもの゛であっても異ったものであってもよく、
たとえばメタン、エタン、プロパン、プロピレン等の脂
肪族炭化水素類、ベンゼン、トルエン等の芳香族炭化水
素類、シクロヘキサン、シクロオクタン等の指環族炭化
水素類などが好ましく用いられるが、ブタノールやオク
タツール等のアルコール類、ラウリン酸やフタル酸等の
酸類並びにそれらの無水物、フタル酸ブチル等のエステ
ル類、エチルイソブチルケトンやシクロヘキサノン等の
ケトン頌、その池ヘキシルアミン等の含チツ素有機化合
物、オクチルメルカプタン等の含イオウ有機化合物など
も場合により用いることができる。
Furthermore, the hydrocarbon compounds fed to the narrow part of the tubular reactor may be the same or different from the hydrocarbons used in the feed gas mixture.
For example, aliphatic hydrocarbons such as methane, ethane, propane, and propylene, aromatic hydrocarbons such as benzene and toluene, and ring hydrocarbons such as cyclohexane and cyclooctane are preferably used, but butanol, octatool, etc. Alcohols, acids such as lauric acid and phthalic acid and their anhydrides, esters such as butyl phthalate, ketones such as ethyl isobutyl ketone and cyclohexanone, nitrogen-containing organic compounds such as hexylamine, octyl mercaptan Sulfur-containing organic compounds such as sulfur-containing organic compounds may also be used depending on the case.

かかる炭化水素化合物は単独で供給してもよいが混合物
であってもよく、水素その他のキャリヤガスと混合して
供給してもよい。
Such hydrocarbon compounds may be supplied alone, or as a mixture, or may be supplied in a mixture with hydrogen or other carrier gas.

本発明において炭化水素化合物を反応器の軸心部分に供
給するには、たとえば反応器の端部から挿入された耐熱
性の導管を介してガス状または液状で導入してもよく、
または反応器の軸心部分を移動する耐熱性の担持体に担
持させて供給するようにしてもよい。後者の場合には炭
化水素化合物は固体状で導入し、軸心部分で徐々に揮発
させること:こより反応帯域に供給するようにしてもよ
い。
In the present invention, in order to supply the hydrocarbon compound to the axial portion of the reactor, it may be introduced in gaseous or liquid form, for example, through a heat-resistant conduit inserted from the end of the reactor.
Alternatively, it may be carried on a heat-resistant carrier that moves along the axis of the reactor and supplied. In the latter case, the hydrocarbon compound may be introduced in a solid state and gradually volatilized at the axial center, thereby being supplied to the reaction zone.

さらに、反応器内において炭化水素化合物が供給される
軸心部分は、前記の原す4ガス混合物が高温によって分
解して炭素繊維が生成される部位とは区別されることが
望ましく、原料ガス混合物の大部分が反応して炭素繊維
に転化するのに続いて炭化水素化合物の供給が行われる
のが特に望ましい。こうすることにより炭素繊維生成触
媒からの炭素繊維の生成が効率よく進み、かつ生成した
炭素繊維の成長が極めて効率よく進むため、反応器の容
債当りの炭素繊維の生産能率が格段に向上する。
Furthermore, it is desirable that the axial portion in the reactor where the hydrocarbon compound is supplied be separated from the portion where the raw four gas mixture is decomposed at high temperature to produce carbon fibers. It is particularly desirable for the hydrocarbon compound to be fed after most of the carbon fibers have been reacted and converted into carbon fibers. By doing this, the production of carbon fibers from the carbon fiber production catalyst proceeds efficiently, and the growth of the produced carbon fibers proceeds extremely efficiently, so the production efficiency of carbon fibers per container of the reactor is significantly improved. .

〔実施例〕〔Example〕

内径5cm、長さ110cmのアルミナ質反応管を横型
電気炉内に取り付け、その中央部に1300℃の均熱帯
域が約20cmできるようにした。また、この反応管の
軸心部分に外径10n+mのアルミナ質炭化水素供給管
を取り付け、その先端が反応管の中央部にあるようにし
た。
An alumina reaction tube with an inner diameter of 5 cm and a length of 110 cm was installed in a horizontal electric furnace so that a soaking zone of about 20 cm at 1300° C. was formed in the center. Further, an alumina hydrocarbon supply pipe having an outer diameter of 10 n+m was attached to the axial center of the reaction tube, so that its tip was located at the center of the reaction tube.

このように構成した装置に対し、反応管の前端から、ベ
ンゼン5ミリモル/I!、クロルジフ口口メチル7ラン
0.1ミリモル/A、硫化水素2ミリモル/βを含有し
、水素をキャリヤガスとする原料ガス混合物を常温常圧
換算で管内流速が5cm/minとなるように送入し、
また炭化水素供給管からベンゼン10ミリモル/βを含
有する水素を常温常圧換算で5 Q Q m77/mi
nの割合で送入して炭素vt維を生成させ、所定の反応
時間経過後に反応器内を水素で置換したのち反応器を冷
却して、生成した炭素繊維を反応器の内壁かち回収した
For the apparatus constructed in this way, 5 mmol/I! of benzene was added from the front end of the reaction tube. A raw material gas mixture containing 0.1 mmol/A of chlordif oral methyl 7 run and 2 mmol/β of hydrogen sulfide and using hydrogen as a carrier gas was delivered so that the flow rate in the pipe was 5 cm/min in terms of room temperature and normal pressure. Enter,
In addition, hydrogen containing 10 mmol/β of benzene from the hydrocarbon supply pipe was converted to 5 Q Q m77/mi at room temperature and normal pressure.
After a predetermined reaction time, the inside of the reactor was replaced with hydrogen, the reactor was cooled, and the produced carbon fibers were collected from the inner wall of the reactor.

7比較例1および2二 実施例1と同様にして、炭化水素供給管かろの炭化水素
の供給を行わずに原料ガス混合物のみで炭素繊維の製造
をした場合(比較例1)、また炭化水素供給管からベン
ゼン含有水素を供給する代りに原料ガス混合物中のベン
ゼン含有量をはソ同量増加してl 5 ミIJモル/β
とした場合(比較例2)についても同様にして生成炭素
繊維を回収し、結果を比較した。
7 Comparative Examples 1 and 2 2 In the same manner as in Example 1, when carbon fibers were produced using only the raw material gas mixture without supplying hydrocarbons through the hydrocarbon supply pipe (Comparative Example 1), Instead of supplying benzene-containing hydrogen from the supply pipe, the benzene content in the raw gas mixture is increased by the same amount as l 5 mIJ mol/β.
In the case of (Comparative Example 2), the produced carbon fibers were collected in the same manner and the results were compared.

〔実施例2〕 実施例1において用いた炭化水素供給管の代りに、反応
管の前端から後端までその軸心部分を通って炭素繊維が
移動できるように装置を組み立てた。すなわち、40デ
ニ一ル3000本よりのボビン巻きした炭素繊維を繰り
出し、水素露囲気中でベンゼン中に浸漬したのち反応管
の前端部かろ5m/+t+inの速度で導入して後端部
から引き出すようにし、その他は実施例1と同様にして
炭素繊維を製造し、回収した。
[Example 2] Instead of the hydrocarbon supply pipe used in Example 1, an apparatus was assembled so that carbon fibers could move from the front end of the reaction tube to the rear end through its axial center. That is, 3,000 pieces of 40 denier carbon fibers wound around bobbins were unwound, immersed in benzene in a hydrogen atmosphere, introduced into the front end of the reaction tube at a speed of 5 m/+t+in, and pulled out from the rear end. Carbon fibers were produced and recovered in the same manner as in Example 1 except for the following.

これちの実施例および比較例の結果を第1表!=まとめ
で示す。
Table 1 shows the results of these examples and comparative examples! = Shown in summary.

第   1   表 繊維径 μm     2   2  0.5  1繊
維長 mm     2   21>1>すすの生成 
    −少量  −多量〔発明の効果〕 本発明の気相法炭素繊維の製造方法によれば、複合材料
等に補強材や導電材として用いるに好適な炭素繊維を極
めて能率よく多量に製造することが可能となった。
Table 1 Fiber diameter μm 2 2 0.5 1 Fiber length mm 2 21>1>Soot formation
- Small amount - Large amount [Effect of the invention] According to the method for producing vapor-grown carbon fiber of the present invention, it is possible to extremely efficiently produce a large amount of carbon fiber suitable for use as a reinforcing material or a conductive material in composite materials, etc. It has become possible.

特許出願人   矢崎総業株式会社Patent applicant: Yazaki Sogyo Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)気相炭化水素化合物の熱分解によって炭素繊維を
製造するに当り、高温に維持した管状反応器の一端より
炭素繊維生成触媒成分を含有する原料ガス混合物を送入
すると共に該反応器の軸心部分に炭化水素化合物を供給
することを特徴とする気相法炭素繊維の製造方法。
(1) In producing carbon fibers by thermal decomposition of gas-phase hydrocarbon compounds, a raw material gas mixture containing a carbon fiber-forming catalyst component is fed from one end of a tubular reactor maintained at a high temperature, and at the same time A method for producing vapor-grown carbon fiber, characterized by supplying a hydrocarbon compound to an axial center portion.
(2)反応器の軸心部分を移動する耐熱性繊維に担持さ
せることによって炭化水素化合物を供給する、特許請求
の範囲第1項記載の気相法炭素繊維の製造方法。
(2) The method for producing vapor-grown carbon fibers according to claim 1, wherein the hydrocarbon compound is supplied by supporting the heat-resistant fibers that move on the axis of the reactor.
(3)反応器の軸心部分に開口する耐熱性導管を経由し
て炭化水素化合物を供給する、特許請求の範囲第1項記
載の気相法炭素繊維の製造方法。
(3) The method for producing vapor-grown carbon fibers according to claim 1, wherein the hydrocarbon compound is supplied via a heat-resistant conduit that opens at the axial center of the reactor.
JP63107548A 1988-05-02 1988-05-02 Method for producing vapor grown carbon fiber Expired - Fee Related JP2531739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63107548A JP2531739B2 (en) 1988-05-02 1988-05-02 Method for producing vapor grown carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63107548A JP2531739B2 (en) 1988-05-02 1988-05-02 Method for producing vapor grown carbon fiber

Publications (2)

Publication Number Publication Date
JPH01280024A true JPH01280024A (en) 1989-11-10
JP2531739B2 JP2531739B2 (en) 1996-09-04

Family

ID=14461975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63107548A Expired - Fee Related JP2531739B2 (en) 1988-05-02 1988-05-02 Method for producing vapor grown carbon fiber

Country Status (1)

Country Link
JP (1) JP2531739B2 (en)

Also Published As

Publication number Publication date
JP2531739B2 (en) 1996-09-04

Similar Documents

Publication Publication Date Title
US5165909A (en) Carbon fibrils and method for producing same
US5171560A (en) Carbon fibrils, method for producing same, and encapsulated catalyst
EP0205556B1 (en) Carbon fibrils, method for producing same, and compositions containing same
EP0270666B1 (en) Novel carbon fibrils, method for producing same, and compositions containing same
KR101718784B1 (en) Apparatus for manufacturing high purity and high density carbon nanotube fiber
EP2631331B1 (en) Production of agglomerates from gas phase
US20090275696A1 (en) Vapor Grown Carbon Fiber, and Production Method and Use Thereof
KR20070020164A (en) Production of agglomerates from gas phase
EP1618234A1 (en) Method of producing vapor-grown carbon fibers
JP2531739B2 (en) Method for producing vapor grown carbon fiber
US20020009589A1 (en) Carbon fibrils and method for producing same
EP0214302A1 (en) Gas phase method of manufacturing carbon fibers
JPH0621377B2 (en) Production method of vapor grown carbon fiber
JPH01292118A (en) Continuous compound of vapor-phase carbon fiber
JP2586054B2 (en) Method for producing vapor grown carbon fiber
JP2505912B2 (en) Production method of vapor grown carbon fiber
JPS62162699A (en) Production of carbonaceous whisker
EP1154050A1 (en) Carbon fibrils and method for producing same
JP2586055B2 (en) Method for producing vapor grown carbon fiber
JPH0319920A (en) Production of carbon fiber
JPH0192424A (en) Production of carbon fiber with vapor growth
WO1995009811A1 (en) Plasma-assisted conversion of solid hydrocarbon to diamond
JP3502682B2 (en) Vapor-grown carbon fiber production equipment
JPS6262914A (en) Production of carbonaceous fiber
JPH03174009A (en) Electrically conductive yarn

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees