JP2586054B2 - Method for producing vapor grown carbon fiber - Google Patents

Method for producing vapor grown carbon fiber

Info

Publication number
JP2586054B2
JP2586054B2 JP24617287A JP24617287A JP2586054B2 JP 2586054 B2 JP2586054 B2 JP 2586054B2 JP 24617287 A JP24617287 A JP 24617287A JP 24617287 A JP24617287 A JP 24617287A JP 2586054 B2 JP2586054 B2 JP 2586054B2
Authority
JP
Japan
Prior art keywords
gas
carbon fiber
grown carbon
vapor
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24617287A
Other languages
Japanese (ja)
Other versions
JPH0192421A (en
Inventor
守信 遠藤
宗浩 石岡
浩二 中里
敏彦 岡田
泰男 奥山
健次 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP24617287A priority Critical patent/JP2586054B2/en
Publication of JPH0192421A publication Critical patent/JPH0192421A/en
Application granted granted Critical
Publication of JP2586054B2 publication Critical patent/JP2586054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1276Aromatics, e.g. toluene
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1278Carbon monoxide
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/133Apparatus therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
    • D01F9/15Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues from coal pitch

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、気相成長炭素繊維の製造方法に関する。Description: TECHNICAL FIELD The present invention relates to a method for producing a vapor-grown carbon fiber.

[従来の技術とその問題点] 気相成長炭素繊維は、PAN系、ピッチ系、レーヨン系
等の有機繊維を焼成して得られる炭素繊維に比べて、機
械的性質に優れている。特に、これを黒鉛化した黒鉛繊
維は、引張強度として700Kg/mm2、引張弾性率として70t
/mm2という極めて高い値を有している。さらに気相成長
炭素繊維は、生体適合性に優れているだけでなく、高い
結晶配向性のために高電気伝導性を有している等の特徴
を有している。従って、その用途は、構造材料をはじめ
として電気・電子材料、生体材料など幅が広い。このた
め気相成長炭素繊維は注目すべき材料と言える。
[Prior art and its problems] Vapor-grown carbon fibers are superior in mechanical properties to carbon fibers obtained by firing organic fibers such as PAN-based, pitch-based and rayon-based fibers. In particular, the graphitized graphite fiber has a tensile strength of 700 kg / mm 2 and a tensile modulus of 70 t.
/ mm 2, which is an extremely high value. Further, the vapor-grown carbon fiber is not only excellent in biocompatibility, but also has such features as high electrical conductivity due to high crystal orientation. Therefore, its applications are wide, such as structural materials, electric / electronic materials, and biomaterials. Therefore, it can be said that the vapor grown carbon fiber is a remarkable material.

かかる気相成長炭素繊維は、固定床方式あるいは流動
床方式と呼ばれる方法で製造されている。特に最近で
は、特開昭60−54998号に記載された連続製造が可能で
あり、生産性の高い流動床方式による製造が主流をなし
ている。この方法として、メタン、アセチレン、ベンゼ
ン等の炭素化合物のガスとフェロセンとの有機遷移金属
化合物のガスとキャリヤーガスとの混合ガスを加熱帯に
導入し、600〜1300℃、好ましくは1050〜1200℃で加熱
反応させることにより、気相中で金属触媒を生成し連続
的に炭素繊維を製造するものがある。ここでキャリヤー
ガスとしては、水素100%あるいは80%以上の水素とア
ルゴン、ヘリウム、窒素等との混合ガスを使用してい
る。
Such vapor grown carbon fibers are manufactured by a method called a fixed bed method or a fluidized bed method. Particularly recently, continuous production described in JP-A-60-54998 is possible, and production by a fluidized-bed system with high productivity has become mainstream. As this method, a mixed gas of a gas of a carbon compound such as methane, acetylene and benzene and a gas of an organic transition metal compound of ferrocene and a carrier gas is introduced into a heating zone, and 600 to 1300 ° C., preferably 1050 to 1200 ° C. In some cases, a metal catalyst is generated in the gas phase by performing a heating reaction at a temperature, thereby continuously producing carbon fibers. Here, as the carrier gas, a mixed gas of 100% or 80% or more of hydrogen and argon, helium, nitrogen or the like is used.

このような従来の気相成長炭素繊維製造方法では、水
素ガスは少なくともキャリヤーガス成分中80%以上が必
要であり、安価な製造方法とは言い難い。
In such a conventional method for producing a vapor-grown carbon fiber, the hydrogen gas needs to be at least 80% or more of the carrier gas component, which is not a cheap production method.

本発明は、かかる点に鑑みでなされたものであり、気
相成長炭素繊維の安価な製造方法を提供するものであ
る。
The present invention has been made in view of the above, and provides an inexpensive method for producing a vapor-grown carbon fiber.

[問題点を解決するための手段] 本発明は、炭素繊維原料の炭素供給源としての炭素化
合物を、一酸化炭素ガスと水素ガスを混合した混合キャ
リヤーガスと共に加熱帯に導入し、有機遷移金属化合物
から生成した金属触媒の存在下で600〜1300℃の温度範
囲で加熱反応させることを特徴とする気相成長炭素繊維
の製造方法である。
Means for Solving the Problems The present invention introduces a carbon compound as a carbon source of a carbon fiber raw material into a heating zone together with a mixed carrier gas obtained by mixing a carbon monoxide gas and a hydrogen gas into an organic transition metal. A method for producing a vapor-grown carbon fiber, wherein a heating reaction is performed in a temperature range of 600 to 1300 ° C. in the presence of a metal catalyst generated from a compound.

本発明は、これまで製鉄業界でせいぜい燃料として用
いられているにすぎなかった転炉ガスに着目し、その主
成分である一酸化炭素ガスを気相成長炭素繊維の製造時
にキャリヤーガスとして使用することによって、安価な
気相成長炭素繊維の製造方法を開発したものである。
The present invention focuses on converter gas which has been used at most as a fuel in the steelmaking industry, and uses carbon monoxide gas as its main component as a carrier gas during the production of vapor grown carbon fiber. Thus, an inexpensive vapor-grown carbon fiber manufacturing method was developed.

すなわち、本発明方法では、炭素化合物のガスを一酸
化炭素ガスと水素ガスを混合したキャリヤーガスと共に
有機遷移金属化合物から生成した金属触媒の存在する加
熱帯に導入し、600〜1300℃、更に好ましくは1050〜120
0℃で加熱反応させ、気相中で金属触媒と炭素繊維を連
続的に成長させるものである。
That is, in the method of the present invention, a carbon compound gas is introduced into a heating zone in which a metal catalyst generated from an organic transition metal compound is present together with a carrier gas obtained by mixing a carbon monoxide gas and a hydrogen gas, and more preferably from 600 to 1300 ° C. Is 1050-120
The reaction is carried out by heating at 0 ° C. to continuously grow the metal catalyst and the carbon fibers in the gas phase.

ここで、本発明にて使用する一酸化炭素ガスと水素ガ
スを混合したキャリヤーガスは、一酸化炭素ガスを主体
とした混合ガスであり、このガスキャリヤーガスにおけ
る水素ガスの混合量は、0.1〜50容量%、更に好適には
1〜20容量%である。この有機遷移金属化合物が炭素化
合物中に占める割合は、好ましくは0.01〜40重量%、更
に好ましくは0.05〜10重量%である。
Here, the carrier gas obtained by mixing carbon monoxide gas and hydrogen gas used in the present invention is a mixed gas mainly composed of carbon monoxide gas, and the mixed amount of hydrogen gas in this gas carrier gas is 0.1 to It is 50% by volume, more preferably 1 to 20% by volume. The ratio of the organic transition metal compound in the carbon compound is preferably 0.01 to 40% by weight, more preferably 0.05 to 10% by weight.

また、本発明における炭素繊維原料の炭素供給源とし
ての炭素化合物は、炭化水素、芳香族炭化水素が望まし
い。特にコークス炉からの副産物である粗軽油類、ナフ
タリン、中油、アントラセン油、重油、ピッチ及びコー
ルタールならびにこれらの水素化物、及びこれらの混合
物は、安価で大量に供給が可能であるため有用である。
さらにヘテロ原子を有するものも使用可能であり、特に
硫黄を含有するチオフェン類、チオール類及びチオフェ
ノール類を用いると、生成速度が速くなり有用である。
Further, the carbon compound as the carbon source of the carbon fiber raw material in the present invention is preferably a hydrocarbon or an aromatic hydrocarbon. In particular, crude gas oils, naphthalene, medium oil, anthracene oil, heavy oil, pitch and coal tar, which are by-products from coke ovens, and their hydrides and mixtures thereof are useful because they can be supplied in large quantities at low cost. .
Further, those having a hetero atom can also be used. Particularly, when thiophenes, thiols and thiophenols containing sulfur are used, the production rate is increased and it is useful.

また、本発明における金属触媒の生成に用いる有機遷
移金属化合物としては、チタン、バナジウム、クロム、
マンガン、鉄、コバルト、ニッケル、ルビジウム、ロジ
ウム、タングステン、パラジウム及び白金を含有する有
機遷移金属化合物を指すものであり、その内で特に鉄、
ニッケル、コバルトを含有する有機遷移金属化合物が好
適であって、鉄を含有する有機遷移金属化合物が最も好
ましい。
Further, as the organic transition metal compound used for generating the metal catalyst in the present invention, titanium, vanadium, chromium,
Manganese, iron, cobalt, nickel, rubidium, rhodium, tungsten, palladium and refers to organic transition metal compounds containing platinum, especially iron,
Organic transition metal compounds containing nickel and cobalt are preferred, and organic transition metal compounds containing iron are most preferred.

[作用] 本発明にかかる気相成長炭素繊維の製造方法によれ
ば、キャリヤーガスとして一酸化炭素ガスを主体とした
水素ガスとの混合ガスを使用することにより、従来の技
術よりも水素ガスの使用量を格段に少なくすることがで
き、安価な気相成長炭素繊維の製造方法を提供できる。
[Operation] According to the method for producing a vapor-grown carbon fiber according to the present invention, by using a mixed gas with hydrogen gas mainly composed of carbon monoxide gas as a carrier gas, hydrogen gas can be produced more efficiently than in the prior art. The use amount can be remarkably reduced, and an inexpensive method for producing a vapor-grown carbon fiber can be provided.

[実施例] 実施例1 以下、本発明の実施例について説明する。[Example] Example 1 Hereinafter, an example of the present invention will be described.

第1図は、本発明方法を実施するための装置の概略構
成を示す説明である。図中11、12、13は、ガスボンベで
あり、ボンベ11には、アルゴンガス、ガスボンベ12に
は、高純度一酸化炭素ガス、ガスボンベ13には、高純度
水素ガスが夫々充填されている。ガスボンベ11、12、13
には、流量計14、15、16を接続し、これにより流量制御
するようになっている。一方、原料タンク17には、原料
油として、フェロセンとチオフェンを溶解させたベンゼ
ンを入れるようになっている。原料油の重量組成、例え
ばベンゼン:フェロセン:チオフェン=100:0.5:0.2に
設定されている。原料油は、ガスボンベ11、12、13から
のキャリヤーガスと共に反応管20に供給されるようにな
っている。反応管20は、例えば内径94mm、長さ1300mmの
アルミナ管であり、その内の長さ約1000mmに亘る部分を
電気炉23内に設置している。電気炉23の温度は、熱電対
24で検知して温度制御器25で一定温度に制御されるよう
になっている。電気炉23の運転中の温度は、例えば1150
℃に設定されている。
FIG. 1 is an illustration showing a schematic configuration of an apparatus for carrying out the method of the present invention. In the figure, reference numerals 11, 12, and 13 denote gas cylinders. The cylinder 11 is filled with an argon gas, the gas cylinder 12 is filled with a high-purity carbon monoxide gas, and the gas cylinder 13 is filled with a high-purity hydrogen gas. Gas cylinders 11, 12, 13
Are connected to flow meters 14, 15, 16 to control the flow rate. On the other hand, the raw material tank 17 is configured to contain benzene obtained by dissolving ferrocene and thiophene as a raw material oil. The weight composition of the feedstock, for example, benzene: ferrocene: thiophene = 100: 0.5: 0.2. The feed oil is supplied to the reaction tube 20 together with the carrier gas from the gas cylinders 11, 12, and 13. The reaction tube 20 is, for example, an alumina tube having an inner diameter of 94 mm and a length of 1300 mm, and a portion having a length of about 1000 mm is set in the electric furnace 23. The temperature of the electric furnace 23 depends on the thermocouple
The temperature is detected by 24 and is controlled to a constant temperature by a temperature controller 25. The temperature during operation of the electric furnace 23 is, for example, 1150
It is set to ° C.

而して、このような装置において運転に際して、ガス
ボンベ11から供給かれるアルゴンガスで予め装置内を置
換しておく。次いで、キャリヤーガスとして一酸化炭素
ガスと水素ガスの混合ガスを総流量1000sccmにしてステ
ンレスパイプ18を通して反応管20内に導入した。一酸化
炭素ガスと水素ガスの混合割合は、一酸化炭素ガス:水
素ガス=95:5とした。更に原料油をケミカルポンプ22を
使って1.0ml/分の割合でステンレスパイプ19を通して反
応管20内に供給した。反応管20内では、原料油が熱分解
し連続的に気相成長炭素繊維が生成する。生成した気相
成長炭素繊維は、捕集器21で捕集した。
Thus, when operating in such an apparatus, the inside of the apparatus is replaced in advance with argon gas supplied from the gas cylinder 11. Next, a mixed gas of carbon monoxide gas and hydrogen gas as a carrier gas was introduced into the reaction tube 20 through the stainless steel pipe 18 at a total flow rate of 1000 sccm. The mixing ratio of carbon monoxide gas and hydrogen gas was set to 95: 5: carbon monoxide gas: hydrogen gas. Further, the feed oil was supplied into the reaction tube 20 through the stainless steel pipe 19 at a rate of 1.0 ml / min using the chemical pump 22. In the reaction tube 20, the raw oil is thermally decomposed to continuously generate vapor grown carbon fibers. The generated vapor grown carbon fiber was collected by the collector 21.

このような運転を20分間行なった。得られた気相成長
炭素繊維の重量は、3.33gであり、収率は、19.8%であ
った。また、気相成長炭素繊維の繊維径と繊維長さを走
査電子顕微鏡で観察したところ、気相成長炭素繊維の径
は、1〜3μmであり、繊維長さは500μm以上であっ
た。
Such an operation was performed for 20 minutes. The weight of the obtained vapor grown carbon fiber was 3.33 g, and the yield was 19.8%. When the fiber diameter and fiber length of the vapor grown carbon fiber were observed with a scanning electron microscope, the diameter of the vapor grown carbon fiber was 1 to 3 μm and the fiber length was 500 μm or more.

実施例2 実施例1で用いた装置を使用し、キャリアーガスの一
酸化炭素ガスと水素ガスに混合割合の影響を調べた。す
なわち、キャリアーガスの混合割合を変化させる以外は
実施例1と同じ条件で装置の運転を行なった。キャリヤ
ーガスの混合割合は、夫々、一酸化炭素ガス:水素ガス
=9:1、一酸化炭素ガス:水素ガス=8:2、一酸化炭素ガ
ス:水素ガス=5:5、一酸化炭素ガス:水素ガス=3:7と
した。この場合、20分間の運転で得られた気相成長炭素
繊維の収率は、実施例1と比較すると実施例1の収率が
18.9%であるのに対して、実施例2の一酸化炭素ガス:
水素ガス=9:1とした場合は、12.8%の収率であり、一
酸化炭素ガス:水素ガス=8:2、とした場合は、8.8%の
収率であり、一酸化炭素ガス:水素ガス=5:5、とした
場合は、5.6%の収率であり、一酸化炭素ガス:水素ガ
ス=3:7とした場合は、1.3%の収率であった。
Example 2 Using the apparatus used in Example 1, the influence of the mixing ratio of the carrier gas on the carbon monoxide gas and the hydrogen gas was examined. That is, the apparatus was operated under the same conditions as in Example 1 except that the mixing ratio of the carrier gas was changed. The mixing ratios of the carrier gases are as follows: carbon monoxide gas: hydrogen gas = 9: 1, carbon monoxide gas: hydrogen gas = 8: 2, carbon monoxide gas: hydrogen gas = 5: 5, carbon monoxide gas: Hydrogen gas was set at 3: 7. In this case, the yield of the vapor-grown carbon fiber obtained by the operation for 20 minutes was lower than that of Example 1 in Example 1.
In contrast to 18.9%, the carbon monoxide gas of Example 2 was:
When hydrogen gas = 9: 1, the yield is 12.8%. When carbon monoxide gas: hydrogen gas = 8: 2, the yield is 8.8%, carbon monoxide gas: hydrogen. When the gas was 5: 5, the yield was 5.6%, and when the ratio of carbon monoxide gas: hydrogen gas was 3: 7, the yield was 1.3%.

比較例1 実施例1で用いた装置を使用し、キャリヤーガスとし
て高純度水素を用いる以外は実施例1と同じ条件で実施
した。その結果、20分間の運転で得られた気相成長炭素
繊維の収率は、10.2%であった。
Comparative Example 1 The same procedure as in Example 1 was carried out except that the apparatus used in Example 1 was used and high-purity hydrogen was used as a carrier gas. As a result, the yield of the vapor grown carbon fiber obtained by the operation for 20 minutes was 10.2%.

比較例2 比較例1において、キャリヤーガスとして高純度一酸
化炭素を用いる以外は、同様に行ったところ、気相成長
炭素繊維の収率は1%以下であり、生成物の多くは、粒
径物の炭素であった。
Comparative Example 2 The same procedure as in Comparative Example 1 was carried out except that high-purity carbon monoxide was used as the carrier gas. The yield of the vapor-grown carbon fiber was 1% or less, and most of the products had a particle size. Was carbon.

[発明の効果] 以上説明した如く、本発明にかかる気相成長炭素繊維
の製造方法によれば、連続製造が可能で生産性の高い流
動床方式により、しかも、一酸化炭素ガスを主体とした
水素ガスとの混合ガスをキャリヤーガスとして用い、水
素ガス単独の場合と同等、若しくはそれ以上の収率が得
られるので、従来の製造方法よりも安価な気相成長炭素
繊維の製造方法を提供できるものである。
[Effects of the Invention] As described above, according to the method for producing a vapor-grown carbon fiber according to the present invention, a fluidized bed system capable of continuous production and having high productivity is used, and carbon monoxide gas is mainly used. Since a mixed gas with hydrogen gas is used as a carrier gas and a yield equal to or higher than that of the case of using hydrogen gas alone can be obtained, a method for producing a vapor-grown carbon fiber that is less expensive than a conventional production method can be provided. Things.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明方法を実施するための装置の概略構成
を示す説明である。 11、12、13……ガスボンベ、14、15、16……流量計、17
……原料タンク、18、19……ステンレスパイプ、20……
反応管、21……捕集管、22……ケミカルポンプ、23……
電気炉、24……熱電対、25……温度制御器。
FIG. 1 is an illustration showing a schematic configuration of an apparatus for carrying out the method of the present invention. 11, 12, 13 ... gas cylinder, 14, 15, 16 ... flow meter, 17
…… raw material tank, 18, 19 …… stainless steel pipe, 20 ……
Reaction tube, 21 ... Collection tube, 22 ... Chemical pump, 23 ...
Electric furnace, 24 ... thermocouple, 25 ... temperature controller.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥山 泰男 東京都千代田区丸の内1丁目1番2号 日本鋼管株式会社内 (72)発明者 松原 健次 東京都千代田区丸の内1丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 昭62−62914(JP,A) 特開 昭61−225328(JP,A) ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yasuo Okuyama 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Kenji Matsuhara 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan (56) References JP-A-62-62914 (JP, A) JP-A-61-225328 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭素繊維原料の炭素供給源としての炭素化
合物を、一酸化炭素ガスに、水素ガスを0.1〜50容量%
混合した混合キャリヤーガスと共に加熱帯に導入し、有
機遷移金属化合物から生成した金属触媒の存在下で600
〜1300℃の温度範囲で加熱反応させることを特徴とする
気相成長炭素繊維の製造方法。
1. A carbon compound as a carbon source of a carbon fiber raw material, a carbon monoxide gas and a hydrogen gas of 0.1 to 50% by volume.
The mixed carrier gas is introduced into the heating zone together with the mixed carrier gas.
A method for producing a vapor-grown carbon fiber, wherein a heating reaction is performed in a temperature range of 1300 ° C.
JP24617287A 1987-09-30 1987-09-30 Method for producing vapor grown carbon fiber Expired - Fee Related JP2586054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24617287A JP2586054B2 (en) 1987-09-30 1987-09-30 Method for producing vapor grown carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24617287A JP2586054B2 (en) 1987-09-30 1987-09-30 Method for producing vapor grown carbon fiber

Publications (2)

Publication Number Publication Date
JPH0192421A JPH0192421A (en) 1989-04-11
JP2586054B2 true JP2586054B2 (en) 1997-02-26

Family

ID=17144585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24617287A Expired - Fee Related JP2586054B2 (en) 1987-09-30 1987-09-30 Method for producing vapor grown carbon fiber

Country Status (1)

Country Link
JP (1) JP2586054B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192425A (en) * 1987-09-30 1989-04-11 Nkk Corp Production of carbon fiber with vapor growth
JP3362619B2 (en) * 1996-12-13 2003-01-07 信越化学工業株式会社 Method for producing alkylhalosilane
JP4413046B2 (en) 2003-04-25 2010-02-10 昭和電工株式会社 Method for producing vapor grown carbon fiber

Also Published As

Publication number Publication date
JPH0192421A (en) 1989-04-11

Similar Documents

Publication Publication Date Title
Moothi et al. Coal as a carbon source for carbon nanotube synthesis
EP1618234B1 (en) Method of producing vapor-grown carbon fibers
Wang et al. Bamboo-like carbon nanotubes produced by pyrolysis of iron (II) phthalocyanine
JP2013035750A (en) Method for producing carbon fiber aggregate containing single-walled carbon nanotube, and carbon fiber aggregate containing single-walled carbon nanotube produced by the method
US9890045B2 (en) Process for simultaneous production of carbon nanotube and a product gas from crude oil and its products
KR20120094416A (en) Method for producing solid carbon by reducing carbon oxides
AU8683498A (en) Process for producing single wall nanotubes using unsupported metal catalysts and single wall nanotubes
JPS6249363B2 (en)
EP3473751B1 (en) Method for producing carbon nanotube fiber
JP2016520510A (en) Multi-walled carbon nanotube production method, multi-walled carbon nanotube and carbon nanotube powder
JP2586054B2 (en) Method for producing vapor grown carbon fiber
JP2586055B2 (en) Method for producing vapor grown carbon fiber
JP2521982B2 (en) Method for producing vapor grown carbon fiber
JP3404543B1 (en) Method for producing carbon nanotube
JPH0192425A (en) Production of carbon fiber with vapor growth
JPH0192423A (en) Production of carbon fiber with vapor growth
JPH0680210B2 (en) Carbon fiber manufacturing method
JPH03126699A (en) Production of vapor-grown carbon fiber
CN115403030B (en) Device and method for preparing single-walled carbon nanotubes by using flowing catalyst
JPH01207418A (en) Production of carbon fiber by vapor-phase growth
JP2531739B2 (en) Method for producing vapor grown carbon fiber
JPS6312720A (en) Production of carbon fiber grown in gaseous phase
JPH089808B2 (en) Method for producing fine carbon fiber by vapor phase method
JPH01207419A (en) Production of carbon fiber by vapor-phase growth
JPH0465526A (en) Production of carbon fiber by vapor phase technique

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees