JPH01216152A - Clutch controller for speed change gear - Google Patents

Clutch controller for speed change gear

Info

Publication number
JPH01216152A
JPH01216152A JP3912688A JP3912688A JPH01216152A JP H01216152 A JPH01216152 A JP H01216152A JP 3912688 A JP3912688 A JP 3912688A JP 3912688 A JP3912688 A JP 3912688A JP H01216152 A JPH01216152 A JP H01216152A
Authority
JP
Japan
Prior art keywords
clutch
oil pressure
hydraulic pressure
speed transmission
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3912688A
Other languages
Japanese (ja)
Inventor
Koji Kitano
孝二 北野
Shinichiro Iwai
紳一郎 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP3912688A priority Critical patent/JPH01216152A/en
Publication of JPH01216152A publication Critical patent/JPH01216152A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/021Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings toothed gearing combined with continuous variable friction gearing

Landscapes

  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Control Of Transmission Device (AREA)

Abstract

PURPOSE:To surely obviate the state in which both clutches are connected at a same time, by inputting the output hydraulic pressure of the first clutch control valve in the opposite direction to the second signal hydraulic pressure for the second clutch control valve. CONSTITUTION:When a start (first) clutch 20 is cut off and a direct connection (second) clutch 6 is connected, in other words in case of selection to a high speed transmission state from a low speed state, the first clutch hydraulic pressure P3 supplied from a start control valve 50 is lowered gently by the first signal hydraulic pressure P1 of a solenoid valve 46. In this case, even if the second signal hydraulic pressure P2 of a solenoid valve 47 is started up instantly, the second clutch hydraulic pressure P4 is not started up instantly, since the first clutch hydraulic pressure P3 is inputted in the opposite direction to a direct connection clutch valve 60. Further, in the selection to a low speed transmission state from a high speed state, the second signal hydraulic pressure P2 is lowered, delayed in comparison with the rise of the first signal hydraulic pressure P1. Thus, the generation of double clutch can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は入出力軸間に低速伝動系と高速伝動系とを並列
に設け、低速伝動系に第1クラッチを、高速伝動系に第
2クラッチをそれぞれ設けてなる変速機において、上記
クラッチを制御するための装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a low-speed transmission system and a high-speed transmission system in parallel between input and output shafts, and a first clutch is provided in the low-speed transmission system and a second clutch is provided in the high-speed transmission system. The present invention relates to a device for controlling the clutches in a transmission each provided with a clutch.

〔従来技術とその問題点〕[Prior art and its problems]

従来、入力軸と出力軸との間に低速伝動系と高速伝動系
とを並列に設けた自動変速機において、低速伝動系と高
速伝動系とにそれぞれ油圧クラッチを設け、これら油圧
クラッチへ切換弁(シフトバルブ)によって選択的に油
圧を供給することによって、伝動系を切り換えるように
した油圧制御装置が公知となっている(特公昭57−2
3136号公報)。
Conventionally, in automatic transmissions in which a low-speed transmission system and a high-speed transmission system are installed in parallel between an input shaft and an output shaft, a hydraulic clutch is installed in each of the low-speed transmission system and high-speed transmission system, and a switching valve is connected to these hydraulic clutches. A hydraulic control device is known that switches the transmission system by selectively supplying hydraulic pressure using a shift valve (Japanese Patent Publication No. 57-2
Publication No. 3136).

上記の油圧制御装置では、切換弁で各油圧クラッチへの
油圧を切り換えるのみであるから、各油圧クラッチの遮
断、締結は選択的に行われ、双方のクラッチが共に締結
する、所謂ダブルクラッチを防止できる利点がある。と
ころが、一方のクラッチを遮断し、他方のクラッチを締
結する場合に、遮断側のクラッチ油圧の立ち下がりは速
いのに対し、締結側のクラッチ油圧の立ち上がりはピス
トンのストローク時間のために必然的に遅くなるので、
双方のクラッチが遮断された状態、言わばニュートラル
状態と同様な状態が存在する。その結果、エンジン回転
が吹き上がるとともに、締結側のクラッチが締結された
時に大きな保合ショックを−伴うという問題がある。
In the above hydraulic control device, the switching valve only switches the hydraulic pressure to each hydraulic clutch, so each hydraulic clutch is selectively shut off and engaged, preventing so-called double clutching in which both clutches are engaged together. There are advantages that can be achieved. However, when one clutch is disengaged and the other clutch is engaged, the fall of the clutch hydraulic pressure on the disengaged side is fast, while the rise of the clutch hydraulic pressure on the engaged side is inevitably slow due to the stroke time of the piston. Because it will be late,
There is a state in which both clutches are disengaged, a state similar to a neutral state. As a result, there is a problem in that the engine speed increases and a large engagement shock occurs when the engagement side clutch is engaged.

上記の問題は、2個のクラッチ油圧をそれぞれ制御する
ための制御弁を設け、これら制御弁を電子制御により別
個に制御すれば解決可能である。
The above problem can be solved by providing control valves for respectively controlling the two clutch oil pressures and controlling these control valves separately by electronic control.

しかしながら、双方のクラッチを円滑に切り換えるべく
2個の制御弁を別個にかつ調和させながら制御すること
は容易でない、特に、低速伝動状態ら高速伝動状態へ切
り換える場合には、切り換えの速さより切換ショックを
少なくすることが優先され、逆に高速伝動状態から低速
伝動状態へ切り換える場合には、例えばキックダウンの
ように迅速な切換が要求されるため、切換ショックより
切換の速さが重視される。このように低速伝i系と高速
伝動系とを相互に切り換える場合には、それぞれ異なる
特性を満足するクラッチ制御装置が必要となる。
However, it is not easy to control the two control valves separately and in harmony to smoothly switch both clutches.Especially when switching from a low-speed transmission state to a high-speed transmission state, the switching shock is more important than the switching speed. Priority is given to reducing the transmission speed, and conversely, when switching from a high-speed transmission state to a low-speed transmission state, rapid switching is required, such as kickdown, so the speed of switching is more important than the switching shock. In this way, when switching between the low-speed transmission system and the high-speed transmission system, a clutch control device that satisfies different characteristics is required.

〔発明の目的〕[Purpose of the invention]

本発明は上記問題点に鑑みてなされたもので、その目的
は、低速伝動系と高速伝動系との切換に際し、ダブルク
ラッチやニュートラル状態を回避することは勿論、低速
伝動状態から高速伝動状態へ切り換える場合にはショッ
クのない円滑な切換を実現し、高速伝動状態から低速伝
動状態へ切り換える場合には迅速な切換を実現できる変
速機のクラッチ制御装置を提供することにある。
The present invention was made in view of the above-mentioned problems, and its purpose is to avoid double clutching and neutral state when switching between a low-speed transmission system and a high-speed transmission system, as well as to switch from a low-speed transmission state to a high-speed transmission state. To provide a clutch control device for a transmission capable of realizing smooth switching without shock when switching and realizing quick switching when switching from a high-speed transmission state to a low-speed transmission state.

〔発明の構成〕[Structure of the invention]

上記目的を達成するために、本発明は、入出力軸間に低
速伝動系と高速伝動系とを並列に設け、低速伝動系に第
1クラッチを、高速伝動系に第2クラッチをそれぞれ設
けてなる変速機において、第1信号油圧を発生する第1
電磁弁と、第2信号油圧を発生する第2電磁弁と、第1
信号油圧に応じた出力油圧を第1クラッチへ出力する第
1クラッチ制御弁と、第2信号油圧に応じた出力油圧を
第2クラッチへ出力する第2クラッチ制御弁とを備え、
第1クラッチ制御弁の出力油圧が第2クラッチ制御弁に
対して第2信号油圧と対向方向に入力されており、第1
クラッチを遮断して第2クラッチを締結する場合には、
第2信号油圧が上昇するとともに第1信号油圧が時間勾
配をもって低下するように第1.第2電磁弁を制御し、
第1クラッチを締結して第2クラッチを遮断する場合に
は、第1信号油圧の上昇より遅れて第2信号油圧が低下
するように第1.第2電磁弁を制御するものである。
In order to achieve the above object, the present invention provides a low-speed transmission system and a high-speed transmission system in parallel between the input and output shafts, and provides a first clutch in the low-speed transmission system and a second clutch in the high-speed transmission system. In the transmission, the first signal hydraulic pressure is generated.
a solenoid valve, a second solenoid valve that generates a second signal hydraulic pressure, and a first solenoid valve;
A first clutch control valve that outputs an output oil pressure to the first clutch according to the signal oil pressure, and a second clutch control valve that outputs an output oil pressure to the second clutch according to the second signal oil pressure,
The output oil pressure of the first clutch control valve is input to the second clutch control valve in the opposite direction to the second signal oil pressure, and
When disengaging the clutch and engaging the second clutch,
The first signal oil pressure is set so that the second signal oil pressure increases and the first signal oil pressure decreases with a time gradient. controlling a second solenoid valve;
When the first clutch is engaged and the second clutch is disengaged, the first... It controls the second solenoid valve.

〔作用〕[Effect]

例えば、第1クラッチを遮断して第2クラッチを締結す
る場合、即ち低速伝動状態から高速伝動状態へ切り換え
る場合には、第1信号油圧を時間勾配をもって低下させ
ることにより、第1クラッチ油圧を緩やかに低下させる
。このとき、第2信号油圧を即座に立ち上げても、第1
クラッチ制御弁の出力油圧が第2クラッチ制御弁に対し
て第2信号油圧と対向方向に入力されているため、第2
クラッチ油圧は第1クラッ、チ油圧に抑制されて即座に
立ち上がらず、ダブルクラッチを防止でき、円、滑な切
換を実現できる。
For example, when the first clutch is disengaged and the second clutch is engaged, that is, when switching from a low-speed transmission state to a high-speed transmission state, the first clutch oil pressure is gradually reduced by decreasing the first signal oil pressure with a time gradient. decrease to. At this time, even if the second signal oil pressure is started immediately, the first
Since the output oil pressure of the clutch control valve is input to the second clutch control valve in the opposite direction to the second signal oil pressure, the second
The clutch oil pressure is suppressed by the first clutch oil pressure and does not rise immediately, which prevents double clutching and realizes smooth and smooth switching.

一方、第2クラッチを遮断して第1クラッチを締結する
場合、即ち高速伝動状態から低速伝動状態へ切り換える
場合には、第1信号油圧の上昇より遅れて第2信号油圧
を低下させる。これにより、第1クラッチ油圧の立ち上
がり遅れの間、第2クラッチ油圧の低下が抑制されるた
め、双方のクラッチが遮断された状態を回避でき、しか
もある程度第1クラッチ油圧が上昇すると、第2クラッ
チ油圧は強制的に排油されるので、ダブルクラッチも防
止できる。このように制御することにより、高速伝動状
態から低速伝動状態へ短時間で切り換えることができる
On the other hand, when the second clutch is disengaged and the first clutch is engaged, that is, when switching from a high-speed transmission state to a low-speed transmission state, the second signal oil pressure is lowered later than the first signal oil pressure rises. As a result, a decrease in the second clutch oil pressure is suppressed during the delay in the rise of the first clutch oil pressure, making it possible to avoid a state in which both clutches are disconnected.Moreover, when the first clutch oil pressure rises to a certain extent, the second clutch oil pressure Since hydraulic pressure is forcibly drained, double clutching can also be prevented. By controlling in this way, it is possible to switch from a high-speed transmission state to a low-speed transmission state in a short time.

(実施例〕 第1図は本発明が適用される直結機構付無段変速機の一
例を示す。
(Embodiment) FIG. 1 shows an example of a continuously variable transmission with a direct coupling mechanism to which the present invention is applied.

図面において、エンジンlのクランク軸2はフライホイ
ール3およびダンパ機構4を介して入力軸5に接続され
ている。入力軸5上には直結クラッチ6と、回転自在な
直結駆動ギヤ7とが設けられており、直結クラッチ6は
直結駆動時に直結駆動ギヤ7を入力軸5に対して連結す
る。入力軸5の端部には外歯ギヤ8が固定されており、
この外歯ギヤ8は無段変速装置lOの駆動軸11に固定
された内歯ギヤ9と噛み合い、入力軸5の動力を減速し
て駆動軸11に伝達している。
In the drawing, a crankshaft 2 of an engine 1 is connected to an input shaft 5 via a flywheel 3 and a damper mechanism 4. A direct coupling clutch 6 and a rotatable direct coupling drive gear 7 are provided on the input shaft 5, and the direct coupling clutch 6 couples the direct coupling drive gear 7 to the input shaft 5 during direct coupling driving. An external gear 8 is fixed to the end of the input shaft 5.
This externally toothed gear 8 meshes with an internally toothed gear 9 fixed to a drive shaft 11 of the continuously variable transmission lO, and transmits the reduced power of the input shaft 5 to the drive shaft 11.

無段変速装置10は駆動軸11に設けた駆動側ブー1J
12と、従動軸13に設けた従動側ブー1月4と、両プ
ーリ間に巻き掛けたVベル)15とで構成されている。
The continuously variable transmission 10 includes a drive-side boot 1J provided on the drive shaft 11.
12, a driven side boot 4 provided on a driven shaft 13, and a V-bell 15 wound between both pulleys.

駆動側プーリ12は固定シープ12aと可動シープ12
bとを有しており、可動シーブ12bの背後には変速比
を制御するための変速比制御用油室16が設けられてい
る。一方、従動側プーリ14も駆動側プーリ12と同様
に、固定シープ14aと可動シープ14bとを有してお
り、可動シープ14bの背後にはトルク伝達に必要な負
荷推力をVベルト15に与える負荷推力制御用油室17
が設けられている。上記変速比制御用油室16および負
荷推力制御用油室17の油圧は図示しない油圧制御装置
により制御される。
The driving pulley 12 has a fixed sheep 12a and a movable sheep 12.
A gear ratio control oil chamber 16 for controlling the gear ratio is provided behind the movable sheave 12b. On the other hand, similarly to the driving pulley 12, the driven pulley 14 has a fixed sheep 14a and a movable sheep 14b, and behind the movable sheep 14b is a load that applies the load thrust necessary for torque transmission to the V belt 15. Thrust control oil chamber 17
is provided. The oil pressure in the gear ratio control oil chamber 16 and the load thrust control oil chamber 17 is controlled by a hydraulic control device (not shown).

従動軸13の外周には中空軸19が回転自在に支持され
ており、従動軸13と中空軸19とは発進クラッチ20
によって断続される。この発進クラッチ20は発進時に
徐々に締結され、ベルト駆動中は締結状態を維持し、直
結駆動時には遮断される。前進用ギヤ21は従動軸13
上に、後進用ギヤ22は中空軸19上にそれぞれ回転自
在に支持されており、前後進切換用ドッグクラッチ23
によって前進用ギヤ21又は後進用ギヤ22のいずれか
一方を中空軸19と連結するようになっている。後進用
アイドラ軸24には後進用ギヤ22に噛み合う後進用ア
イドラギヤ25と、別の後進用アイドラギヤ26とが固
定されている。
A hollow shaft 19 is rotatably supported on the outer periphery of the driven shaft 13, and the driven shaft 13 and the hollow shaft 19 are connected to a starting clutch 20.
Interrupted by This starting clutch 20 is gradually engaged when the vehicle starts, remains engaged during belt drive, and is disconnected during direct drive. The forward gear 21 is the driven shaft 13
At the top, reverse gears 22 are rotatably supported on hollow shafts 19, and a dog clutch 23 for forward/reverse switching is provided.
Either the forward gear 21 or the reverse gear 22 is connected to the hollow shaft 19. A reverse idler gear 25 that meshes with the reverse gear 22 and another reverse idler gear 26 are fixed to the reverse idler shaft 24.

また、減速軸27には上記直結駆動ギヤ7と前進用ギヤ
21と後進用アイドラギヤ26とに同時に噛み合う減速
ギヤ28と、終減速ギヤ29とが固定されており、終減
速ギヤ29はディファレンシャル装置3Gのリングギヤ
31に噛み合い、動力を出力軸32に伝達している。
Further, a reduction gear 28 and a final reduction gear 29 are fixed to the reduction shaft 27, and the reduction gear 28 meshes with the direct drive gear 7, the forward gear 21, and the reverse idler gear 26 at the same time, and the final reduction gear 29 is connected to the differential device 3G. It meshes with a ring gear 31 and transmits power to an output shaft 32.

上記無段変速機において、入力軸5、直結クラッチ6、
直結駆動ギヤ7、減速ギヤ28、終減速ギヤ29、ディ
ファレンシャル装w130、出力軸32は高速伝動系を
構成し、入力軸5、外歯ギヤ8、内歯ギヤ9、無段変速
装W110、発進クラッチ20、前進用ギヤ21.減速
ギヤ2B、終減速ギヤ29、ディファレンシャル装置3
0、出力軸32は低速伝動系(前進時)を構成している
。そして、高速伝動系における入力軸5と出力軸32間
の伝達比は、低速伝動系における入力軸5と出力軸32
間の最高速比の近傍に設定されている。
In the above continuously variable transmission, the input shaft 5, the direct coupling clutch 6,
The direct drive gear 7, the reduction gear 28, the final reduction gear 29, the differential W130, and the output shaft 32 constitute a high-speed transmission system, the input shaft 5, the external gear 8, the internal gear 9, the continuously variable transmission W110, and the starting speed. Clutch 20, forward gear 21. Reduction gear 2B, final reduction gear 29, differential device 3
0, the output shaft 32 constitutes a low-speed transmission system (during forward movement). The transmission ratio between the input shaft 5 and the output shaft 32 in the high-speed transmission system is the same as the transmission ratio between the input shaft 5 and the output shaft 32 in the low-speed transmission system.
It is set near the maximum speed ratio between.

第2図は発進クラッチ20および直結クラッチ6を制御
するための油圧制御装置を示す。
FIG. 2 shows a hydraulic control device for controlling the starting clutch 20 and the direct coupling clutch 6.

図面において、オイルポンプ40は油溜41から吸い上
げた圧油を調圧弁42へ吐出しており、調圧弁42はオ
イルポンプ40の吐出圧を調圧し、一定のライン圧PL
をマニュアル弁43とモジェレータ弁45とに出力して
いる。マニュアル弁43は図示しないチェンジレバ−に
より手動掻作され、D、Rなどの走行レンジでは前後進
切換弁44にライン圧を出力し、Dレンジのみ直結制御
弁60にライン圧を出力している。このように直結制御
弁60には前進時(D、L)のみライン圧PLが入力さ
れるので、例えばRレンジにおいては直結制御弁60の
作動に関係な(出力油圧P4は0となり、直結クラッチ
6が締結されるおそれはない。
In the drawing, the oil pump 40 discharges pressure oil sucked up from an oil reservoir 41 to a pressure regulating valve 42, and the pressure regulating valve 42 regulates the discharge pressure of the oil pump 40 to maintain a constant line pressure PL.
is output to the manual valve 43 and modulator valve 45. The manual valve 43 is operated manually by a change lever (not shown), and outputs line pressure to the forward/reverse switching valve 44 in driving ranges such as D and R, and outputs line pressure to the direct control valve 60 only in the D range. . In this way, the line pressure PL is input to the direct coupling control valve 60 only during forward movement (D, L), so in the R range, for example, the output oil pressure P4 is 0, which is related to the operation of the direct coupling control valve 60, and the direct coupling clutch There is no risk that 6 will be concluded.

上記前後進切換弁44は例えば三方弁からなり、入力ポ
ートにマニュアル弁43から選択的に入力される前進油
圧または後退油圧により弁体が自動的に反転し、何れか
一方の油圧を後述する発進制御弁50の入力ポート52
へ出力する。
The forward/reverse switching valve 44 is, for example, a three-way valve, and the valve body is automatically reversed by the forward hydraulic pressure or the backward hydraulic pressure selectively input from the manual valve 43 to the input port, and either one of the hydraulic pressures is used for starting, which will be described later. Input port 52 of control valve 50
Output to.

モジェレータ弁45はライン圧を調圧して一定のモジェ
レータ圧P、を発進制御用電磁弁46と直結制御用電磁
弁47とに出力している0発進制御用電磁弁46と直結
制御用電磁弁47は図示しない電子制御装置により作動
され、モジェレータ圧P、を排油制御してそれぞれ入力
信号(例えばデユーティ比)に比例した第1信号油圧P
、と第2信号油圧P、とを発生している。変速走行時に
は発進制御用電磁弁46にON信号が入力されてP、−
P、となり、直結制御用電磁弁47にOFF信号が入力
されてPg−〇となる。一方、直結走行時には直結制御
用電磁弁47にON信号が入力されてP、 −P、とな
り、発進制御用電磁弁46にOFF信号が入力されてP
l−0となる。また、発進過程においては発進制御用電
磁弁46にデエーティ信号が入力されるため、第1信号
油圧P、はデユーティ比に比例した油圧となる。
The modulator valve 45 regulates the line pressure and outputs a constant modulator pressure P to the solenoid valve 46 for start control and the solenoid valve 47 for direct control. is operated by an electronic control device (not shown), controls the modulator pressure P, and outputs a first signal oil pressure P proportional to an input signal (for example, duty ratio).
, and a second signal oil pressure P. During speed change driving, an ON signal is input to the start control solenoid valve 46 and P, -
P, and an OFF signal is input to the direct control solenoid valve 47, resulting in Pg-〇. On the other hand, during direct drive, an ON signal is input to the direct connection control solenoid valve 47, resulting in P, -P, and an OFF signal is input to the start control solenoid valve 46, resulting in P.
It becomes l-0. Furthermore, during the start process, a duty signal is input to the start control electromagnetic valve 46, so the first signal oil pressure P becomes an oil pressure proportional to the duty ratio.

発進制御弁50は発進クラッチ20を制御するための制
御弁であり、合計6個のポート51〜56が設けられ、
内部にはスプリング58にて右方へ付勢されたスプール
57が摺動自在に配置されている。ポート51はドレン
ポートであり、入力ポート52には前後進切換弁44か
らライン圧が入力され、ポート53は発進クラッチ20
と直結制御弁60のポート61とに油圧P、を出力し、
ポート54はドレンボートである。また、右端のポート
55には発進制御用電磁弁46から第1信号油圧P、が
導かれ、左端ボート56にはスプール57に形成し大連
通孔57aを介して出力油圧P、がフィードバックされ
ている。
The starting control valve 50 is a control valve for controlling the starting clutch 20, and is provided with a total of six ports 51 to 56,
Inside, a spool 57 biased to the right by a spring 58 is slidably disposed. The port 51 is a drain port, the input port 52 receives line pressure from the forward/reverse switching valve 44, and the port 53 is connected to the starting clutch 20.
outputs hydraulic pressure P to the port 61 of the direct-coupled control valve 60,
Port 54 is a drain boat. In addition, the first signal hydraulic pressure P is guided from the start control solenoid valve 46 to the rightmost port 55, and the output hydraulic pressure P is fed back to the leftmost boat 56 through the large communication hole 57a formed in the spool 57. There is.

上記発進制御弁50において、左端ポート56にフィー
ドバックされた出力油圧P2による右方向の荷重とスプ
リング58の荷重F、との和と、信号油圧P、による左
方向の荷重とが釣り合い、出力油圧P、は次式によって
決定される。
In the start control valve 50, the sum of the rightward load due to the output hydraulic pressure P2 fed back to the left end port 56 and the load F of the spring 58 and the leftward load due to the signal hydraulic pressure P are balanced, and the output hydraulic pressure P , is determined by the following equation.

Ps XA+ +Fa =P+ XAt   ・・・(
1)上式において、A+ 、Axはそれぞれスプール5
7の左端部と右端部の受圧面積である。電磁弁46は入
力信号であるデユーティ比に比例した信号油圧P、を出
力するので、(1)式から出力油圧P2もデユーティ比
に応じて連続的に変化させることができる。したがって
、発進時には発進クラッチ20を徐々に締結して円滑な
発進を実現できる。
Ps XA+ +Fa =P+ XAt...(
1) In the above formula, A+ and Ax are each spool 5
These are the pressure receiving areas at the left end and right end of No.7. Since the electromagnetic valve 46 outputs a signal oil pressure P that is proportional to the duty ratio, which is an input signal, the output oil pressure P2 can also be continuously changed according to the duty ratio from equation (1). Therefore, when starting, the starting clutch 20 can be gradually engaged to realize a smooth starting.

直結制御弁60は直結クラッチ6を制御するための制御
弁であり、その構造は発進制御弁50と同様である。f
f1lち、合計6個のポート61〜66が設けられ、内
部にはスプリング68にて左方へ付勢されたスプール6
7が摺動自在に配置されている。上記ポー)61には発
進制御弁50より出力油圧P、が入力され、入力ポート
ロ2にはマニュアル弁43から前進時のみライン圧が入
力され、ポート63は直結クラッチ6と発進制御弁50
のポート51とに油圧P4を出力し、ポート64はドレ
ンボートである。また、左端のポート65には直結制御
用電磁弁47から第2信号油圧P2が導かれ、右端ポー
ト66にはスプール67に形成した連通孔67aを介し
て出力油圧P4がフィードバックされている。
The direct coupling control valve 60 is a control valve for controlling the direct coupling clutch 6, and its structure is similar to the starting control valve 50. f
A total of six ports 61 to 66 are provided, and a spool 6 biased to the left by a spring 68 is provided inside.
7 is slidably arranged. The output oil pressure P from the starting control valve 50 is input to the port 61, line pressure is input from the manual valve 43 to the input port 2 only during forward movement, and the port 63 is connected to the direct coupling clutch 6 and the starting control valve 50.
Hydraulic pressure P4 is output to port 51 and port 64 is a drain boat. Further, the second signal oil pressure P2 is guided from the direct control solenoid valve 47 to the left end port 65, and the output oil pressure P4 is fed back to the right end port 66 via a communication hole 67a formed in the spool 67.

上記ポート61に油圧P、が入力されていない場合には
、出力油圧P4は次式によって決定される。
When the oil pressure P is not input to the port 61, the output oil pressure P4 is determined by the following equation.

P4 x3. 十Fら−P、XB、   ・・・(2)
上式において、B+ 、Btはそれぞれスプール67の
右端部および左端部の受圧面積、Flはスプリング68
のばね荷重である。
P4 x3. 10F et al.-P, XB, ...(2)
In the above formula, B+ and Bt are the pressure receiving areas of the right and left ends of the spool 67, respectively, and Fl is the pressure receiving area of the spring 68.
is the spring load.

次に、上記構成からなる油圧1Ii11御装置の動作を
説明する。
Next, the operation of the hydraulic 1Ii11 control device having the above configuration will be explained.

一低速伝動時一 まず、低速伝動時には発進制御用電磁弁46がON、直
結制御用電磁弁47が0FFL、ているため、発進制御
弁50のスプール57は第2図上半分に示すように入力
ポート52とドレンボート54を選択的に開閉する位置
の近傍で維持される。したがって、出力油圧P、は(1
)式のように調圧され、発進クラッチ20は締結状態を
保持している。
- During low-speed transmission - First, during low-speed transmission, the start control solenoid valve 46 is ON and the direct control solenoid valve 47 is 0FFL, so the spool 57 of the start control valve 50 is input as shown in the upper half of Fig. 2. It is maintained near the position where the port 52 and drain boat 54 are selectively opened and closed. Therefore, the output oil pressure P is (1
), and the starting clutch 20 maintains the engaged state.

一方、直結制御弁60のポー)61には発進制御弁50
の出力油圧P、が入力されるため、直結制御弁60のス
プール67は第2図上半分に示すように強制的に左方へ
押し切られ、直結制御用電磁弁47の作υJに関係な(
直結クラッチ6の油圧P4はドレンされる。したがって
、直結クラッチ6は完全に遮断されている。
On the other hand, the start control valve 50 is connected to the port 61 of the direct control valve 60.
Since the output oil pressure P is input, the spool 67 of the direct control valve 60 is forcibly pushed to the left as shown in the upper half of FIG.
The oil pressure P4 of the direct coupling clutch 6 is drained. Therefore, the direct coupling clutch 6 is completely disconnected.

一高速伝動時一 高速伝動時には、発進制御用電磁弁46がOFF、直結
制御用電磁弁47がONするため、直結制御弁60のス
プール67は第2図下半分に示すように入力ポート62
とドレンポート64とを選択的に開閉する位置の近傍で
保持され、出力油圧P4は(2)式のように調圧され、
直結クラッチ6を締結されている。
During first high-speed transmission During first high-speed transmission, the start control solenoid valve 46 is turned OFF and the direct-coupled control solenoid valve 47 is turned ON, so that the spool 67 of the direct-coupled control valve 60 is connected to the input port 62 as shown in the lower half of FIG.
and the drain port 64 are held near the position where they are selectively opened and closed, and the output oil pressure P4 is regulated as shown in equation (2).
The direct coupling clutch 6 is engaged.

また、発進制御弁50のスプール57は第2図下半分に
示すようにスプリング58によって右方へ押し切られる
ので、出力油圧P、はドレンされ、発進クラッチ20は
完全に遮断されている。
Further, the spool 57 of the start control valve 50 is pushed to the right by the spring 58 as shown in the lower half of FIG. 2, so the output oil pressure P is drained and the start clutch 20 is completely disconnected.

−低速伝動状態から高速伝動状態への切換時−低速伝動
状態から高速伝動状態へ切り換えるために、電磁弁46
.47の信号油圧p、、Pgを第3図(^)のように変
化させると、クラッチ油圧P。
- When switching from a low-speed transmission state to a high-speed transmission state - In order to switch from a low-speed transmission state to a high-speed transmission state, the solenoid valve 46
.. When the signal oil pressures p, , Pg of 47 are changed as shown in FIG. 3 (^), the clutch oil pressure P.

、P4は第3図(B)のように変化する。, P4 change as shown in FIG. 3(B).

即ち、時刻も、において第2信号油圧Pgを即座に立ち
上げるとともに、第1信号油圧P1を一旦所定の油圧ま
で低下させた後、時間勾配をもって緩やかに低下させる
。つまり、直結クラッチ6の油圧P4がビストンストロ
ークのため立ち上がりが遅れても、その間、発進クラッ
チ20の油圧P、を緩やかに低下させ、発進クラッチ2
0を保合状態で維持させる0時刻1.において、直結ク
ラッチ6のビストンストロークが完了しクラッチ油圧P
4が上昇すると、やがて時刻t3でクラッチ油圧P4が
P、より高くなり、その後時刻t、で油圧Psがドレン
されて発進クラッチ20が遮断されると同時に、直結ク
ラッチ6が締結される。
That is, at time, the second signal oil pressure Pg is immediately raised, and the first signal oil pressure P1 is once lowered to a predetermined oil pressure, and then gradually lowered with a time gradient. In other words, even if the hydraulic pressure P4 of the direct coupling clutch 6 is delayed in rising due to the piston stroke, the hydraulic pressure P4 of the starting clutch 20 is gradually decreased during that time, and the starting clutch 2
0 time 1 to maintain 0 in a coherent state. , the piston stroke of the direct coupling clutch 6 is completed and the clutch oil pressure P
4 increases, the clutch oil pressure P4 eventually becomes higher by P at time t3, and then at time t, the oil pressure Ps is drained and the starting clutch 20 is disengaged, and at the same time, the direct coupling clutch 6 is engaged.

このように、発進クラッチ20を制御するための第1信
号油圧P1を時間勾配をもって緩やかに低下させること
により、直結クラッチ油圧P4の立ち上がり遅れ時間を
確保し、双方のクラッチが遮断された状態を回避し、エ
ンジンの吹き上がりを防止するとともに、クラッチ油圧
P4が緩やかに立ち上がるので、クラッチ係合時のシラ
ツクを緩和できる。また、直結制御弁60のポート61
に発進クラッチ油圧P、が入力されているので、発進ク
ラッチ油圧P、がドレンされると同時に直結クラッチ油
圧P4が最大となり、双方のクラッチが締結した状態(
ダブルクラッチ)を確実に防止できる。
In this way, by gradually decreasing the first signal oil pressure P1 for controlling the starting clutch 20 with a time gradient, the rise delay time of the direct coupling clutch oil pressure P4 is secured, and a state in which both clutches are disengaged is avoided. However, since engine revving is prevented, and the clutch oil pressure P4 rises gradually, sluggishness at the time of clutch engagement can be alleviated. In addition, the port 61 of the direct connection control valve 60
Since the starting clutch oil pressure P is input to the starting clutch oil pressure P, the direct coupling clutch oil pressure P4 reaches the maximum at the same time as the starting clutch oil pressure P is drained, and both clutches are engaged (
(double clutch) can be reliably prevented.

一高速伝動状態から低速伝動状態への切換時−キックダ
ウン時のように高速伝動状態から低速伝動状態へ切り換
える場合には、電磁弁46.47の信号油圧Pt+P*
を第4図(A)のように変化させる。この時、クラッチ
油圧P、、P4は第4図(B)のように変化する。
1. When switching from a high-speed transmission state to a low-speed transmission state - When switching from a high-speed transmission state to a low-speed transmission state such as during kickdown, the signal oil pressure Pt+P* of the solenoid valve 46.47
is changed as shown in FIG. 4(A). At this time, the clutch oil pressures P, P4 change as shown in FIG. 4(B).

即ち、時刻t、において第1信号油圧P、を即座に立ち
上げるとともに、第2信号油圧P3を一旦時間遅れて低
下させる。つまり、発進クラッチ20の油圧P3がビス
トンストロークのため立ち上がりがやや遅れるが、時刻
t4までの開信号油圧P2を最大油圧P−で保持してお
き、ポート61に入力される発進クラッチ油圧P3の上
昇に応じて直結クラッチ油圧P4を低下させる。したが
って、直結クラッチ油圧P、の急激な低下が防止される
That is, at time t, the first signal oil pressure P is immediately raised, and the second signal oil pressure P3 is once lowered after a time delay. In other words, although there is a slight delay in rising the oil pressure P3 of the starting clutch 20 due to the piston stroke, the opening signal oil pressure P2 is maintained at the maximum oil pressure P- until time t4, and the starting clutch oil pressure P3 input to the port 61 increases. The direct coupling clutch oil pressure P4 is lowered accordingly. Therefore, a sudden drop in the direct coupling clutch oil pressure P is prevented.

そして、時刻【Sにおいて発進クラッチ油圧P。Then, at time [S, the starting clutch oil pressure P.

が最大となると同時に直結クラッチ油圧P4もドレンさ
れ、直結クラッチ6が遮断されるとともに、発進クラッ
チ20が締結される。
At the same time as reaches the maximum, the direct coupling clutch oil pressure P4 is also drained, the direct coupling clutch 6 is disconnected, and the starting clutch 20 is engaged.

このように、直結クラッチ6を制御するための信号油圧
Pgを即座に低下させず、発進クラッチ油圧P、の上昇
を利用して直結クラッチ油圧P4を低下させるので、双
方のクラッチが遮断された状態や双方のクラッチが締結
したダブルクラッチを確実に防止できる。しかも、低速
伝動状態から高速伝動状態への切換時と比べて短時間で
切り換えることができるので、迅速に変速制御へ移行で
きる。
In this way, the signal hydraulic pressure Pg for controlling the direct coupling clutch 6 is not immediately lowered, but the direct coupling clutch hydraulic pressure P4 is lowered using the increase in the starting clutch hydraulic pressure P, so that both clutches are in a disengaged state. Also, double clutching in which both clutches are engaged can be reliably prevented. Moreover, since the switching from the low-speed transmission state to the high-speed transmission state can be performed in a shorter time than when switching from the low-speed transmission state to the high-speed transmission state, it is possible to shift to speed change control quickly.

なお、本発明は直結機構付無段変速機における発進クラ
ッチと直結クラッチの制御装置に限らず、一般の有段式
自動変速機における低速段と高速段の変速切換用クラッ
チの制御装置にも適用できる。
Note that the present invention is applicable not only to a control device for a starting clutch and a direct coupling clutch in a continuously variable transmission with a direct coupling mechanism, but also to a control device for a clutch for changing gears between a low gear and a high gear in a general stepped automatic transmission. can.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明によれば第1クラ
ッチ制御弁の出力油圧を第2クラッチ制御弁に対して第
2信号油圧と対向方向に入力しているので、双方のクラ
ッチが締結された状態を確実に回避できる。
As is clear from the above explanation, according to the present invention, the output oil pressure of the first clutch control valve is input to the second clutch control valve in the opposite direction to the second signal oil pressure, so both clutches are engaged. You can definitely avoid this situation.

また、低速伝動状態から高速伝動状態へ切り換える場合
には、第2信号油圧が上昇するとともに第1信号油圧が
時間勾配をもって低下するように制御したので、双方の
クラッチが遮断される事態を回避できるとともに、第2
クラッチの締結が緩やかに行われ、クラッチ係合シ四ツ
クを回避できる。
Furthermore, when switching from a low-speed transmission state to a high-speed transmission state, the second signal oil pressure is controlled to rise and the first signal oil pressure is reduced with a time gradient, making it possible to avoid a situation in which both clutches are disconnected. along with the second
The clutch is engaged gently, and clutch engagement can be avoided.

逆に、高速伝動状態から低速伝動状態へ切り換える場合
には、第1信号油圧の上昇より遅れて第2信号油圧が低
下するように制御したので、第1クラッチ油圧が上昇を
開始するまで第2クラッチ油圧が低下せず、双方のクラ
ッチが遮断される事態を回避てきるとともに、短時間で
切換を完了することが可能である。
Conversely, when switching from a high-speed transmission state to a low-speed transmission state, the second signal oil pressure was controlled to decrease with a delay after the increase in the first signal oil pressure, so the second signal oil pressure was It is possible to avoid a situation in which both clutches are disconnected without reducing the clutch oil pressure, and to complete switching in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用される直結機構付無段変速機の概
略構成図、第2図はクラッチの油圧制御装置の回路図、
第3図は低速伝動状態から高速伝動状態への切換時にお
ける信号油圧およびクラッチ油圧の時間変化図、第4図
は高速伝動状態から低速伝動状態への切換時における信
号油圧およびクラッチ油圧の時間変化図である。 6・・・直結クラッチ(第2クラッチ)、20・・・発
進クラッチ(第1クラッチ)、46・・・発進制御用電
磁弁(第1fft磁弁)、47・・・直結制御用電磁弁
(第2電磁弁)、50・・・発進制御弁(第1クラッチ
制御弁)、60・・・直結制御弁(第2クラッチ制御弁
)。 第1図 第2図
FIG. 1 is a schematic configuration diagram of a continuously variable transmission with a direct coupling mechanism to which the present invention is applied, FIG. 2 is a circuit diagram of a clutch hydraulic control device,
Figure 3 is a time change diagram of signal oil pressure and clutch oil pressure when switching from low speed transmission state to high speed transmission state, and Figure 4 is a time change diagram of signal oil pressure and clutch oil pressure when switching from high speed transmission state to low speed transmission state. It is a diagram. 6... Direct coupling clutch (second clutch), 20... Starting clutch (first clutch), 46... Solenoid valve for starting control (first fft magnetic valve), 47... Solenoid valve for direct coupling control ( 50... Start control valve (first clutch control valve), 60... Direct connection control valve (second clutch control valve). Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 入出力軸間に低速伝動系と高速伝動系とを並列に設け、
低速伝動系に第1クラッチを、高速伝動系に第2クラッ
チをそれぞれ設けてなる変速機において、 第1信号油圧を発生する第1電磁弁と、第2信号油圧を
発生する第2電磁弁と、第1信号油圧に応じた出力油圧
を第1クラッチへ出力する第1クラッチ制御弁と、第2
信号油圧に応じた出力油圧を第2クラッチへ出力する第
2クラッチ制御弁とを備え、第1クラッチ制御弁の出力
油圧が第2クラッチ制御弁に対して第2信号油圧と対向
方向に入力されており、第1クラッチを遮断して第2ク
ラッチを締結する場合には、第2信号油圧が上昇すると
ともに第1信号油圧が時間勾配をもって低下するように
第1、第2電磁弁を制御し、第1クラッチを締結して第
2クラッチを遮断する場合には、第1信号油圧の上昇よ
り遅れて第2信号油圧が低下するように第1、第2電磁
弁を制御することを特徴とする変速機のクラッチ制御装
置。
[Claims] A low-speed transmission system and a high-speed transmission system are provided in parallel between the input and output shafts,
In a transmission in which a first clutch is provided in a low-speed transmission system and a second clutch is provided in a high-speed transmission system, a first solenoid valve that generates a first signal hydraulic pressure, a second solenoid valve that generates a second signal hydraulic pressure, , a first clutch control valve that outputs an output oil pressure to the first clutch according to the first signal oil pressure, and a second clutch control valve.
and a second clutch control valve that outputs an output hydraulic pressure according to the signal hydraulic pressure to the second clutch, and the output hydraulic pressure of the first clutch control valve is input to the second clutch control valve in a direction opposite to the second signal hydraulic pressure. When the first clutch is disengaged and the second clutch is engaged, the first and second solenoid valves are controlled so that the second signal oil pressure increases and the first signal oil pressure decreases with a time gradient. , when the first clutch is engaged and the second clutch is disengaged, the first and second solenoid valves are controlled so that the second signal oil pressure decreases with a delay from the increase in the first signal oil pressure. transmission clutch control device.
JP3912688A 1988-02-22 1988-02-22 Clutch controller for speed change gear Pending JPH01216152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3912688A JPH01216152A (en) 1988-02-22 1988-02-22 Clutch controller for speed change gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3912688A JPH01216152A (en) 1988-02-22 1988-02-22 Clutch controller for speed change gear

Publications (1)

Publication Number Publication Date
JPH01216152A true JPH01216152A (en) 1989-08-30

Family

ID=12544408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3912688A Pending JPH01216152A (en) 1988-02-22 1988-02-22 Clutch controller for speed change gear

Country Status (1)

Country Link
JP (1) JPH01216152A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6030317A (en) * 1996-03-30 2000-02-29 Zf Friedrichshafen Ag Hydraulic control for operating an automatic gearbox, especially a continuosly variable transmission
US6055879A (en) * 1996-04-16 2000-05-02 Toyota Jidosha Kabushiki Kaisha Hydraulic control system for automatic transmission of multiple clutch type which prevents two clutches from being simultaneously engaged
JP2001050387A (en) * 1999-06-02 2001-02-23 Nissan Motor Co Ltd Control device for continuously variable transmission with infinite change gear ratio
WO2015045839A1 (en) * 2013-09-30 2015-04-02 ダイハツ工業株式会社 Vehicle transmission
JP2015127568A (en) * 2013-12-27 2015-07-09 ダイハツ工業株式会社 Hydraulic control device
JP2015127569A (en) * 2013-12-27 2015-07-09 ダイハツ工業株式会社 Hydraulic control device
WO2015097549A3 (en) * 2013-12-24 2015-09-24 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6030317A (en) * 1996-03-30 2000-02-29 Zf Friedrichshafen Ag Hydraulic control for operating an automatic gearbox, especially a continuosly variable transmission
US6055879A (en) * 1996-04-16 2000-05-02 Toyota Jidosha Kabushiki Kaisha Hydraulic control system for automatic transmission of multiple clutch type which prevents two clutches from being simultaneously engaged
JP2001050387A (en) * 1999-06-02 2001-02-23 Nissan Motor Co Ltd Control device for continuously variable transmission with infinite change gear ratio
WO2015045839A1 (en) * 2013-09-30 2015-04-02 ダイハツ工業株式会社 Vehicle transmission
JP2015068463A (en) * 2013-09-30 2015-04-13 ダイハツ工業株式会社 Vehicle gear change device
WO2015097549A3 (en) * 2013-12-24 2015-09-24 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicle
US9829093B2 (en) 2013-12-24 2017-11-28 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicle
RU2648504C2 (en) * 2013-12-24 2018-03-26 Тойота Дзидося Кабусики Кайся Transmission control device of vehicle
JP2015127568A (en) * 2013-12-27 2015-07-09 ダイハツ工業株式会社 Hydraulic control device
JP2015127569A (en) * 2013-12-27 2015-07-09 ダイハツ工業株式会社 Hydraulic control device

Similar Documents

Publication Publication Date Title
EP1271006B1 (en) Automatic transmission control system
US4955260A (en) Hydraulic control system for transmission
JP2502241Y2 (en) Line pressure control device for V-belt type continuously variable transmission
GB2076483A (en) Control system for a continuously variable transmission for vehicles
KR20010019805A (en) Hydraulic control system of continuously variable transmission for vehicle
JPH01216152A (en) Clutch controller for speed change gear
JP6405079B2 (en) Hydraulic control circuit
JP2984755B2 (en) Gear ratio control device for continuously variable transmission
JP2765081B2 (en) Transmission hydraulic control device
JPH01188723A (en) Lubricator of clutch
US5816974A (en) Device and method for controlling line pressure of hydraulic control system for 4-speed automatic transmission
JPH01131328A (en) Hydraulic control device for clutch
JPH06109119A (en) Hydraulic pressure control device of transmission
JPH0198741A (en) Hydraulic control device for automatic transmission
JP2962189B2 (en) Control device for automatic transmission for vehicles
JPS61136044A (en) Method of operating hydraulic clutch in hydraulically operated speed change gear unit
JPS62215152A (en) Device for controlling wet clutch
JPH01188722A (en) Hydraulic controller of clutch
JPS63308227A (en) Hydraulic controller for clutch
JPS6293561A (en) Switching control method of transmission
JPS63293326A (en) Oil pressure control device for clutch
JPS6293562A (en) Switching control method of transmission
JPH044357A (en) Hydraulic control device for transmission
JPS6145167A (en) Hydraulic control device of automatic speed change gear
JP2009299702A (en) Hydraulic control device of transmission