JPH0118982B2 - - Google Patents

Info

Publication number
JPH0118982B2
JPH0118982B2 JP57119902A JP11990282A JPH0118982B2 JP H0118982 B2 JPH0118982 B2 JP H0118982B2 JP 57119902 A JP57119902 A JP 57119902A JP 11990282 A JP11990282 A JP 11990282A JP H0118982 B2 JPH0118982 B2 JP H0118982B2
Authority
JP
Japan
Prior art keywords
size
alloy powder
less
resistant
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57119902A
Other languages
Japanese (ja)
Other versions
JPS5913041A (en
Inventor
Fumio Kyota
Tatsuo Fujita
Tadao Hirano
Shinichi Horie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Resonac Holdings Corp
Original Assignee
Riken Corp
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp, Showa Denko KK filed Critical Riken Corp
Priority to JP57119902A priority Critical patent/JPS5913041A/en
Priority to CA000432033A priority patent/CA1230761A/en
Priority to DE8383106849T priority patent/DE3381592D1/en
Priority to EP83106849A priority patent/EP0100470B1/en
Publication of JPS5913041A publication Critical patent/JPS5913041A/en
Priority to US07/259,402 priority patent/US4938810A/en
Publication of JPH0118982B2 publication Critical patent/JPH0118982B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、常温から高温までの強度がすぐれた
高Siアルミニウム合金粉末の成形部材とその製造
法に関するもので、特に内燃機関のシリンダーラ
イナーのような熱負荷が高く、又耐摩耗性耐焼付
性が要求される部品に最適のものである。 最近自動車の軽量化やフロントエンジンフロン
トドライブ(FF)方式のためエンジンの軽量化
が必要となつており、そのためシリンダーブロツ
クは鋳鉄からAl合金が使用されるようになつて
きている。その場合、鋳鉄製シリンダーライナー
が鋳ぐるまれて使用されている。このシリンダー
ライナーをAl合金にすると軽量化の他に熱伝導
率が鋳鉄よりもはるかに良いことと、鋳鉄よりも
熱膨張係数が大きく、シリンダーブロツクのAl
合金に近いので、昇温時でもライナーとブロツク
の密着性が良いことから放熱性の良いエンジンと
なり、ライナーの内壁温度が低く出来ることから
潤滑油の寿命を長く出来たり低粘度の潤滑油の使
用が可能となり、燃費の向上が可能になるとされ
ている。又、熱膨張係数がピストン材料のアルミ
ニウム合金のそれと同程度であるので、ピストン
との間のクリアランスを小さく設定出来るために
潤滑油の消費量を押え燃費の向上も期待される。
又、高SiのAl合金は摩擦係数が低いため、シリ
ンダーライナーとして使用すればピストンリング
との間のフリクシヨンロスが低減されることから
燃費の向上が期待される。このようにシリンダー
ライナーにAl合金を適用することの長所は多い
が、従来の公知のアルミニウム合金ではこのよう
な鋳ぐるみ用シリンダーライナー材としては不充
分である。例えばAA規格のA390.0合金(Si=16
〜18%、Cu=4〜5%、Mg=0.50〜0.65%、Fe
=0.5%、Ti=0.2%、Zn=0.1%、残Al)の様な
鋳造材は固液共存温度域が広いため、健全な鋳物
を得るためには大きな押湯を必要とするため歩留
りが悪くコストの高いものとなる他に、微細化処
理や金型鋳造法によつても初晶Siは尚粗大である
ために被削性が悪い。更に致命的欠点はシリンダ
ーブロツクに鋳ぐるむ時に熱によつて材料が軟化
するために、耐摩耗性が著しく低下する他、被削
面にビビリやムシレを生じやすく、ホーニング加
工を困難とする。又、近年粉末冶金法により
A390.0に近い組成の合金を粉末にして、これを
熱間押出しして中空体とする技術が提案されてい
る(特開昭52−109415)。これは高Siのアルミニ
ウム合金溶湯をアトマイズ法又は遠心力による微
粒化法により急冷された微粒、又は粉末とし、こ
れを熱間押出しすることにより中空体を得る方法
であり、鋳造法により得られる中空体よりもはる
かに重量歩留りのすぐれた製造法である。又、こ
の方法によると初晶Siが20μm以下の大きさとな
るために延性や機械加工性にすぐれ、更に高ケイ
素Al合金特有の低摩擦係数の性質をも有してい
る。又、この製造法により、15〜20%Si、1〜5
%Cu、0.5〜1.5%Mg、0.5〜1.5%Ni、残部Alの
合金や或はこれにSiC、Sn、黒鉛を混合して押出
した中空体が提案されている。本発明者らはこの
トレース実験を行つたところ、20.0Si−4.0Cu−
0.8Mg−0.5Ni−Al残の組成とした粉末押出し材
をシリンダーライナー(外径73mm内径65mm高さ
105mm)として使用し、ADC−12合金のシリンダ
ーブロツク(重量3.4Kg)に溶湯温度675℃でダイ
キヤスト法で鋳ぐるむテストを行つた結果、鋳ぐ
るみ前にT6処理により硬さがHRB80であつたもの
が、鋳ぐるみ後はHRB40程度に軟化してしまうこ
とが判明した。従つてこの中空体もアルミニウム
合金製シリンダーブロツクに鋳ぐるむ時に軟化し
てしまい、鋳ぐるみ用シリンダーライナーとして
は使用不可能である。 また、鋳ぐるみはダイキヤスト法や低圧鋳造法
によるがライナーはコスト面からもできるだけ薄
肉とすることが望ましい。しかし薄肉化していく
と鋳ぐるみ時のライナー搬送工程や位置決め時に
加わる機械的応力により変形しやすくなるため
に、高剛性(高硬度)であることが必要である。 本発明はこれらの欠点をすべて解消し、鋳ぐる
み時の熱負荷に対しても軟化することがなく、さ
らに使用時に負荷される温度域においても軟化せ
ず、耐摩耗性、耐焼付性にすぐれたアルミニウム
合金材料を経済的にも安価に提供することを目的
とする。 本発明で使用するアルミニウム合金粉末の一例
は、重量比でSi10.0〜30.0%と、Fe3.0〜15.0%ま
たはMn5.0〜15.0%のうち1種または2種を必須
成分とし、さらに必要に応じてCu0.5〜5.0%およ
びMg0.2〜3.0%を含み残部がAlからなるもので
あり、他の組成例はSi10.0〜30.0%と、Ni3.0〜
10.0%と、Fe3.0〜12.0%またはMn5.0〜12.0%の
うち1種または2種とを必須成分とし、さらに必
要に応じてCu0.5〜5.0%およびMg0.2〜3.0%を含
み残部がAlからなる合金であり、これらの合金
はいずれもSi結晶粒の大きさが15μm以下に微細
化し、高温強度を高めるFe、Mn、Niなどを含む
金属間化合物が析出していることを特徴としてい
る。 また、本発明のアルミニウム合金粉末成形体の
一つの要旨は、重量比でSi10.0〜30.0%と、Fe3.0
〜15.0%またはMn5.0〜15.0%のうち少くとも1
種を必須成分とし、さらに必要に応じてCu0.5〜
5.0%およびMg0.2〜3.0%を含み、残部がAlから
なる組成を有し、Si結晶粒の大きさが15μm以下
で、かつFeまたはMnを含む金属間化合物の大き
さが20μm以下に微細に分散していることを特徴
とする。 また、もう一つの要旨は重量比でSi10.0〜30.0
%と、Ni3.0〜10.0%と、Fe3.0〜12.0%または
Mn5.0〜12.0%のうち少くとも1種を必須成分と
し、さらに必要に応じてCu0.5〜5.0%および
Mg0.2〜3.0%を含み、残部がAlからなる組成を
有し、Si結晶粒の大きさが15μm以下、かつFe、
Mn、Ni等を含む金属間化合物の大きさ20μm以
下に微細に分散していることを特徴とする。 さらに本発明のアルミニウム合金成形体の製造
方法は、原料として前記アルミニウム合金粉末を
使用するものであり、前記アルミニウム合金溶湯
を分散急冷凝固させて得られた粉末を熱間押出す
ることを特徴とし、Si結晶粒およびFe、Mn、Ni
等を含む金属間化合物が微細に分散した組織を有
する合金粉末成形体を得ることを要旨とする。 以下この発明をさらに詳細に説明する。 まず、本発明で使用するAl合金粉末について
説明する。 一般に過共晶Al−Si合金はAlよりも小さな熱
膨張係数を有し、耐熱性耐摩耗性に優れているこ
とは広く知られている。過共晶Al−Si合金鋳造
材ではSiが初晶あるいは共晶としてマトリツクス
中に分散することにより、高温強度や耐摩耗性、
耐焼付性に優れた効果を発揮する。しかしながら
初晶Siはしばしば粗大結晶として晶出するため、
延性や衝撃値を低下させ、被削性を悪くする。ま
た、シリンダーライナー材などに使用する場合は
相手材を傷付けるので適当ではない。 これらの問題点を解決するため、過共晶Al−
Si合金を急冷凝固させて初晶Siを微細化した合金
粉末をつくり、押出成形により部材に加工して耐
熱性、耐摩耗性に優れた材料を得ることが提案さ
れている(特開昭52−109415)。しかしながら耐
熱性、特に高温強度に関してはなお充分ではな
い。 本発明はAl−Si合金にFeまたはMnを添加する
ことにより粗大な初晶Siの晶出を抑制するととも
に、高温における強度と耐摩耗性を著しく改善せ
んとするものである。 また、本発明ではAl−Si合金にFeまたはMnと
場合によつてはNiとを添加して初晶Siの粗大化
を阻止して微細に分散晶出させ、同時に微細な金
属間化合物を析出させることにより、高温におけ
る強度と耐摩耗性を改善し、さらに耐焼付性を著
しく改善せんとするものである。 次に本発明で使用する合金粉末中の各成分の限
定理由を説明する。 Siは10%以下では分散量が少く、耐熱性耐摩耗
性におよぼす効果が不充分である。Si10%近傍の
亜共晶域では初晶Siは晶出せず、微細な共晶組織
を有するものとなる。Siの添加量が増すと共にSi
初晶が晶出するようになり、耐熱性、耐摩耗性も
向上してくる。しかしながらSiが30%を越えると
分散急冷凝固法によつて粉末としても粗大な初晶
Siが消失しなくなる。粗大な初晶Si組織を有する
アルミニウム合金粉末は押出成形加工して使用す
るに際しては、粉体の圧縮性を著しく悪化させ圧
粉体を造りにくくするほか、熱間押出においても
変形抵抗が大きくなり、大きな押出力を必要とす
るほか、押出ダイスを摩耗させて寿命を著しく短
縮させる難点がある。このような製造上の問題の
他に、材質特性においても鋳造材の場合と同様な
難点があり、シリンダーライナー材としては不適
当なものとなるので、粗大な初晶Siの晶出は避け
なければならない。 また、アルミニウム合金製シリンダーブロツク
材に鋳ぐまれてシリンダーライナーとして使用さ
れる場合、Siの添加量と共に熱膨張係数は小さく
なり、Siが30%を越えるとシリンダーブロツク材
との密着状況が悪くなつたり、ピストンとの間の
クリアランスを大きくする必要性が生じてくる。 従つてSiの添加量は10.0〜30.0%、好ましくは
15.0〜25.0%とするのが良い。 FeおよびMnは本発明合金においては重要な成
分であり、Al中への溶解度が低くかつ拡散速度
が遅いことを利用して微細な化合物として分散さ
せ、高温強度を高める目的で添加する。さらに固
溶限界を越えてFeまたはMnを添加すると、Al−
(Fe、Mn)−Si系の化合物として析出し、その形
状は添加量が多いほど、また冷却速度が遅いほど
粗大となる。これらの金属間化合物は本発明の製
造方法の骨子である分散急冷凝固法による合金粉
末においては棒状の組織として存在して、後の熱
間押出工程によつて分断され、基地中に微細に分
散する。これら化合物は高温においても安定でか
つ成長し難く、長時間高温保持しても強度の低下
は起こさない。従つて鋳ぐるみ用シリンダーライ
ナーのように高温にさらされた後も硬度の低下が
なく、耐摩耗性を保持することが可能となる。 過共晶Al−Si合金中にFeまたはMnを添加して
いくと初晶Siは少くなるが、代つて析出するAl
−(Fe、Mn)−Si系金属間化合物によつて耐熱
性、耐摩耗性を維持し改善するものである。この
ようにFeとMnは同様の作用効果を有しているの
で、FeまたはMnのうちいずれか1種または2種
を使用することができる。FeまたはMnの添加量
はFe単独の場合は3.0〜15.0%、Mn単独の場合は
5.0〜15.0%、FeおよびMnを合わせて使用する場
合は2種合計で3.0〜15.0%の範囲とするのが適
当である。添加量が上記範囲より少い場合は高温
強度を維持向上させるための金属間化合物の析出
量が不足するので効果が上がらない。また添加量
が上記範囲を越えた場合は硬さや耐摩耗性がかえ
つて低下するのでライナー材としては好ましくな
い。また、アルミニウム合金の有する軽量特性を
失わせ、粉末を押出成形加工する場合は圧縮性を
悪くし、押出変形抵抗を大きくし加工を困難にす
るので好ましくない。従つてFeまたはMnの添加
量の上限は15%とした。 さらに本発明で使用する合金粉末ではNiを合
わせて使用することができる。Niの添加効果は
FeまたはMnの添加によつて減少した初晶Siを回
復させ、高温強度や耐摩耗性を向上させると同時
に、耐焼付性を改善できる点にある。即ち、過共
晶Al−Si合金中にNi、Fe、Mnを合わせて添加
すると、微細な初晶Siと、Al−Ni系金属間化合
物、およびAl−(Fe、Mn)Si系金属間化合物が
同時に析出する。この結果合金の高温強度や耐摩
耗性を向上させ、さらに耐焼付性を著しく改善す
るという新たな効果が現われる。 Niの添加量はSi初晶と金属間化合物相の析出
を考慮すると3.0〜10.0%が適当である。Niの添
加によりAl合金中でのSi溶解度が減少し、過剰
のSiが初晶として晶出する。これにFe3.0〜12.0
%またはMn5.0〜12.0%のうち1種または2種を
添加するのが良い。たゞし(Ni+Fe+Mn)合量
で6.0〜15.0%の範囲内にとどめるべきである。
添加量が上記範囲より少い場合は高温強度を向上
させるための金属間化合物の析出が不足するので
効果が上がらない。また添加量が上記範囲を越え
た場合は硬さや耐摩耗性がかえつて低下するの
で、ライナー材としては好ましくない。さらには
合金粉末を押出成形加工する場合は圧縮性を悪く
し、押出変形抵抗を大きくして加工を困難とする
ので好ましくない。 本発明で使用する合金粉末は必要に応じて0.5
〜5.0%のCuおよび0.2〜3.0%のMgを添加するこ
とができる。CuやMgはAl合金に時効硬化性を付
与して材料を強化する成分として知られている。
本発明においても溶体化処理温度での固溶限度内
の前記範囲でCuおよびMgを添加すると材質を強
化するのに有効である。 また、本発明で使用する合金粉末においてはさ
らにTi、Zr、Mo、V、Co等を添加して高温強度
を改善することも可能である。しかしながら添加
量があまり増大すると成分管理、溶解温度の上昇
などの製造上の困難が生じてくる。 Si結晶粒の大きさを15μm以下としたのは、主
として初晶Siの大きさが15μm以上になると、後
続の合金粉末の成形加工性が悪くなり、材料特性
も悪化するからである。もちろんSiが共晶として
晶出する場合は微細結晶となるので問題はおこら
ない。 本発明で使用する合金粉末は上記合金組成を有
する溶湯をアトマイズ法、遠心力による微粒化法
等の通常用いられている金属溶湯からの微粉末製
造手段を使用して急速分散凝固させることにより
得られるものである。このようにして得られた合
金粉末は大きさが15μm以下のSi結晶粒と、成長
を抑えられた金属間化合物の棒状晶を有し、従来
の高Si系アルミニウム合金粉末には見られない新
規な合金粉末である。またこのような組織を有す
る合金を鋳造法で得ることは不可能である。参考
までに23.4Si−4.8Cu−1.2Mg−8.7Fe−残Alの組
成を有する本発明で使用するアルミニウム合金粉
末の顕微鏡組織写真を第3図に示す。第4図は
20.6Si−2.7Cu−1.1Mg−7.8Mn−残Alの組成を有
する本発明で使用するアルミニウム合金粉末の顕
微鏡組織写真である。なお比較の為、第3図と同
一組成を有する鋳造材の組織写真を第5図に、第
4図と同一組成を有する鋳造材の組織写真を第6
図に示した。また第7図には従来知られている
21.1Si−3.1Cu−1.0Mg−残Alの組成を有する高
Siアルミニウム合金粉末の顕微鏡組織写真を示し
た。第3図、第4図において塊状を呈しているの
が初晶Siで、棒状を呈しているのがAl−(Fe、
Mn)−Si系金属間化合物である。第5図、第6図
では粗大な多角形をした初晶Siが見られ、大きな
棒状の金属間化合物が認められる。第7図では粒
状の初晶Siと共晶組織を呈している。 本発明で使用する合金粉末は熱間押出加工に適
したものであり、特に耐熱耐摩耗性を要求される
高力アルミニウムの成形体用に最適なものであ
る。 次に本発明のアルミニウム合金粉末成形体につ
いて説明する。 本発明の第1の要旨とするところは、重量比で
Si10.0〜30.0%と、Fe3.0〜15.0%またはMn5.0〜
15.0%のうち少くとも1種を含むAl合金からな
り、Si結晶粒の大きさが15μm以下であり、かつ
またFeまたはMnを含む金属間化合物の大きさが
20μm以下に微細化分散していることを特徴とす
る耐熱耐摩耗性高力アルミニウム合金粉末成形体
である。 本発明の第1の要旨は、重量比でSi10.0〜30.0
%と、Fe3.0〜15.0%またはMn5.0〜15.0%のうち
1種または2種(ただし2種の場合は合計で3.0
〜15.0%)と、Cu0.5〜5.0%およびMg0.2〜3.0%
とを含み、残部が不可避的不純物を含むAlから
成り、Si結晶粒の大きさが15μm以下であり、か
つFeまたはMnを含む金属間化合物の大きさが
20μm以下に微細化分散してなることを特徴とす
る耐熱耐摩耗性高力アルミニユウム合金粉末成形
体である。 第3の発明の要旨とするところは、重量比で
Si10.0〜30.0%と、Ni3.0〜10.0%と、Fe3.0〜12.0
%またはMn5.0〜12.0%のうち少くとも1種を含
むAl合金からなり、Si結晶粒の大きさが15μm以
下であり、かつまたAl−Ni系およびAl−(Fe、
Mn)−Si系の金属間化合物の大きさが20μm以下
に微細化分散していることを特徴とする耐熱耐摩
耗性高力アルミニウム合金粉末成形体である。 本発明の第4の要旨は、重量比でSi10.0〜30.0
%と、Ni3.0〜10.0%と、Fe3.0〜15.0%または
Mn5.0〜15.0%のうち1種または2種(ただしNi
+Fe+Mn合計で6.0〜15.0%)と、Cu0.5〜5.0%
およびMg0.2〜3.0%とを含み、残部が不可避的
不純物を含むAlから成り、Si結晶粒の大きさが
15μm以下であり、かつFeまたはMnを含む金属
間化合物の大きさが20μm以下に微細化分散して
なることを特徴とする、耐熱耐摩耗性高力アルミ
ニユウム合金粉末成ル形体である。 本発明でSi含有量を10.0〜30.0%としたのは成
形体の耐熱性、耐摩耗性、耐焼付性を改善するた
めであり、Fe含有量を3.0〜15.0%(但しNiを含
有する場合は3.0〜12.0%)、Mn含有量を5.0〜
15.0%(但しNiを含有する場合は5.0〜12.0%)、
Ni含有量を3.0〜10.0%としたのは成形体の強度、
特に高温における強度、耐熱性、耐摩耗性を改善
するためである。 さらにSi結晶粒の大きさを15μm以下とするこ
とにより、耐摩耗性にすぐれ、摩擦係数を低下さ
せてシリンダーライナー等に適した材質にするた
めであり、さらにまた、従来法による成形品より
も延性が良くなり被削性が改善されるので加工中
のビビリやムシレの発生が少くなるなどの、機械
加工を容易にする効果をもたらす。 Al−(Fe、Mn)−Si、Al−Ni等の金属間化合
物の大きさを実質的には5μm以下で、大きなも
のでも20μm以下に微細かつ均一に分散させるこ
とにより、高温強度と耐摩耗性が著しく改善され
たものとなる。さらにこれら金属間化合物の微細
結晶とSiの微細結晶とが混ざり合つて均一に分布
すると、一段と優れた効果を発揮する。第8図お
よび第9図に本発明によるアルミニウム合金粉末
成形体の、押出方向に平行な断面の顕微鏡組織写
真を示す。第8図は第3図と同様な23.4Si−
4.8Cu−1.2Mg−8.7Fe−残Alの組成を有するも
の、第9図は第4図と同様20.6Si−2.7Cu−
1.1Mg−7.8Mn−残Alの組成を有するものであ
る。第8図および第9図において色の濃い部分が
初晶Si、色の淡い部分が共晶と金属間化合物であ
る。比較のため第10図には第7図と同様の組成
を有する公知の高Siアルミニウム合金粉末成形体
の断面の顕微鏡組織写真を示す。図に見られるご
とく、本発明による合金成形体では初晶Si、共
晶、金属間化合物が微細に入りくんで均一に分布
しているのがわかる。このような組織を有する成
形体は従来の成形体には見られなかつた新規なも
のである。 本発明によるアルミニウム合金粉末成形体は、
従来品に比較して高温強度が著しく改善されてお
り、耐摩耗性、耐焼付性にも優れたものである。
さらに摩擦係数が小さいので特に内燃機関のシリ
ンダーライナーのような高温で使用され、かつ耐
摩耗性耐焼付性が要求される部材として最適なも
のである。 本発明の第5の要旨は上記アルミニウム合金粉
末成形体の製造方法に関するものであり、前記組
成を有する合金溶湯を分散急冷凝固させ、得られ
た合金粉末を熱間押出成型することにある。 合金溶湯を分散急冷凝固させるのはSi、Cu、
Mg、Fe、Mn、Ni等の合金元素を過飽和に固溶
させるとともに、初晶Siや金属間化合物を微細化
し材質を強化するためである。分散急冷凝固させ
る方法としては、アトマイズ法、遠心微粉化法等
既知の金属粉末製造方法が利用できる。これらの
方法により粉末粒径を0.5mm以下に微細に分散さ
せ急冷凝固させれば満足する組織の合金粉末が得
られる。 次に、該合金粉末を利用して熱間押出により成
形体を製造する。熱間押出は合金粉末中に晶出し
ている初晶Si、共晶相、金属間化合物相の結晶粒
を微細化し、材料の機械的特性を改善すると同時
に、強固な成形体に仕上げるための必須要件であ
る。 熱間押出に先だつて圧粉体を準備すると作業上
都合が良い。圧粉体の製造は合金粉末を温度200
〜350℃程度の領域にしておこなう。300℃を越え
ると酸化が著しくなるのでN2ガスやArガスのよ
うな非酸化性雰囲気中でおこなうのが望ましい。
成型圧力は0.5〜3ton/cm2程度でおこない、圧粉
体密度は真密度比70%以上とするのが圧粉体のハ
ンドリング上望ましい。 熱間押出は350℃以上の温度域、好ましくは400
〜470℃の温度領域でおこなう。これは圧粉体の
加工が容易な範囲で粒子間の結合を促進させて強
固な成形体にするためである。さらには過飽和固
溶分の元素を微細析出させるとともに、初晶Siや
金属間化合物の棒状組織を分断して微細化し、成
形体の強度と摩擦特性を改善するためである。 熱間押出は圧粉体を大気中または非酸化性雰囲
気中で予熱し、ほぼ同温度のコンテナー中に挿入
しておこなう。押出比は10以上が好ましい。押出
比が10未満だと押出材中に空隙が残存し、また粉
末相互間の拡散接合や棒状金属間化合物の分断効
果が不充分なため、強度の高い材料が得られない
ためである。 本発明の方法によればSi初晶、共晶、金属間化
合物相のいずれをもきわめて微細に均一分散させ
ることが可能となり、特に材料の耐摩耗性と摩擦
係数に優れた部材を容易に得ることが可能とな
る。 また、本発明により得られた合金粉末成形体に
安定化熱処理を施し、材料特性をさらに改善する
ことは何らさしつかえない。 次に実施例をあげて本発明を説明する。 実施例 表−1に示す組成の高Siアルミニウム合金溶湯
をガスでアトマイズし、−48meshの粉末を得た。
次で250℃の温度に予熱したこれらの粉末を同じ
温度に加熱保持した金型中に充填し、1.5ton/cm2
の圧力で圧縮成形し、直径100mm、長さ200mmの圧
粉体を得た。次に圧粉体を450℃に加熱し、同じ
温度に加熱保持された内径104mmのコンテナ中に
挿入し、直径30mmのダイスで間接押出法により押
出(押出比12)を行い供試材No.1〜17迄の成形体
を得た。押出のまま(F)又はT6処理や300℃×
100Hr(O)処理を施こした後、標点間距離50mm、
平行部直径6mmの引張試験片に加工して常温から
250℃までの間で引張試験を行つた。尚、引張試
験は各試験温度で、100Hr保持後に行つた。又、
硬さを各温度での引張試験後の試験片のチヤツキ
ング部の端部について測定した。なお、供試材No.
1〜No.6は比較例であり、No.7〜No.17が本発明例
である。さらに鋳造材との比較のためA390.0合
金の金型鋳造材を比較材(鋳造)として500℃×
10Hr保持後、水冷し、175℃×10Hrの時効処理
を行つたものについて同様の試験を行つた。これ
らの結果を表−1に示す。表−1中熱処理区分の
記号Fは押出のまゝ、記号T6は480×2Hr保持後
水冷し175℃×10Hrの時効処理、記号Oは300℃
×100Hr保持の処理を示す。
The present invention relates to a molded member made of high-Si aluminum alloy powder that has excellent strength from room temperature to high temperature, and a method for manufacturing the same.In particular, the present invention relates to a molded member made of high-Si aluminum alloy powder that has excellent strength from room temperature to high temperature. It is ideal for parts that require Recently, there has been a need to reduce the weight of automobiles and the adoption of front-engine, front-drive (FF) systems, and as a result, aluminum alloys are being used instead of cast iron for cylinder blocks. In that case, a cast iron cylinder liner is used. When the cylinder liner is made of Al alloy, in addition to being lighter, it has much better thermal conductivity than cast iron, and has a larger coefficient of thermal expansion than cast iron.
Since it is similar to an alloy, the liner and block have good adhesion even when the temperature rises, resulting in an engine with good heat dissipation.The inner wall temperature of the liner can be kept low, which extends the life of the lubricating oil and allows the use of low-viscosity lubricating oil. It is said that this will make it possible to improve fuel efficiency. Furthermore, since the coefficient of thermal expansion is comparable to that of the aluminum alloy of the piston material, the clearance between the piston and the piston can be set small, which is expected to reduce the consumption of lubricating oil and improve fuel efficiency.
In addition, high-Si Al alloy has a low coefficient of friction, so when used as a cylinder liner, it is expected to improve fuel efficiency by reducing friction loss between it and the piston ring. Although there are many advantages to using Al alloys for cylinder liners, conventionally known aluminum alloys are insufficient as cylinder liner materials for such castings. For example, AA standard A390.0 alloy (Si=16
~18%, Cu=4~5%, Mg=0.50~0.65%, Fe
Casting materials such as Zn = 0.5%, Ti = 0.2%, Zn = 0.1%, residual Al) have a wide solid-liquid coexistence temperature range, so a large feeder is required to obtain a sound casting, resulting in a low yield. In addition to being bad and expensive, the primary Si crystals are still coarse even when subjected to refining treatment or mold casting, resulting in poor machinability. Another fatal drawback is that the material is softened by heat when it is cast into a cylinder block, which significantly reduces wear resistance and tends to cause chattering and cracking on the machined surface, making honing difficult. In addition, in recent years, powder metallurgy
A technique has been proposed in which an alloy with a composition close to A390.0 is powdered and then hot extruded to form a hollow body (Japanese Patent Application Laid-Open No. 109415/1983). This is a method to obtain a hollow body by hot extruding a high-Si molten aluminum alloy into fine particles or powder that is rapidly cooled by atomizing or centrifugal atomization. This is a manufacturing method that has a much better weight yield than the traditional method. Furthermore, according to this method, the primary crystal Si has a size of 20 μm or less, so it has excellent ductility and machinability, and also has the low coefficient of friction characteristic of high-silicon Al alloys. Also, by this manufacturing method, 15 to 20% Si, 1 to 5
An alloy of % Cu, 0.5 to 1.5% Mg, 0.5 to 1.5% Ni, and the balance Al, or a hollow body made by extruding a mixture of SiC, Sn, and graphite has been proposed. The inventors conducted this tracing experiment and found that 20.0Si−4.0Cu−
Cylinder liner (outer diameter 73mm inner diameter 65mm height
105mm) and casting it into a cylinder block (weight 3.4Kg) of ADC-12 alloy using the die casting method at a molten metal temperature of 675℃ . It was found that the hot material softened to about H RB 40 after casting. Therefore, this hollow body also becomes soft when being cast into an aluminum alloy cylinder block, and cannot be used as a cylinder liner for casting. Further, although the casting is made by die casting or low pressure casting, it is desirable to make the liner as thin as possible from a cost standpoint. However, as the thickness becomes thinner, it becomes easier to deform due to mechanical stress applied during the liner conveyance process and positioning during casting, so it is necessary to have high rigidity (high hardness). The present invention eliminates all of these drawbacks, does not soften under the heat load during casting, does not soften even in the temperature range that is applied during use, and has excellent wear resistance and seizure resistance. The purpose of this invention is to provide aluminum alloy materials economically and at low cost. An example of the aluminum alloy powder used in the present invention has essential components of 10.0 to 30.0% Si and one or two of Fe3.0 to 15.0% or Mn5.0 to 15.0% by weight, and further contains Depending on the composition, it contains Cu0.5-5.0% and Mg0.2-3.0%, with the balance being Al.Other composition examples include Si10.0-30.0% and Ni3.0-3.0%.
10.0% and one or two of Fe3.0-12.0% or Mn5.0-12.0% as essential components, and further contains Cu0.5-5.0% and Mg0.2-3.0% as necessary. The balance is Al, and in all of these alloys, the Si crystal grain size has been refined to 15 μm or less, and intermetallic compounds containing Fe, Mn, Ni, etc., which increase high-temperature strength, have precipitated. It is a feature. Moreover, one of the gist of the aluminum alloy powder compact of the present invention is that the weight ratio is Si10.0 to 30.0%, Fe3.0
~15.0% or at least 1 of Mn5.0~15.0%
Seeds are an essential ingredient, and if necessary, Cu0.5~
5.0% and Mg0.2 to 3.0%, with the remainder being Al, the size of Si crystal grains is 15 μm or less, and the size of intermetallic compounds containing Fe or Mn is fine to 20 μm or less. It is characterized by being distributed in Another point is that the weight ratio is Si10.0~30.0
%, Ni3.0~10.0%, Fe3.0~12.0% or
At least one of Mn5.0~12.0% is an essential component, and if necessary, Cu0.5~5.0% and
It has a composition that contains 0.2 to 3.0% Mg and the remainder is Al, the size of Si crystal grains is 15 μm or less, and Fe,
It is characterized by finely dispersed intermetallic compounds containing Mn, Ni, etc., with a size of 20 μm or less. Furthermore, the method for producing an aluminum alloy compact of the present invention uses the aluminum alloy powder as a raw material, and is characterized by hot extruding the powder obtained by dispersing and rapidly solidifying the molten aluminum alloy, Si crystal grains and Fe, Mn, Ni
The gist of the present invention is to obtain an alloy powder compact having a structure in which intermetallic compounds containing, etc. are finely dispersed. This invention will be explained in more detail below. First, the Al alloy powder used in the present invention will be explained. It is widely known that hypereutectic Al--Si alloys generally have a smaller coefficient of thermal expansion than Al and are superior in heat resistance and wear resistance. In hypereutectic Al-Si alloy casting materials, Si is dispersed in the matrix as primary or eutectic crystals, which improves high-temperature strength, wear resistance,
Demonstrates excellent seizure resistance. However, since primary Si often crystallizes as coarse crystals,
Decreases ductility and impact value, worsening machinability. Furthermore, it is not suitable for use in cylinder liner materials, etc., as it will damage the other material. In order to solve these problems, hypereutectic Al−
It has been proposed to rapidly cool and solidify a Si alloy to create an alloy powder with fine primary Si crystals, and process it into parts by extrusion molding to obtain a material with excellent heat resistance and wear resistance. −109415). However, heat resistance, especially high temperature strength, is still not sufficient. The present invention aims to suppress the crystallization of coarse primary Si by adding Fe or Mn to an Al-Si alloy, and to significantly improve the strength and wear resistance at high temperatures. In addition, in the present invention, Fe or Mn, and in some cases Ni, are added to the Al-Si alloy to prevent the coarsening of primary Si and to finely disperse crystallization, and at the same time to precipitate fine intermetallic compounds. By this, the strength and wear resistance at high temperatures are improved, and the seizure resistance is also significantly improved. Next, the reason for limiting each component in the alloy powder used in the present invention will be explained. When Si is less than 10%, the amount of dispersion is small and the effect on heat resistance and wear resistance is insufficient. In the hypoeutectic region near 10% Si, primary Si cannot crystallize and has a fine eutectic structure. As the amount of Si added increases, Si
Primary crystals begin to crystallize, and heat resistance and abrasion resistance also improve. However, when the Si content exceeds 30%, coarse primary crystals are formed even as a powder by the dispersion rapid solidification method.
Si no longer disappears. When aluminum alloy powder with a coarse primary Si structure is extruded and used, it significantly deteriorates the compressibility of the powder, making it difficult to form a compact, and also increases deformation resistance during hot extrusion. However, in addition to requiring a large extrusion force, the extrusion die is worn out and its life is significantly shortened. In addition to these manufacturing problems, there are also the same difficulties with material properties as with cast materials, making it unsuitable as a cylinder liner material, so crystallization of coarse primary Si must be avoided. Must be. Furthermore, when it is cast into an aluminum alloy cylinder block material and used as a cylinder liner, the coefficient of thermal expansion decreases with the amount of Si added, and if the Si content exceeds 30%, the adhesion with the cylinder block material deteriorates. In other cases, it becomes necessary to increase the clearance between the piston and the piston. Therefore, the amount of Si added is 10.0 to 30.0%, preferably
It is best to set it at 15.0 to 25.0%. Fe and Mn are important components in the alloy of the present invention, and are dispersed as fine compounds by taking advantage of their low solubility in Al and slow diffusion rate, and are added for the purpose of increasing high-temperature strength. Furthermore, if Fe or Mn is added beyond the solid solubility limit, Al−
It precipitates as a (Fe, Mn)-Si-based compound, and its shape becomes coarser as the amount added is larger and the cooling rate is slower. These intermetallic compounds exist as rod-shaped structures in the alloy powder produced by the dispersion and rapid solidification method, which is the mainstay of the production method of the present invention, and are fragmented in the subsequent hot extrusion process and finely dispersed in the matrix. do. These compounds are stable and difficult to grow even at high temperatures, and do not lose strength even when kept at high temperatures for long periods of time. Therefore, even after being exposed to high temperatures like cylinder liners for castings, there is no decrease in hardness and it is possible to maintain wear resistance. As Fe or Mn is added to the hypereutectic Al-Si alloy, the amount of primary Si decreases, but the precipitated Al
-(Fe, Mn)-Si based intermetallic compounds maintain and improve heat resistance and wear resistance. As described above, since Fe and Mn have similar effects, either one or both of Fe and Mn can be used. The amount of Fe or Mn added is 3.0 to 15.0% for Fe alone, and for Mn alone
5.0 to 15.0%, and when Fe and Mn are used together, it is appropriate that the total content of the two is in the range of 3.0 to 15.0%. If the amount added is less than the above range, the effect will not be improved because the amount of intermetallic compound precipitated to maintain and improve high temperature strength will be insufficient. Furthermore, if the amount added exceeds the above range, the hardness and abrasion resistance will deteriorate, which is not preferable as a liner material. In addition, it is not preferable because it causes the aluminum alloy to lose its lightweight characteristics, and when the powder is extruded, the compressibility deteriorates and the extrusion deformation resistance increases, making processing difficult. Therefore, the upper limit of the amount of Fe or Mn added was set at 15%. Furthermore, Ni can also be used in the alloy powder used in the present invention. The effect of adding Ni is
The advantage is that the addition of Fe or Mn restores the primary Si crystals that have been reduced, improving high-temperature strength and wear resistance, as well as improving seizure resistance. That is, when Ni, Fe, and Mn are added together to a hypereutectic Al-Si alloy, fine primary Si, Al-Ni intermetallic compounds, and Al-(Fe, Mn)Si intermetallic compounds are formed. are precipitated at the same time. As a result, new effects appear in that the high-temperature strength and wear resistance of the alloy are improved, and furthermore, the seizure resistance is significantly improved. The appropriate amount of Ni to be added is 3.0 to 10.0%, considering the precipitation of Si primary crystals and intermetallic compound phases. The addition of Ni reduces the Si solubility in the Al alloy, and excess Si crystallizes as primary crystals. This includes Fe3.0~12.0
% or Mn5.0 to 12.0%. However, the total amount (Ni + Fe + Mn) should be kept within the range of 6.0 to 15.0%.
If the amount added is less than the above range, the effect will not be improved because precipitation of intermetallic compounds for improving high-temperature strength will be insufficient. Furthermore, if the amount added exceeds the above range, the hardness and abrasion resistance will deteriorate, which is not preferable as a liner material. Furthermore, when alloy powder is extruded, it is not preferable because it impairs compressibility and increases extrusion deformation resistance, making processing difficult. The alloy powder used in the present invention may be 0.5
~5.0% Cu and 0.2-3.0% Mg can be added. Cu and Mg are known as components that impart age hardenability to Al alloys and strengthen the material.
Also in the present invention, adding Cu and Mg within the above-mentioned range within the solid solubility limit at the solution treatment temperature is effective in strengthening the material. In addition, it is also possible to further add Ti, Zr, Mo, V, Co, etc. to the alloy powder used in the present invention to improve the high temperature strength. However, if the amount added increases too much, manufacturing difficulties such as component control and increase in melting temperature will arise. The reason why the size of the Si crystal grains is set to be 15 μm or less is mainly because if the size of primary Si crystals is 15 μm or more, the moldability of the subsequent alloy powder deteriorates and the material properties also deteriorate. Of course, when Si crystallizes as a eutectic, it becomes fine crystals, so no problem occurs. The alloy powder used in the present invention can be obtained by rapidly dispersing and solidifying a molten metal having the above-mentioned alloy composition using commonly used means for producing fine powder from molten metal, such as atomization or atomization using centrifugal force. It is something that can be done. The alloy powder obtained in this way has Si crystal grains with a size of 15 μm or less and rod-shaped crystals of intermetallic compounds whose growth has been suppressed, and is a novel material not found in conventional high-Si aluminum alloy powders. It is an alloy powder. Further, it is impossible to obtain an alloy having such a structure by a casting method. For reference, FIG. 3 shows a microscopic structure photograph of an aluminum alloy powder used in the present invention having a composition of 23.4Si-4.8Cu-1.2Mg-8.7Fe-remaining Al. Figure 4 is
1 is a micrograph of an aluminum alloy powder used in the present invention having a composition of 20.6Si-2.7Cu-1.1Mg-7.8Mn-remaining Al. For comparison, Figure 5 shows a microstructure photograph of a cast material with the same composition as in Figure 3, and Figure 6 shows a microstructure photograph of a cast material with the same composition as in Figure 4.
Shown in the figure. Figure 7 also shows the previously known
21.1Si−3.1Cu−1.0Mg−high
A photo of the microscopic structure of Si aluminum alloy powder is shown. In Figures 3 and 4, the lump-like shape is primary Si, and the rod-like shape is Al-(Fe,
Mn)-Si based intermetallic compound. In Figures 5 and 6, coarse polygonal primary Si crystals are seen, and large rod-shaped intermetallic compounds are recognized. In Figure 7, it exhibits granular primary Si and a eutectic structure. The alloy powder used in the present invention is suitable for hot extrusion processing, and is particularly suitable for forming high-strength aluminum bodies that require heat and wear resistance. Next, the aluminum alloy powder compact of the present invention will be explained. The first gist of the present invention is that the weight ratio
Si10.0~30.0%, Fe3.0~15.0% or Mn5.0~
15.0%, the size of Si crystal grains is 15 μm or less, and the size of intermetallic compounds containing Fe or Mn is
This is a heat-resistant, wear-resistant, high-strength aluminum alloy powder compact characterized by finely dispersed particles of 20 μm or less. The first gist of the present invention is that the weight ratio of Si is 10.0 to 30.0.
% and one or two of Fe3.0-15.0% or Mn5.0-15.0% (however, in the case of two types, the total is 3.0%)
~15.0%), Cu0.5~5.0% and Mg0.2~3.0%
and the remainder consists of Al containing unavoidable impurities, the size of the Si crystal grain is 15 μm or less, and the size of the intermetallic compound containing Fe or Mn is
This is a heat-resistant, wear-resistant, high-strength aluminum alloy powder molded body characterized by being made of finely dispersed particles of 20 μm or less. The gist of the third invention is that the weight ratio
Si10.0~30.0%, Ni3.0~10.0%, Fe3.0~12.0
% or Mn5.0~12.0%, the size of Si crystal grains is 15 μm or less, and Al-Ni system and Al-(Fe,
The present invention is a heat-resistant, wear-resistant, high-strength aluminum alloy powder compact, characterized in that Mn)-Si-based intermetallic compounds are finely dispersed and dispersed to a size of 20 μm or less. The fourth aspect of the present invention is that the weight ratio of Si is 10.0 to 30.0.
%, Ni3.0~10.0%, Fe3.0~15.0% or
One or two types of Mn5.0 to 15.0% (However, Ni
+Fe+Mn total 6.0~15.0%) and Cu0.5~5.0%
and 0.2 to 3.0% Mg, with the remainder consisting of Al containing unavoidable impurities, and the size of the Si crystal grains is
This is a heat-resistant, wear-resistant, high-strength aluminum alloy powder molded body, characterized in that the size of the intermetallic compound containing Fe or Mn is finely dispersed to be 15 μm or less and 20 μm or less. In the present invention, the Si content is set to 10.0 to 30.0% in order to improve the heat resistance, wear resistance, and seizure resistance of the molded product, and the Fe content is set to 3.0 to 15.0% (however, if Ni is included) 3.0~12.0%), Mn content 5.0~
15.0% (5.0 to 12.0% if it contains Ni),
The Ni content was set at 3.0 to 10.0% to improve the strength of the molded product.
This is particularly to improve strength, heat resistance, and wear resistance at high temperatures. Furthermore, by setting the size of Si crystal grains to 15 μm or less, the material has excellent wear resistance and a low coefficient of friction, making it suitable for cylinder liners, etc., and it is also better than molded products made by conventional methods. Since the ductility is improved and the machinability is improved, it has the effect of making machining easier, such as reducing the occurrence of chatter and cracking during machining. By finely and uniformly dispersing intermetallic compounds such as Al-(Fe, Mn)-Si, Al-Ni, etc. to 5μm or less, and even large ones to 20μm or less, high-temperature strength and wear resistance are achieved. The properties are significantly improved. Furthermore, when these intermetallic compound microcrystals and Si microcrystals are mixed and distributed uniformly, an even more excellent effect is exhibited. FIGS. 8 and 9 show microscopic microstructure photographs of a cross section parallel to the extrusion direction of an aluminum alloy powder compact according to the present invention. Figure 8 shows the same 23.4Si− as in Figure 3.
4.8Cu−1.2Mg−8.7Fe−Remaining Al composition, Figure 9 is the same as Figure 4, 20.6Si−2.7Cu−
It has a composition of 1.1Mg-7.8Mn-remaining Al. In FIGS. 8 and 9, the dark colored areas are primary Si crystals, and the light colored areas are eutectic and intermetallic compounds. For comparison, FIG. 10 shows a micrograph of the cross section of a known high-Si aluminum alloy powder compact having the same composition as FIG. 7. As seen in the figure, in the alloy compact according to the present invention, primary Si, eutectic, and intermetallic compounds are found to be finely distributed and uniformly distributed. A molded product having such a structure is a novel product that has not been found in conventional molded products. The aluminum alloy powder compact according to the present invention is
It has significantly improved high-temperature strength compared to conventional products, and also has excellent wear resistance and seizure resistance.
Furthermore, since it has a small coefficient of friction, it is particularly suitable for parts that are used at high temperatures, such as cylinder liners for internal combustion engines, and that require wear resistance and seizure resistance. A fifth aspect of the present invention relates to a method for manufacturing the aluminum alloy powder compact, which comprises dispersing and rapidly solidifying a molten alloy having the above composition, and hot extrusion molding the obtained alloy powder. The molten alloy is dispersed and rapidly solidified using Si, Cu,
This is to form supersaturated solid solution of alloying elements such as Mg, Fe, Mn, and Ni, and to refine the primary Si crystals and intermetallic compounds to strengthen the material. As a method for dispersing and rapidly solidifying, known metal powder manufacturing methods such as an atomization method and a centrifugal pulverization method can be used. By these methods, alloy powder with a satisfactory structure can be obtained by finely dispersing the powder to a particle size of 0.5 mm or less and rapidly solidifying it. Next, a molded body is manufactured by hot extrusion using the alloy powder. Hot extrusion is essential for refining the crystal grains of primary Si, eutectic phase, and intermetallic compound phase crystallized in the alloy powder, improving the mechanical properties of the material, and at the same time finishing it into a strong compact. It is a requirement. It is convenient for the work to prepare the green compact prior to hot extrusion. For the production of green compacts, alloy powder is heated to a temperature of 200℃.
Do this in an area of ~350℃. If the temperature exceeds 300°C, oxidation will become significant, so it is preferable to carry out the process in a non-oxidizing atmosphere such as N 2 gas or Ar gas.
The compacting pressure is preferably about 0.5 to 3 ton/cm 2 , and the green compact density is preferably 70% or more of the true density ratio in terms of handling of the green compact. Hot extrusion is performed in a temperature range of 350℃ or higher, preferably 400℃
Perform in a temperature range of ~470℃. This is to promote bonding between particles within a range where the green compact can be easily processed and to form a strong compact. Furthermore, the purpose is to finely precipitate the elements in the supersaturated solid solution, and to divide and refine the rod-like structure of primary crystal Si and intermetallic compounds, thereby improving the strength and friction characteristics of the compact. Hot extrusion is performed by preheating the green compact in air or a non-oxidizing atmosphere and inserting it into a container at approximately the same temperature. The extrusion ratio is preferably 10 or more. This is because if the extrusion ratio is less than 10, voids remain in the extruded material, and the diffusion bonding between powders and the separation effect of rod-shaped intermetallic compounds are insufficient, making it impossible to obtain a material with high strength. According to the method of the present invention, it is possible to disperse Si primary crystals, eutectic crystals, and intermetallic compound phases extremely finely and uniformly, making it easy to obtain parts with particularly excellent material wear resistance and friction coefficient. becomes possible. Further, it is possible to further improve the material properties by subjecting the alloy powder compact obtained according to the present invention to stabilizing heat treatment. Next, the present invention will be explained with reference to Examples. Example A high-Si aluminum alloy molten metal having the composition shown in Table 1 was atomized with gas to obtain -48mesh powder.
Next, these powders, which were preheated to a temperature of 250℃, were filled into a mold heated and maintained at the same temperature, and the powder was heated to a temperature of 1.5ton/ cm2.
Compression molding was performed at a pressure of 100 mm in diameter and 200 mm in length to obtain a green compact. Next, the green compact was heated to 450℃, inserted into a container with an inner diameter of 104mm that was heated and maintained at the same temperature, and extruded using an indirect extrusion method (extrusion ratio 12) using a die with a diameter of 30mm to obtain sample material No. Molded bodies Nos. 1 to 17 were obtained. As extruded (F) or T6 treated or 300℃×
After 100Hr(O) treatment, gauge distance 50mm,
Processed into a tensile test piece with a parallel part diameter of 6 mm and heated from room temperature.
Tensile tests were conducted at temperatures up to 250°C. The tensile test was conducted at each test temperature after being maintained for 100 hours. or,
Hardness was measured at the end of the chucking portion of the specimen after the tensile test at each temperature. In addition, sample material No.
No. 1 to No. 6 are comparative examples, and No. 7 to No. 17 are examples of the present invention. Furthermore, for comparison with cast material, A390.0 alloy mold casting material was used as a comparative material (casting) at 500℃
After holding for 10 hours, the sample was cooled with water and subjected to aging treatment at 175°C for 10 hours, and a similar test was conducted. These results are shown in Table-1. In Table 1, the heat treatment classification symbol F is as extruded, symbol T 6 is water cooling after holding for 480 x 2 hours, and aging treatment at 175℃ x 10 hours, symbol O is 300℃.
×100Hr retention process is shown.

【表】 表−1から明らかなように、比較材(鋳造)No.
1〜6のものに比べ、本発明の実施例No.7〜17の
成形体は高温強度及び高温に保持後の硬度が高
い。次に熱間押出成形体を切断し、熱間鍛造によ
り直径70mm、高さ10mmの素材を作り、機械加工に
より試験片とした後、耐焼付性試験、耐摩耗性試
験、摩擦係数の測定を行つた。 Γ耐焼付性試験 試験装置は、第1図及び第2図に概要を図解的
に示すものであつて、ステータ1に取外し可能に
取付けられた直径70mmの円板2の中央には、裏側
から注油孔3を通じて潤滑油が注油される。ステ
ータ1には油圧装置(図示せず)によつて右方へ
向けて所定圧力で押圧力Pが作用するようにして
ある。円板2に相対向してロータ4があり、駆動
装置(図示せず)によつて所定速度で回転するよ
うにしてある。ロータ4の円板2に対する端面に
取付けられた試料保持具4aには、5mm×5mm×
10mmの角柱状試験片(相手材)5が、同心円上に
等間隔に3個取外し可能にかつ正方形端面が円板
2に対して摺動自在に取付けてある。この様な装
置に於いてステータ1に所定の押圧力Pをかけ所
定の面圧で円板2と試験片(相手材)5とが接触
するようにしておいて、注油孔3から摺動面に所
定給油速度で給油しながらロータ4を回転させ
る。一定時間毎にステータ1に作用する圧力を階
段的に増加して行き、ロータ4の回転によつて相
手の試験片5と、円板2との摩擦によつて、ステ
ータ1に生ずるトルク(摩擦力によつて生ずるト
ルク)Tをスピンドル6を介してロードセル7に
作用せしめ、その変化を動歪計8で読み、記録計
9に記録させる。トルクTが急激に上昇するとき
に焼付が生じたものとして、その時の接触面圧を
もつて焼付面圧とし、この大小をもつて耐焼付性
の良否を判断する。試験に供した円板状試験片2
は、300℃×100Hrの熱処理後研摩仕上げをした
ものを使用し相手の試験片5は、球状黒鉛鋳鉄で
摺動面に硬質Crメツキを施したものと、平均粒
径0.8μのSiCを面積率で15〜20%基地中に分散さ
せた鉄メツキの2種類とし研摩仕上げを行つた。
比較材としては、シリンダーライナー用として使
用されている片状黒鉛鋳鉄についても行つた。試
験条件は、速度8m/sec、潤滑油はエンジンオ
イル(SAE20ベースオイル)で温度90℃油量300
ml/minとし、接触圧力は、20Kg/cm2で20分間の
馴らし運転後30Kg/cm2で3分間、その後3分経過
毎に10Kg/cm2づつ上昇させていく。結果を表−2
に示す。結果から明らかなように、現在多くのガ
ソリンエンジンでの組合せに見られる片状黒鉛鋳
鉄(シリンダーライナー材)とCrメツキ(ピス
トンリング表面)の組合せよりも本発明のものは
すぐれた耐焼付性を示している。又、比較材(鋳
造)や、No.1、No.2に見られるようにSiC分散鉄
メツキに比べ、硬質Crメツキとの組合せの場合
は、焼付発生面圧が大巾に低くなつているが、本
発明による場合は、相手表面処理の違いによる差
はほとんどない結果となつている点が注目され
る。更に比較材(鋳造)やNo.1、No.2に比べ本発
明の実施例の成形体の焼付発生面圧が高いが、こ
れはAl基地中に分散する硬質相の量が多く、微
小な凹凸となつて油膜の保持作用として働く他
に、基地が分散強化されているので摩擦表面が塑
性流動によつて相手材に凝着しようとするのを防
ぐためと考えられる。
[Table] As is clear from Table 1, comparative material (casting) No.
Compared to Nos. 1 to 6, the molded bodies of Examples Nos. 7 to 17 of the present invention have higher high temperature strength and hardness after being maintained at high temperatures. Next, the hot extrusion molded body was cut, a material with a diameter of 70 mm and a height of 10 mm was made by hot forging, and after being machined into test pieces, seizure resistance tests, abrasion resistance tests, and friction coefficient measurements were carried out. I went. Γ Seizure Resistance Test The test equipment is schematically shown in Figs. Lubricating oil is supplied through the oil supply hole 3. A pressing force P is applied to the stator 1 to the right by a hydraulic device (not shown) at a predetermined pressure. A rotor 4 is disposed opposite to the disk 2, and is rotated at a predetermined speed by a drive device (not shown). The sample holder 4a attached to the end face of the rotor 4 with respect to the disk 2 has a size of 5 mm x 5 mm x
Three 10 mm prismatic test pieces (counterpart material) 5 are removably attached at equal intervals on a concentric circle, and their square end faces are slidably attached to the disk 2. In such a device, a predetermined pressing force P is applied to the stator 1 so that the disk 2 and the test piece (mate material) 5 come into contact with each other with a predetermined surface pressure, and the sliding surface is The rotor 4 is rotated while being refueled at a predetermined refueling speed. The pressure acting on the stator 1 is increased stepwise at regular intervals, and torque (friction A torque (T) generated by the force is applied to the load cell 7 via the spindle 6, and its change is read by the dynamic strain meter 8 and recorded by the recorder 9. Assuming that seizure occurs when the torque T rapidly increases, the contact surface pressure at that time is taken as the seizure surface pressure, and the quality of the seizure resistance is determined based on the magnitude of this. Disc-shaped test piece 2 used for testing
The test piece 5 used was one that had been heat treated at 300℃ x 100 hours and then polished, and the other test piece 5 was made of spheroidal graphite cast iron with hard Cr plating on the sliding surface, and SiC with an average grain size of 0.8μ was used. Two types of iron plating were applied, with a ratio of 15 to 20% dispersed throughout the base, and a polishing finish was performed.
As a comparison material, flake graphite cast iron, which is used for cylinder liners, was also tested. The test conditions were a speed of 8 m/sec, lubricating oil was engine oil (SAE20 base oil), a temperature of 90°C, and an oil volume of 300.
ml/min, and the contact pressure is 20 Kg/cm 2 for 20 minutes, followed by 30 Kg/cm 2 for 3 minutes, and then increased by 10 Kg/cm 2 every 3 minutes. Table 2 of the results
Shown below. As is clear from the results, the combination of flaky graphite cast iron (cylinder liner material) and Cr plating (piston ring surface), which is currently used in many gasoline engines, has superior seizure resistance. It shows. In addition, compared to the comparison material (casting) and SiC dispersed iron plating as seen in No. 1 and No. 2, when combined with hard Cr plating, the surface pressure at which seizure occurs is significantly lower. However, in the case of the present invention, it is noteworthy that there is almost no difference in the results due to the difference in surface treatment of the other side. Furthermore, compared to the comparison material (casting) and No. 1 and No. 2, the surface pressure at which seizure occurred was higher in the molded bodies of the examples of the present invention, but this is due to the large amount of hard phase dispersed in the Al base, which is caused by minute particles. In addition to the unevenness that acts as an oil film retainer, the dispersion-strengthened base is thought to prevent the friction surface from adhering to the mating material due to plastic flow.

【表】 Γ摩耗試験及び摩擦係数の測定 耐焼付性試験に使用したと同じ試験機により、
研摩仕上げを行つた円板状の試験片2に、球状黒
鉛鋳鉄の摺動面に硬質Crメツキを施したものと、
平均粒径0.8μのSiCを面積率で15〜20%基地中に
分散させた鉄メツキを施し各々研摩仕上げをした
ものを相手材試験片5として、次の条件でテスト
した。結果を表3に示す。 (条件) 速度は3m/sec、5m/sec、8m/secの3
水準とし潤滑油としてエンジンオイル(SAE20
ベースオイル)を使用し、油温90℃、油量500
ml/min、面圧100Kg/cm2で摺動距離500Kmとし
た。 (摩耗量の測定) Γ円板状の試験片の摩耗量は、表面粗サ計にて
90゜づゝずれた位置で4ケ所摺動方向と直角と
なるように触針を走らせ、摩耗痕の状況をチヤ
ート上に記録する。しかる後、摩耗痕の凹部の
面積を求め、材料間の相対比較を行う。表−3
では片状黒鉛鋳鉄の円板の速度5m/sec時の
摩耗痕の断面積を1としたときの相対比で表わ
した。相手材試験片の摩耗量は試料保持具4a
に取付けられた4本の角状試験片5の高さ寸法
をテスト前後にマイクロメーターで測定し、そ
の平均の差を求める方法によつた。 摩擦係数の測定は、200Km走行後にトルクを記
録計9より読み取り算出した。結果を表−3に示
すが、片状黒鉛鋳鉄(シリンダーライナー材)
と、Crメツキの組合せの場合よりも、著しく摩
擦係数の低いことが明らかである。更に、比較例
1のように鋳ぐるみ時の熱負荷に相当する300℃
×100Hrの熱処理を行つたものは円板の摩耗が著
しく多いが、本発明の特許請求範囲の本発明例8
〜17の摩耗量は、片状黒鉛鋳鉄と比較しても同等
以下である。又、相手の表面処理が硬質Crメツ
キであつても、又SiC分散鉄メツキであつても、
その差はない。
[Table] Γ wear test and friction coefficient measurement Using the same testing machine used for the seizure resistance test,
A disc-shaped test piece 2 that had been polished had hard Cr plating applied to the sliding surface of spheroidal graphite cast iron,
A mating material test piece 5 was prepared by applying iron plating with SiC having an average particle size of 0.8 μ dispersed in an area ratio of 15 to 20% in a matrix and polishing it, and was tested under the following conditions. The results are shown in Table 3. (Conditions) The speed is 3m/sec, 5m/sec, 8m/sec.
Engine oil (SAE20) as a level and lubricant
base oil), oil temperature 90℃, oil amount 500
ml/min, surface pressure of 100 Kg/cm 2 and sliding distance of 500 Km. (Measurement of wear amount) The wear amount of the Γ disc-shaped test piece was measured using a surface roughness meter.
Run the stylus at four locations perpendicular to the sliding direction at positions offset by 90 degrees, and record the state of wear marks on the chart. Thereafter, the area of the concave portion of the wear mark is determined and a relative comparison is made between the materials. Table-3
Here, it is expressed as a relative ratio when the cross-sectional area of a wear scar at a speed of 5 m/sec on a disk made of flaky graphite cast iron is set to 1. The wear amount of the mating material test piece is measured using the sample holder 4a.
The height dimensions of the four square test pieces 5 attached to the test piece were measured with a micrometer before and after the test, and the average difference was determined. The friction coefficient was calculated by reading the torque from a recorder 9 after traveling 200 km. The results are shown in Table 3.Flake graphite cast iron (cylinder liner material)
It is clear that the friction coefficient is significantly lower than that of the Cr plating combination. Furthermore, as in Comparative Example 1, 300℃, which corresponds to the heat load during casting,
In the case of the heat treatment for ×100 hours, the wear of the disk was extremely large, but the present invention example 8 in the claims of the present invention
The wear amount of ~17 is the same or lower than that of flake graphite cast iron. In addition, even if the surface treatment of the other side is hard Cr plating or SiC dispersed iron plating,
There is no difference.

【表】【table】

【表】【table】

【表】 以上のように本発明合金は、Al合金製シリン
ダーブロツクに鋳ぐるまれ、且つ、使用時に比較
的高い温度域で使用されるシリンダーライナーの
ような用途に適するものである。尚、本発明合金
はTi、Cr、V、Mo、Zr等を含んでも、急冷凝固
による粉末を出発原料としているため耐熱性に寄
与するものと考えられる。又、ZnをCu、Mgの代
りに時効硬化性を与える目的で、置換することも
可能である。従つて、本発明合金は、従来、鋳造
用又は展伸用合金としては、脆い化合物を作るた
めに、使用出来なかつたようなFe、Ni、Mnを多
量に含む低級スクラツプの使用をも可能とするた
めに、経済的メリツトも大である。
[Table] As described above, the alloy of the present invention is suitable for applications such as cylinder liners that are cast into Al alloy cylinder blocks and are used in relatively high temperature ranges. Incidentally, even though the alloy of the present invention contains Ti, Cr, V, Mo, Zr, etc., it is thought that it contributes to heat resistance because the starting material is powder obtained by rapid solidification. It is also possible to substitute Zn in place of Cu or Mg for the purpose of imparting age hardenability. Therefore, the alloy of the present invention enables the use of low-grade scrap containing large amounts of Fe, Ni, and Mn, which conventionally could not be used as alloys for casting or drawing due to the creation of brittle compounds. Therefore, there are great economic benefits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は耐焼付性試験装置の概要を示
す図で第2図は第1図の−矢視側面である。
第3図、第4図は本発明によるアルミニウム合金
粉末の顕微鏡組織写真(倍率740倍)であつて、
第3図は23.4Si−4.8Cu−1.2Mg−8.7Fe−残Alの
組成のもの、第4図は20.6Si−2.7Cu−1.1Mg−
7.8Mn−残Alの組成のものである。第5図と第6
図は鋳造材の顕微鏡組織写真(倍率97倍)であつ
て、第5図は第3図と同一組成のもの、第6図は
第4図と同一組成のものである。第7図は21.1Si
−3.1Cu−1.0Mg−残Alの組成を有する公知の高
Siアルミニウム合金粉末の顕微鏡組織写真(倍率
740倍)である。第8図、第9図は本発明による
合金粉末成形体の押出方向に平行な断面の顕微鏡
組織写真(倍率740倍)であつて、第8図は第3
図と同一組成、第9図は第4図と同一組成のもの
である。第10図は第7図と同一組成を有する公
知のアルミニウム合金粉末成形体の押出方向に平
行な断面の顕微鏡組織写真(倍率740倍)である。
1 and 2 are diagrams showing an outline of the seizure resistance testing apparatus, and FIG. 2 is a side view of FIG. 1 in the direction of the - arrow.
FIGS. 3 and 4 are micrographs (740x magnification) of the aluminum alloy powder according to the present invention,
Figure 3 shows the composition of 23.4Si-4.8Cu-1.2Mg-8.7Fe-remaining Al, and Figure 4 shows the composition of 20.6Si-2.7Cu-1.1Mg-
It has a composition of 7.8Mn and residual Al. Figures 5 and 6
The figures are micrographs (magnification: 97x) of cast materials, where FIG. 5 shows the same composition as in FIG. 3, and FIG. 6 shows the same composition as in FIG. 4. Figure 7 shows 21.1Si
-3.1Cu-1.0Mg-A known high-carbon steel with a composition of residual Al
Microscopic structure photograph of Si aluminum alloy powder (magnification
740 times). 8 and 9 are micrographs (magnification: 740x) of the cross section of the alloy powder compact according to the present invention parallel to the extrusion direction;
The composition shown in FIG. 9 is the same as that shown in FIG. 4. FIG. 10 is a micrograph (magnification: 740 times) of a cross section parallel to the extrusion direction of a known aluminum alloy powder compact having the same composition as FIG. 7.

Claims (1)

【特許請求の範囲】 1 重量比でSi10.0〜30.0%と、Fe3.0〜15.0%ま
たはMn5.0〜15.0%のうち1種または2種以上
(ただし2種の場合は合計で3.0〜15.0%)の重金
属を含み、残部が不可避的不純物を含むAlから
なり、Si結晶粒の大きさが15μm以下であり、か
つFeまたはMnを含む金属間化合物の大きさが
20μm以下に微細化分散してなることを特徴とす
る耐熱耐摩耗性高力アルミニユウム合金粉末成形
体。 2 重量比でSi10.0〜30.0%と、Fe3.0〜15.0%ま
たはMn5.0〜15.0%のうち1種または2種以上
(ただし2種の場合は合計で3.0〜15.0%)と、
Cu0.5〜5.0%およびMg0.2〜3.0%とを含み、残部
が不可避的不純物を含むAlから成り、Si結晶粒
の大きさが15μm以下であり、かつFeまたはMn
を含む金属間化合物の大きさが20μm以下に微細
化分散してなることを特徴とする耐熱耐摩耗性高
力アルミニユウム合金粉末成形体。 3 重量比でSi10.0〜30.0%と、Ni3.0〜10.0%
と、Fe3.0〜15.0%またはMn5.0〜15.0%のうち1
種または2種(ただしNi+Fe+Mn合計で6.0〜
15.0%)とを含み、残部が不可避的不純物を含む
Alから成り、Si結晶粒の大きさが15μm以下であ
り、かつFeまたはMnを含む金属間化合物の大き
さが20μm以下に微細化分散してなることを特徴
とする耐熱耐摩耗性高力アルミニユウム合金粉末
成形体。 4 重量比でSi10.0〜30.0%と、Ni3.0〜10.0%
と、Fe3.0〜15.0%またはMn5.0〜15.0%のうち1
種または2種(ただしNi+Fe+Mn合計で6.0〜
15.0%)と、Cu0.5〜5.0%およびMg0.2〜3.0%と
を含み、残部が不可避的不純物を含むAlから成
り、Si結晶粒の大きさが15μm以下であり、かつ
FeまたはMnを含む金属間化合物の大きさが20μ
m以下に微細化分散してなることを特徴とする耐
熱耐摩耗性高力アルミニユウム合金粉末成形体。 5 重量比でSi10.0〜30.0%と、Fe3.0〜15.0%ま
たはMn5.0〜15.0%のうち1種または2種(ただ
し2種の場合は合計で3.0〜15.0%)を主成分と
して含み、さらに必要に応じてCu0.5〜5.0%、
Mg0.2〜3.0%、Ni(ただしNi+Fe+Mn合計で6.0
〜15.0%)のうち少なくとも1種を含み、残部が
不可避的不純物を含むAlからなる合金溶湯を分
散急冷凝固させて、微細なSi結晶粒とFeまたは
Mnを含む棒状の金属間化合物を有するAl合金粉
末となし、次いで得られたAl合金粉末を熱間押
出成形して、Si結晶粒の大きさが15μm以下であ
り、かつFeまたはMnを含む金属間化合物の大き
さが20μm以下に微細化分散した組織とすること
を特徴とする耐熱耐摩耗性高力アルミニユウム合
金粉末成形体の製造方法。
[Claims] 1. One or more of Si10.0-30.0%, Fe3.0-15.0%, or Mn5.0-15.0% (however, in the case of two types, the total is 3.0-30.0%) 15.0%) of heavy metals, the remainder consists of Al containing unavoidable impurities, the size of Si crystal grains is 15 μm or less, and the size of intermetallic compounds containing Fe or Mn is
A heat-resistant, abrasion-resistant, high-strength aluminum alloy powder compact characterized by being finely dispersed to 20 μm or less. 2. One or more of Si10.0-30.0%, Fe3.0-15.0% or Mn5.0-15.0% (however, in the case of two types, the total is 3.0-15.0%),
Contains 0.5-5.0% Cu and 0.2-3.0% Mg, the remainder is Al containing unavoidable impurities, the size of Si crystal grains is 15 μm or less, and Fe or Mn
1. A heat-resistant, wear-resistant, high-strength aluminum alloy powder compact, characterized in that an intermetallic compound containing . 3 Si10.0~30.0% and Ni3.0~10.0% by weight
and 1 of Fe3.0~15.0% or Mn5.0~15.0%
species or two species (however, Ni + Fe + Mn total 6.0 ~
15.0%) and the remainder contains unavoidable impurities.
A heat-resistant, wear-resistant, high-strength aluminum made of aluminum, characterized in that the size of Si crystal grains is 15 μm or less, and the size of intermetallic compounds containing Fe or Mn is finely dispersed to 20 μm or less. Alloy powder compact. 4 Si10.0-30.0% and Ni3.0-10.0% by weight
and 1 of Fe3.0~15.0% or Mn5.0~15.0%
species or two species (however, Ni + Fe + Mn total 6.0 ~
15.0%), 0.5 to 5.0% of Cu, and 0.2 to 3.0% of Mg, and the remainder consists of Al containing inevitable impurities, and the size of Si crystal grains is 15 μm or less, and
The size of intermetallic compounds containing Fe or Mn is 20μ
1. A heat-resistant, wear-resistant, high-strength aluminum alloy powder compact, characterized in that it is finely dispersed to a size of less than m. 5 The main components are Si10.0-30.0% and one or two of Fe3.0-15.0% or Mn5.0-15.0% (however, in the case of two types, the total is 3.0-15.0%). Contains Cu0.5-5.0% as necessary.
Mg0.2-3.0%, Ni (however, Ni + Fe + Mn total 6.0%
A molten alloy consisting of Al containing at least one of the following (~15.0%) and the remainder containing unavoidable impurities is dispersed and rapidly solidified to form fine Si crystal grains and Fe or Al.
An Al alloy powder having a rod-shaped intermetallic compound containing Mn is prepared, and then the obtained Al alloy powder is hot extruded to form a metal with a Si crystal grain size of 15 μm or less and containing Fe or Mn. A method for producing a heat-resistant, wear-resistant, high-strength aluminum alloy powder compact, characterized by forming a microstructure in which intercalated compounds are finely dispersed to a size of 20 μm or less.
JP57119902A 1982-07-12 1982-07-12 Aluminum alloy powder having high resistance to heat and abrasion and high strength and molding of said alloy powder and its production Granted JPS5913041A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57119902A JPS5913041A (en) 1982-07-12 1982-07-12 Aluminum alloy powder having high resistance to heat and abrasion and high strength and molding of said alloy powder and its production
CA000432033A CA1230761A (en) 1982-07-12 1983-07-07 Heat-resistant, wear-resistant, and high-strength aluminum alloy powder and body shaped therefrom
DE8383106849T DE3381592D1 (en) 1982-07-12 1983-07-12 HEAT-RESISTANT AND WEAR-RESISTANT ALUMINUM ALLOY POWDER WITH GOOD MECHANICAL PROPERTIES AND ITEMS MADE THEREOF.
EP83106849A EP0100470B1 (en) 1982-07-12 1983-07-12 Heat-resistant, wear-resistant, and high-strength aluminum alloy powder and body shaped therefrom
US07/259,402 US4938810A (en) 1982-07-12 1988-10-18 Heat-resistant, wear-resistant, and high-strength aluminum alloy powder and body shaped therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57119902A JPS5913041A (en) 1982-07-12 1982-07-12 Aluminum alloy powder having high resistance to heat and abrasion and high strength and molding of said alloy powder and its production

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP28226487A Division JPS63266005A (en) 1987-11-10 1987-11-10 High strength aluminum alloy powder having heat and wear resistances

Publications (2)

Publication Number Publication Date
JPS5913041A JPS5913041A (en) 1984-01-23
JPH0118982B2 true JPH0118982B2 (en) 1989-04-10

Family

ID=14773040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57119902A Granted JPS5913041A (en) 1982-07-12 1982-07-12 Aluminum alloy powder having high resistance to heat and abrasion and high strength and molding of said alloy powder and its production

Country Status (1)

Country Link
JP (1) JPS5913041A (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145349A (en) * 1984-01-07 1985-07-31 Sumitomo Electric Ind Ltd Aluminum alloy parts having high heat resistance and wear resistance and manufacture thereof
JPS6144149A (en) * 1984-08-09 1986-03-03 Honda Motor Co Ltd Aluminum alloy
US4734130A (en) * 1984-08-10 1988-03-29 Allied Corporation Method of producing rapidly solidified aluminum-transition metal-silicon alloys
JPS61104043A (en) * 1984-10-24 1986-05-22 Honda Motor Co Ltd Heat resistant and high-strength aluminum alloy
JPS6182134U (en) * 1984-11-02 1986-05-31
JPS61117204A (en) * 1984-11-12 1986-06-04 Honda Motor Co Ltd High-strength al alloy member for structural purpose
JPS61186443A (en) * 1985-02-12 1986-08-20 Alum Funmatsu Yakin Gijutsu Kenkyu Kumiai High strength, heat and wear resistant al alloy
JPS6210237A (en) * 1985-07-09 1987-01-19 Showa Denko Kk Aluminum alloy for hot forging
JPH0651896B2 (en) * 1985-07-29 1994-07-06 アルミニウム粉末冶金技術研究組合 Heat and wear resistant aluminum alloy
JPS6283444A (en) * 1985-10-04 1987-04-16 Alum Funmatsu Yakin Gijutsu Kenkyu Kumiai Heat and wear resistant aluminum alloy
JPS62188705A (en) * 1986-02-14 1987-08-18 Honda Motor Co Ltd Sintered aluminum alloy bearing member and its production
JPH0751728B2 (en) * 1986-02-15 1995-06-05 本田技研工業株式会社 Method for manufacturing sliding member made of high-strength sintered AL alloy
JP2542603B2 (en) * 1987-01-23 1996-10-09 住友電気工業株式会社 Abrasion resistance Al-Si-Mn sintered alloy
JP2619469B2 (en) * 1987-04-13 1997-06-11 昭和電工株式会社 Spring retainer
JP2856251B2 (en) * 1987-06-05 1999-02-10 三菱マテリアル株式会社 High-strength wear-resistant Al-Si alloy forged member having low coefficient of thermal expansion and method for producing the same
JPH072961B2 (en) * 1990-09-17 1995-01-18 昭和電工株式会社 Heat and wear resistance High strength aluminum alloy powder
JPH05214476A (en) * 1992-02-03 1993-08-24 Kubota Corp Heat resistant and wear resistant al-si alloy material
KR20040025003A (en) * 2002-09-18 2004-03-24 현대자동차주식회사 Al based metal powder composition for valve seat and preparation method for valve seat by using them
JP5360040B2 (en) * 2010-12-07 2013-12-04 株式会社豊田中央研究所 Wrought material and manufacturing method thereof
JP6738212B2 (en) * 2016-06-13 2020-08-12 昭和電工株式会社 Aluminum alloy forged product and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597447A (en) * 1979-01-19 1980-07-24 Sumitomo Electric Ind Ltd Aluminum sintered alloy and production of the same
JPS57177953A (en) * 1981-04-27 1982-11-01 Sumitomo Electric Ind Ltd Parts for rocker arm

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597447A (en) * 1979-01-19 1980-07-24 Sumitomo Electric Ind Ltd Aluminum sintered alloy and production of the same
JPS57177953A (en) * 1981-04-27 1982-11-01 Sumitomo Electric Ind Ltd Parts for rocker arm

Also Published As

Publication number Publication date
JPS5913041A (en) 1984-01-23

Similar Documents

Publication Publication Date Title
JPH0118982B2 (en)
US4938810A (en) Heat-resistant, wear-resistant, and high-strength aluminum alloy powder and body shaped therefrom
US5972070A (en) Sintered friction material, composite copper alloy powder used therefor and manufacturing method thereof
JPS61291941A (en) Cast al alloy having high si content
EP0577062B1 (en) Oil pump made of aluminum alloys
JPS6210237A (en) Aluminum alloy for hot forging
US5368629A (en) Rotor for oil pump made of aluminum alloy and method of manufacturing the same
JPS6050138A (en) Heat- and wear-resistant high-strength aluminum alloy member of hard particle dispersion type and its production
US6037067A (en) High temperature abrasion resistant copper alloy
JPS6121295B2 (en)
JP2017078213A (en) Aluminum alloy powder for hot forging for slide component, method for producing the same, aluminum alloy forging for slide component, and method for producing the same
JPH0118981B2 (en)
US4537161A (en) Inserts for pistons of diesel engines of aluminum-silicon alloys having an improved thermal resistance and machinability
US6096142A (en) High temperature abrasion resistant copper alloy
JPS6320297B2 (en)
JPH0118983B2 (en)
JPS6150132B2 (en)
JP3897416B2 (en) Powder aluminum alloy cylinder liner
JPH0118984B2 (en)
JPH029099B2 (en)
JPS5966918A (en) Double layer structure hollow member made of aluminum alloy
JPH0256401B2 (en)
JPH048481B2 (en)
JPH0637682B2 (en) Heat resistant and abrasion resistant high strength aluminum alloy powder compact having excellent lubricity and method for producing the same
JPS62255591A (en) Combination of sliding members