JPS61186443A - High strength, heat and wear resistant al alloy - Google Patents

High strength, heat and wear resistant al alloy

Info

Publication number
JPS61186443A
JPS61186443A JP2479985A JP2479985A JPS61186443A JP S61186443 A JPS61186443 A JP S61186443A JP 2479985 A JP2479985 A JP 2479985A JP 2479985 A JP2479985 A JP 2479985A JP S61186443 A JPS61186443 A JP S61186443A
Authority
JP
Japan
Prior art keywords
alloy
strength
weight
heat
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2479985A
Other languages
Japanese (ja)
Inventor
Hidetoshi Inoue
秀敏 井上
Katsuyuki Yoshikawa
吉川 克之
Mutsumi Abe
睦 安倍
Masahiro Tsukuda
筑田 昌宏
Shojiro Oya
大家 正二郎
Masahiko Oda
小田 正彦
Nobuyasu Kawai
河合 伸泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALUM FUNMATSU YAKIN GIJUTSU KENKYU KUMIAI
Original Assignee
ALUM FUNMATSU YAKIN GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALUM FUNMATSU YAKIN GIJUTSU KENKYU KUMIAI filed Critical ALUM FUNMATSU YAKIN GIJUTSU KENKYU KUMIAI
Priority to JP2479985A priority Critical patent/JPS61186443A/en
Publication of JPS61186443A publication Critical patent/JPS61186443A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To obtain a high strength Al alloy having superior heat and wear resistances, satisfactory hot workability and machinability as well as superior strength at ordinary and high temps. by blending Al with specified amounts of Si and Cu. CONSTITUTION:The composition of an Al alloy is composed of,by weight, 12-30% Si, 2-10% Cu and the balance Al with inevitable impurities. The composition may further contain one or more kinds of alloying elements selected among 2-15% Mn, 0.5-8% Fe, 0.5-3% Ni, 0.1-1% Zr and 0.1-3% Cr.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は常温強度及び耐熱性の優れたA1合金に関し、
詳細には高温強度の低下を招かず熱間加工性や切削加工
性等においても優れた特性を発揮する高力耐熱耐摩耗性
A1合金に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an A1 alloy with excellent room temperature strength and heat resistance,
Specifically, the present invention relates to a high-strength, heat-resistant and wear-resistant A1 alloy that exhibits excellent properties in terms of hot workability, cutting workability, etc. without causing a decrease in high-temperature strength.

[従来の技術] 各種車両に搭載されるエンジンやカーエアコン用コンプ
レッサー等については、近年の軽量化要請を受け、A1
合金製4品の開発が進められている。この様なAl合金
化は、車両重量の軽減化に伴なう燃費向上に市まらず、
熱伝導率の面で鋳鉄製4品を陵忽するところから放熱性
の向上等も期待されている。
[Conventional technology] In response to recent demands for weight reduction in engines installed in various vehicles and compressors for car air conditioners, A1
Four alloy products are currently being developed. This kind of Al alloying is not only effective in improving fuel efficiency by reducing vehicle weight, but also
It is expected to improve heat dissipation as it is comparable to the four cast iron products in terms of thermal conductivity.

車両用A1合金として特に高い期待が寄せられているの
は高Si含有A1合金であり、耐摩耗性の優秀さや熱膨
張率の低さ等の面で有望視され、特に摺動部材への適用
が進んでいる。しかしながら従来の開発されている高S
i含有A1合金では熱間加工時の割れや切削加工性が問
題とされており、これらの改善が当面の解決課題となっ
ている。
The high-Si content A1 alloy has particularly high expectations as an A1 alloy for vehicles, and is seen as promising due to its excellent wear resistance and low coefficient of thermal expansion, and is especially suitable for application to sliding parts. is progressing. However, conventionally developed high S
The i-containing A1 alloy has problems with cracking during hot working and machinability, and improvement of these issues is an immediate problem.

[発明が解決しようとする問題点] 従来の高Si含有A1合金が上述の如き問題点を有する
ことの原因については種々検討されており、溶解鋳造法
で製造するときの冷却速度が遅く初晶Stが巨大粒とし
て成長するからであろうという点で一致を見ている。そ
こで急冷凝固の期待される粉末冶金法が応用されるに及
び、初晶Siの微細分散が達成されて熱間加工性や切削
加工性の低下といった問題点が解消される様になった。
[Problems to be solved by the invention] Various studies have been conducted on the causes of the above-mentioned problems in the conventional high-Si content A1 alloy. There is a consensus that this is probably because St grows as giant grains. With the application of powder metallurgy, which is expected to achieve rapid solidification, fine dispersion of primary Si has been achieved, and problems such as poor hot workability and machinability have been solved.

また粉末冶金法では、従来の溶解鋳造法では得られなか
った様な高Si含有量を達成することもでき、これまで
開発されていない様な新合金の製造も期待される。
In addition, the powder metallurgy method can achieve a high Si content that could not be obtained with the conventional melting and casting method, and is expected to produce new alloys that have not been developed so far.

この様な状況下で既に幾つかの新合金が提案されており
1代表的なものとして特開昭59−13040が挙げら
れる。この提案によるとA1合金中に大量のSiを添加
して耐摩耗性を向上するだけでなく、FeやMnの添加
による耐熱性の向上、CuやMgの添加による時効硬化
の発現まども試みられている。即ちAIマトリックス中
に加えられたCuは一般にAIとの金属間化合物(Cu
A12)を形成し、これがマトリックスとの整合析出物
(GPゾーン)や部分的整合析出物(θ′)として析出
するため時効硬化を発現する。
Under these circumstances, several new alloys have already been proposed, and one representative example is JP-A-59-13040. According to this proposal, in addition to improving wear resistance by adding a large amount of Si to A1 alloy, it was also attempted to improve heat resistance by adding Fe and Mn, and to cause age hardening by adding Cu and Mg. ing. That is, Cu added to the AI matrix generally forms an intermetallic compound with AI (Cu
A12) is formed, and this precipitates as a coherent precipitate (GP zone) or a partially coherent precipitate (θ') with the matrix, thereby causing age hardening.

一方Mg自体は単独添加による時効効果は殆んど発揮し
ないものの、Cu等との複合的添加によって時効硬化を
促進する方向に作用することが知られている。従って上
記公開公報の提案に係る合金は十分な時効硬化を発現す
るはずなのであるが、添加されたMgはStとも結合す
る性質を有し、Ii#摩耗性向上元素として期待されて
いるStを消費(Mg2Siを形成)する結果、微細初
晶Si粒子の形成を阻害して耐摩耗性の向上が不十分に
終るということが分かってきた。
On the other hand, although Mg itself exhibits almost no aging effect when added alone, it is known that Mg acts in the direction of promoting age hardening when added in combination with Cu or the like. Therefore, the alloy proposed in the above publication should exhibit sufficient age hardening, but the added Mg has the property of also bonding with St, consuming St, which is expected to be an element that improves Ii# wear properties. It has been found that as a result of (forming Mg2Si), the formation of fine primary Si particles is inhibited, resulting in insufficient improvement in wear resistance.

そこで本発明者等は次の2つの方向からアプローチする
ことを考え、 (1)原則的にMg非配合とし、他に好適な合金元素を
添加して耐摩耗性及び時効硬化の十分な発現を狙う、 (2)Mgの含有量を低下し、他の合金元素の適正配合
を付加して同上の効果を狙う、 という観点で研究、を行なった6本発明は(1)のアプ
ローチに基づいて完成された発明であり、(2)のアプ
ローチに基づ〈発明は別途特許出願した。
Therefore, the present inventors considered an approach from the following two directions: (1) In principle, Mg is not added, and other suitable alloying elements are added to achieve sufficient wear resistance and age hardening. (2) Aiming for the same effect by lowering the Mg content and adding an appropriate blend of other alloying elements.6 The present invention is based on the approach (1). This is a completed invention, and a separate patent application was filed for the invention based on approach (2).

[問題点を解決する為の手段] Si:12〜30%<gL量%の意味、以下回)Cu:
2 N10% 残部:Al及び不可避不純物 であり、これによって耐摩耗性の向上と時効硬化の発現
を同時的に達成し、熱間加工性や切削加工性の向上に寄
与することがでさた。又更に下記合金元素群から選択さ
れる1種以上の元素を配合することにより材料特性の一
層の向上を果たすことができた。
[Means for solving the problem] Si: 12-30% < Meaning of gL amount %, below) Cu:
2 N10% Balance: Al and unavoidable impurities, which simultaneously achieved improvement in wear resistance and expression of age hardening, contributing to improvement in hot workability and cutting workability. Furthermore, by blending one or more elements selected from the following alloying element group, the material properties could be further improved.

Mn:2〜15% F e  : 0.5 〜8% Ni:0.5 〜3% Zr:0.1−1.0% Cr  : 0.1 〜3% [作用] 本発明における合金元素の種類並びに配合量を選定した
理由を述べることによって本発明の作用効果を説明する
。尚本発明合金は上記説明の趣旨から明白である様に粉
末冶金法で製造するという技術の延長上にある。即ち粉
末冶金法では粉末製造時の凝固速度が溶解鋳造法におけ
る凝固速度に比べて著しく速い、その為各合金元素の固
溶度が、 増大し、又金属粒子や各種金属間化合物を微
細に均一分散させることができ、その結果として強度、
耐熱性、熱間加工性、切削加工性等の開時性が改善され
るとの期待があり、本発明の目的を達成する上で適合性
が高いからである。従って高S【含有Al合金自体の製
造も可能であり、更に固化成形法が容易であるという点
においても粉末冶金法の利点を見出すことができる。そ
して粉末冶金法において溶融状態から固相状態へ変態さ
せるときの冷却速度は102に/sec以上、好ましく
は10 ’ K/sec以上とし、アトマイズ粉末に限
られず、急冷薄片や急冷薄帯を粉砕して得られる粉末等
も適用できる。
Mn: 2-15% Fe: 0.5-8% Ni: 0.5-3% Zr: 0.1-1.0% Cr: 0.1-3% [Function] The alloying elements in the present invention The effects of the present invention will be explained by describing the reasons for selecting the types and blending amounts. As is clear from the purpose of the above description, the alloy of the present invention is an extension of the technology of manufacturing by powder metallurgy. In other words, in the powder metallurgy method, the solidification rate during powder production is significantly faster than that in the melt casting method, which increases the solid solubility of each alloying element and makes it possible to finely and uniformly form metal particles and various intermetallic compounds. can be dispersed, resulting in strength,
This is because it is expected to improve opening properties such as heat resistance, hot workability, cutting workability, etc., and is highly compatible with achieving the object of the present invention. Therefore, the advantages of the powder metallurgy method can be found in that it is possible to manufacture a high S content Al alloy itself, and furthermore, the solidification molding method is easy. In the powder metallurgy method, the cooling rate when transforming from a molten state to a solid state is set to 102/sec or more, preferably 10' K/sec or more, and is used to crush not only atomized powder but also quenched flakes and quenched ribbons. Powder etc. obtained by

Si:12〜30% 12%未満ではせっかくの急冷効果による初晶St粒子
の分散量が少なくなり1強度・耐熱性・耐摩耗性のいず
れにおいても満足な物性を得るには至らない、一方30
%を超えると急冷凝固法を採用しているにもかかわらず
初晶Si粒子のかなりの部分が巨大化し、靭性や衝撃値
の低下を招き、又切削加工性も悪くなる。更に熱間加工
時の成形性が著しく悪化したり、加工圧力が著しく増大
するといった固化成形性の面において重要な欠陥が生じ
る。
Si: 12 to 30% If it is less than 12%, the amount of dispersion of primary St particles due to the quenching effect will decrease, making it impossible to obtain satisfactory physical properties in terms of strength, heat resistance, and abrasion resistance.
If it exceeds %, a considerable portion of the primary Si particles becomes gigantic even though the rapid solidification method is adopted, leading to a decrease in toughness and impact value, and also resulting in poor machinability. Furthermore, important defects occur in terms of solidification formability, such as a marked deterioration in formability during hot working and a marked increase in processing pressure.

Cu:2〜10% CuはA1合金に時効硬化性を4える元素であり強度向
上の為に必須である。2%未満ではこの効果が十分発揮
されず、一方10%を超えると急冷凝固法を採用してい
るにもかかわらず巨大な金属間化合物の形成を見ること
がある。尚Cuの添加による強度上昇効果は5.5%添
加を超えるあたりから顕著になり8%を超えると靭性低
下を招き或は耐食性に悪影響を与えはじめるので、実用
上は5゜5〜8%の範囲がもっとも有効と考えられる。
Cu: 2-10% Cu is an element that imparts age hardenability to the A1 alloy and is essential for improving strength. If it is less than 2%, this effect will not be sufficiently exhibited, while if it exceeds 10%, giant intermetallic compounds may be formed even though the rapid solidification method is employed. The strength-increasing effect of adding Cu becomes noticeable when the addition exceeds 5.5%, and when it exceeds 8%, it causes a decrease in toughness or begins to have an adverse effect on corrosion resistance. Range is considered the most effective.

Mn、Fe、Ni、Cr及びZrの1種以上:これらの
元素に共通の作用効果は、急速冷却下における固溶強化
に寄与する点、高温条件の下で安定な微細分散相を均一
に形成すると共に再結晶防止効果を発揮し高温強度の増
大に寄与する点等である。これらの寄与を有効ならしめ
る為、Mnは2%以上、FeとNiは各々0.5%以上
、ZrとCrは各々0.1%以上の添加が必要である。
One or more of Mn, Fe, Ni, Cr, and Zr: The common effects of these elements are that they contribute to solid solution strengthening under rapid cooling, and that they uniformly form a stable finely dispersed phase under high temperature conditions. At the same time, it exhibits a recrystallization prevention effect and contributes to an increase in high-temperature strength. In order to make these contributions effective, it is necessary to add 2% or more of Mn, 0.5% or more of each of Fe and Ni, and 0.1% or more of each of Zr and Cr.

しかしMnが15%、Feが8%、Niが3%、Zrが
1.0%、Crが3%という夫々の上限を超えると、急
冷凝固化であっても固溶限界を超えることになり1分散
相の粗大化を招いて耐熱耐摩耗性を低下させる。尚上記
各元素は上記以外にも夫々特有の作用が期待されるもの
であり、以下各論的に説明する。まずMnは常温強度の
向上並びに耐熱性の向上効果を発揮する。Fe、Ni。
However, if Mn exceeds the upper limits of 15%, Fe 8%, Ni 3%, Zr 1.0%, and Cr 3%, the solid solubility limit will be exceeded even in rapid solidification. 1. This leads to coarsening of the dispersed phase and reduces heat and wear resistance. It should be noted that each of the above elements is expected to have a unique effect in addition to the above, and will be explained in detail below. First, Mn exhibits the effect of improving room temperature strength and heat resistance. Fe, Ni.

Cr、Zrは常温並びに高温強度の向上に有効であり、
且つ耐彦耗性向上効果を発揮する。そしてこれらの4元
素はAl中における拡散速度が小さく、急冷凝固法によ
っていったんマトリックス中へ微細分散されたものは高
温条件下におかれても粗大化されにくく、高温強度の低
下を防止し、また高温下における耐摩耗性の発揮に寄与
する。
Cr and Zr are effective in improving strength at room temperature and high temperature,
It also exhibits the effect of improving wear resistance. These four elements have a low diffusion rate in Al, and once they are finely dispersed into the matrix by the rapid solidification method, they do not become coarse even under high temperature conditions, preventing a decrease in high temperature strength, and Contributes to exhibiting wear resistance under high temperatures.

[実施例] 第1表に示す各種組成のAl合金溶湯を103K /s
acの冷却速度で急冷凝固し合金粉末を得た。
[Example] Molten Al alloys having various compositions shown in Table 1 were heated at 103K/s.
The alloy powder was rapidly solidified at a cooling rate of ac to obtain an alloy powder.

次にこれらを温間にて圧粉成形し、更に押出比14で熱
間押出加工を行ない、20mmφの押出材を得た0次い
で粉末冶金品は480℃X2hrの溶体化処理、並びに
170℃X1Ohrの時効処理を行なった。また比較材
として用いた鋳造物’A390は500℃×4h「の溶
体化処理後、同様に170℃X10hrの時効処理を行
なった。
Next, these were compacted in a warm state, and then hot extruded at an extrusion ratio of 14 to obtain an extruded material of 20 mmφ.Next, the powder metallurgy product was subjected to solution treatment at 480°C for 2 hours and at 170°C for 1 Ohr. The aging process was carried out. Further, the cast 'A390 used as a comparative material was subjected to solution treatment at 500° C. for 4 hours and then similarly subjected to aging treatment at 170° C. for 10 hours.

これらの押出材および鋳造物について次に示す各試験を
行なった。
The following tests were conducted on these extruded materials and cast products.

耐摩耗性試験 次の条件下に大越式摩耗試験を行なった。Wear resistance test The Okoshi type abrasion test was conducted under the following conditions.

相手材:  Fe12 摩擦速度: 1.I]7m/+ec 摩擦距離:100m 潤滑手段:なし 荷重: 2.2Kg 彦耗試験後の摩耗痕を観察し摩耗量を測定した。各試料
間の耐摩耗性比較は粉末冶金にょるAl−20Si(比
較材No、13)ノ摩耗量を1.0としたときの比較値
を求め、第1表に併記する様な結果を得た。
Mating material: Fe12 Friction speed: 1. I]7m/+ec Friction distance: 100m Lubricating means: None Load: 2.2Kg After the wear test, the wear marks were observed and the amount of wear was measured. To compare the wear resistance between each sample, we calculated the comparative value when the wear amount of Al-20Si (comparative material No. 13) made by powder metallurgy was set to 1.0, and obtained the results as shown in Table 1. Ta.

室温及び高温引張試験 平行部6鳳■φ、標点距@30鳳1のテストピースを用
い、室温、100℃、200℃、300”C!の下で引
張試験を行ない、各温度での引張強度及び室温伸びを求
めた。結果は第1表に併記する通りである。
Room Temperature and High Temperature Tensile Test Using a test piece with a parallel section of 6 mm x φ and a gauge length of 30 mm, a tensile test was conducted at room temperature, 100°C, 200°C, and 300”C!. The strength and elongation at room temperature were determined.The results are shown in Table 1.

上記各試験結果をまとめてみる。No、1〜4の本発明
材とNo、13〜15の比較材を見比べると、Cuによ
る顕著な時効硬化を確認することができる。尚Cu添加
量が2%未満のもの(No。
Let's summarize the results of each test above. When comparing the present invention materials Nos. 1 to 4 and the comparative materials Nos. 13 to 15, significant age hardening due to Cu can be confirmed. In addition, the amount of Cu added is less than 2% (No.

14)では時効硬化が少なく、他方10%を超えるもの
(No、15)では伸びが極端に低下している。又Cu
含有量が最好適範囲にあるもの同士の比較(No、5.
8とNo、16.17の比較)によると、St添加量が
12%未満では十分な耐摩耗性が得られていないこと、
逆にSiが30%を超えたものでは室温伸びが極端に低
下していることなどが分かる。
In No. 14), the age hardening is small, while in No. 15, which exceeds 10%, the elongation is extremely reduced. Also Cu
Comparison of those whose content is within the optimum range (No, 5.
8 and No. 16.17), sufficient wear resistance is not obtained when the amount of St added is less than 12%.
On the contrary, it can be seen that the room temperature elongation is extremely reduced in the case where the Si content exceeds 30%.

Mgの影響についてはNo、2とNo、18〜20の比
較によって分かる様に、Mgの増大につれて耐摩耗性が
低下し、また室温伸びが極端に低下している。Mg非配
合の有利さが理解できる。
Regarding the influence of Mg, as can be seen by comparing No. 2 and No. 18 to 20, as the Mg content increases, the wear resistance decreases and the room temperature elongation decreases extremely. The advantage of not incorporating Mg can be understood.

Fe、Mn、Cr、NiおよびZrについては、No、
7〜12に示す様に耐熱性及び耐摩耗性の両面において
効果的元素であるが、No、21〜25に示される様な
過剰添加では分散相の粗大化を誘起して耐摩耗性を低下
させている。尚耐摩耗性材として汎用されているA39
0材と比較すると、強度、耐熱性および耐摩耗性のいず
れにおいても優れていることが分かった。
For Fe, Mn, Cr, Ni and Zr, No,
As shown in Nos. 7 to 12, it is an effective element in terms of both heat resistance and wear resistance, but excessive addition as shown in Nos. and 21 to 25 induces coarsening of the dispersed phase and reduces wear resistance. I'm letting you do it. A39 is commonly used as a wear-resistant material.
It was found that the material was superior in strength, heat resistance, and abrasion resistance when compared to material No.

[発明の効果] 本発明は上記の様に構成され・Cいるので、常温並びに
高温強度が優れると共に耐熱性及び耐摩耗性が著しく優
れ、熱間加工性及び切削加工性の良好な高力A1合金が
提供されることとなった。
[Effects of the Invention] Since the present invention is constructed as described above, it has excellent strength at room temperature and high temperature, extremely excellent heat resistance and wear resistance, and high strength A1 with good hot workability and cutting workability. Alloy will be provided.

Claims (2)

【特許請求の範囲】[Claims] (1)Si:12〜30重量% Cu:2〜10重量% を含み残部が実質的にAl及び不可避不純物よりなるも
のであることを特徴とする高力耐熱耐摩耗性Al合金。
(1) A high-strength, heat-resistant and wear-resistant Al alloy, characterized in that it contains Si: 12 to 30% by weight and Cu: 2 to 10% by weight, with the remainder consisting essentially of Al and inevitable impurities.
(2)Si:12〜30重量% Cu:2〜10重量% を含む他、更に Mn:2〜15重量% Fe:0.5〜8重量% Ni:0.5〜3重量% Zr:0.l〜1.0重量% Cr:0.1〜3重量% よりなる群から選択される1種以上の合金元素を含み残
部が実質的にA1及び不可避不純物よりなるものである
ことを特徴とする高力耐熱耐摩耗性Al合金。
(2) Contains Si: 12-30% by weight, Cu: 2-10% by weight, and further includes Mn: 2-15% by weight, Fe: 0.5-8% by weight, Ni: 0.5-3% by weight, Zr: 0 .. It is characterized by containing one or more alloying elements selected from the group consisting of 1 to 1.0% by weight, Cr: 0.1 to 3% by weight, and the remainder substantially consisting of A1 and inevitable impurities. High strength heat and wear resistant Al alloy.
JP2479985A 1985-02-12 1985-02-12 High strength, heat and wear resistant al alloy Pending JPS61186443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2479985A JPS61186443A (en) 1985-02-12 1985-02-12 High strength, heat and wear resistant al alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2479985A JPS61186443A (en) 1985-02-12 1985-02-12 High strength, heat and wear resistant al alloy

Publications (1)

Publication Number Publication Date
JPS61186443A true JPS61186443A (en) 1986-08-20

Family

ID=12148241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2479985A Pending JPS61186443A (en) 1985-02-12 1985-02-12 High strength, heat and wear resistant al alloy

Country Status (1)

Country Link
JP (1) JPS61186443A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830802A (en) * 1971-08-24 1973-04-23
JPS5913041A (en) * 1982-07-12 1984-01-23 Showa Denko Kk Aluminum alloy powder having high resistance to heat and abrasion and high strength and molding of said alloy powder and its production
JPS6050137A (en) * 1983-08-30 1985-03-19 Riken Corp Heat- and wear-resistant high-strength aluminum alloy member of hard particle dispersion type and its production
JPS60103145A (en) * 1983-11-09 1985-06-07 Nippon Light Metal Co Ltd Aluminum alloy for casting with superior heat resistance and wear resistance
JPS60145349A (en) * 1984-01-07 1985-07-31 Sumitomo Electric Ind Ltd Aluminum alloy parts having high heat resistance and wear resistance and manufacture thereof
JPS61166931A (en) * 1985-01-17 1986-07-28 Sumitomo Light Metal Ind Ltd Method for molding al-si alloy powder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830802A (en) * 1971-08-24 1973-04-23
JPS5913041A (en) * 1982-07-12 1984-01-23 Showa Denko Kk Aluminum alloy powder having high resistance to heat and abrasion and high strength and molding of said alloy powder and its production
JPS6050137A (en) * 1983-08-30 1985-03-19 Riken Corp Heat- and wear-resistant high-strength aluminum alloy member of hard particle dispersion type and its production
JPS60103145A (en) * 1983-11-09 1985-06-07 Nippon Light Metal Co Ltd Aluminum alloy for casting with superior heat resistance and wear resistance
JPS60145349A (en) * 1984-01-07 1985-07-31 Sumitomo Electric Ind Ltd Aluminum alloy parts having high heat resistance and wear resistance and manufacture thereof
JPS61166931A (en) * 1985-01-17 1986-07-28 Sumitomo Light Metal Ind Ltd Method for molding al-si alloy powder

Similar Documents

Publication Publication Date Title
JP4914225B2 (en) Aluminum alloy material, its production method and its use
JPS6167738A (en) Improved copper base alloy having strength and conductivity in combination
US4043807A (en) Alloy steels
EP1877593A2 (en) Cast iron with improved high temperature properties
US3973952A (en) Heat resistant alloy casting
JP2004277860A (en) Heat-resistant alloy for high-strength exhaust valve excellent in overaging resistance
US6037067A (en) High temperature abrasion resistant copper alloy
JPS6383251A (en) Manufacture of high strength and high elasticity aluminum alloy
KR102489980B1 (en) Aluminum alloy
KR102461964B1 (en) Aluminum alloy
JPS62149839A (en) Wear resistant aluminum alloy for working excellent in strength
KR20220141485A (en) Aluminum alloy
JPS61186443A (en) High strength, heat and wear resistant al alloy
US2290025A (en) Aluminum alloy
JPH07216487A (en) Aluminum alloy, excellent in wear resistance and heat resistance, and its production
JPH055146A (en) Aluminum alloy excellent in wear resistance and thermal conductivity
JPH0762199B2 (en) A1-based alloy
US2290026A (en) Aluminum alloy
JPS6244547A (en) Composite aluminum alloy material
JPH05179378A (en) Ni-base alloy excellent in room temperature and high temperature strength
JPS61186444A (en) High strength, heat and wear resistant al alloy
JPS62149840A (en) High strength, heat and wear resistant al alloy
JP2697242B2 (en) Continuous casting mold material made of Cu alloy having high cooling ability and method for producing the same
SU1636471A1 (en) Cast iron for rolls
JPS5932538B2 (en) Medium strength AI alloy for extrusion with excellent toughness and press hardenability