JPH0118981B2 - - Google Patents

Info

Publication number
JPH0118981B2
JPH0118981B2 JP57119901A JP11990182A JPH0118981B2 JP H0118981 B2 JPH0118981 B2 JP H0118981B2 JP 57119901 A JP57119901 A JP 57119901A JP 11990182 A JP11990182 A JP 11990182A JP H0118981 B2 JPH0118981 B2 JP H0118981B2
Authority
JP
Japan
Prior art keywords
alloy powder
less
size
resistant
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57119901A
Other languages
Japanese (ja)
Other versions
JPS5913040A (en
Inventor
Fumio Kyota
Tatsuo Fujita
Tadao Hirano
Shinichi Horie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Resonac Holdings Corp
Original Assignee
Riken Corp
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp, Showa Denko KK filed Critical Riken Corp
Priority to JP57119901A priority Critical patent/JPS5913040A/en
Priority to CA000432033A priority patent/CA1230761A/en
Priority to EP83106849A priority patent/EP0100470B1/en
Priority to DE8383106849T priority patent/DE3381592D1/en
Publication of JPS5913040A publication Critical patent/JPS5913040A/en
Priority to US07/259,402 priority patent/US4938810A/en
Publication of JPH0118981B2 publication Critical patent/JPH0118981B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、常温から高温までの強度がすぐれた
高Siアルミニウム合金粉末の成形部材とその製造
法に関するもので、特に内燃機関のシリンダーラ
イナーのような熱負荷が高く、又、耐摩耗性、耐
焼付性が要求される部品に最適のものである。 最近、自動車の軽量化やフロントエンジン・フ
ロントドライブ(FF)方式のため、エンジンの
軽量化が必要となつており、そのためシリンダー
ブロツクは鋳鉄からAl合金が使用されるように
なつてきている。 その場合、鋳鉄製シリンダーライナーが鋳ぐる
まれて使用されている。このシリンダーライナー
をAl合金にすると軽量化の他に熱伝導率が鋳鉄
よりもはるかに良いことと、鋳鉄よりも熱膨張係
数が大きく、シリンダーブロツクのAl合金に近
いので、昇温時でもライナーとブロツクの密着性
が良いことから、放熱性の良いエンジンとなり、
ライナーの内壁温度が低く出来ることから潤滑油
の寿命を長く出来たり、低粘度の潤滑油の使用が
可能となり、燃費の向上が可能になるとされてい
る。又、ピストン材料のアルミニウム合金のそれ
と同程度であるのでピストンとの間のクリアラン
スを小さく設定出来るために、潤滑油の消費量を
押え、燃費の向上も期待される。 又、高SiのAl合金は摩耗係数が低いため、シ
リンダーライナーとして使用すれば、ピストンリ
ングとの間のフリクシヨンロスが低減されること
から燃費の向上が期待される。 このようにシリンダーライナーにAl合金を適
用することの長所は多いが、従来の公知のアルミ
ニウム合金では、このような鋳ぐるみ用シリンダ
ーライナー材としては不充分である。 例えばAA規格のA390.0合金(Si=16〜18%、
Cu=4〜5%、Mg=0.50〜0.65%、Fe=0.5%、
Ti=0.2%、Zn=0.1%、残Al)の様な鋳造材は固
液共存温度域が広いため、健全な鋳物を得るため
には、大きな押湯を必要とするため歩留りが悪く
コストの高いものとなる他に、微細化処理や金型
鋳造法によつても初晶Siは尚粗大であるために被
削性が悪い。 更に致命的欠点は、シリンダーブロツクに鋳ぐ
るむ時に、熱によつて材料が軟化するために、耐
摩耗性が著しく低下する他、被削面にビビリやム
シレを生じやすく、又、ホーニング加工を困難と
する。又近年、粉末冶金法により、A390.0に近
い組成の合金を粉末にして、これを熱間押出しし
て、中空体とする技術が提案されている。(特開
昭52−109415)。 これは高Siのアルミニウム合金溶湯とアトマイ
ズ法又は遠心力による微粒化法により急冷された
微粒、又は粉末とし、これを熱間押出しすること
により中空体を得る方法であり、鋳造法により得
られる中空体よりもはるかに重量歩留りのすぐれ
た製造法である。 又、この方法によると初晶Siが20μm以下の大
きさとなるために延性や機械加工性にすぐれ、更
に高ケイ素Al合金特有の低摩擦係数の性質をも
有している。 又、この製造法により15〜20%Si、1〜5%
Cu、0.5〜1.5%Mg、0.5〜1.5Ni、残部Alの合金
や、或はこれに、SiC、Sn、黒鉛を混合して押出
した中空体が提案されている。 本発明者らはこのトレース実験を行なつたとこ
ろ、20.0Si−4.0Cu−0.8Mg−0.5Ni−Al残の組成
とした粉末押出し材をシリンダーライナー(外径
73mm内径65mm高さ105mm)として使用し、ADC−
12合金のシリンダーブロツク(重量3.4Kg)に溶
湯温度675℃でダイキヤスト法で鋳ぐるむテスト
を行つた結果、鋳ぐるみ前にT6処理により硬さ
がHRB80であつたものが、鋳ぐるみ後はHRB40程
度に軟化してしまうことが判明した。従つてこの
中空体もアルミニウム合金製シリンダーブロツク
に鋳ぐるむ時に軟化してしまい、鋳ぐるみ用シリ
ンダーライナーとしては使用不可能である。 また、鋳ぐるみはダイキヤスト法や低圧鋳造法
によるが、ライナーはコスト面からもできるだけ
薄肉とすることが望ましいが、薄肉化していくと
鋳ぐるみ時のライナー搬送工程や位置決め時に加
わる機械的応力により変形しやすくなるために、
高剛性(高硬度)であることが必要である。 本発明はこれら欠点をすべて解消し、鋳ぐるみ
時の熱負荷に対しても軟化することがなく、更に
使用時に負荷される温度域においても軟化せず、
耐摩耗性、耐焼付性にすぐれたアルミニウム合金
材料を経済的にも安価に提供することを目的とす
る。 本発明に使用するアルミニウム合金粉末は、重
量比でSi10.0〜30.0%、Ni5.0〜15.0%からなり、
さらに必要に応じてCu0.5〜5.0およびMg0.2〜3.0
%を含み、残部がAlからなることを要旨とし、
Si結晶粒の大きさが15μm以下に微細化し、Niを
5.0〜15%含むことにより、高温強度改善に有効
なNiを含む金属間化合物が析出していることを
特徴としている。 また本発明のアルミニウム合金粉末成形体は、
重量比でSi10.0〜30.0%、Ni5.0〜15.0%からな
り、さらに必要に応じてCu0.5〜5.0%および
Mg0.2〜3.0%を含み、残部がAlからなる組成を
有し、Si結晶粒の大きさは15μm以下、かつNiを
含む金属間化合物の大きさが20μm以下に微細に
分散していることを特徴とする。 さらに本発明のアルミニウム合金成形体の製造
方法は、原料として、前記アルミニウム合金粉末
を使用するものであり、前記アルミニウム合金溶
湯を分散急冷凝固させて得られた粉末を熱間押出
することを要旨とし、Si結晶粒およびNiを含む
金属間化合物相が微細化した組織を有する合金粉
末成形体を得ることを要旨とする。 以下この発明をさらに詳細に説明する。 まず、本発明に使用する合金粉末は重量比で
Si10.0〜30.0%、Ni5.0〜15.0%、さらに必要に応
じてCu0.5〜5.0%およびMg0.2〜3.0%、残部が不
可避的不純物を含むAlとから成り、Si結晶粒の
大きさが15μm以下である耐熱耐摩耗性高力アル
ミニウム合金粉末である。 一般に過共晶Al−Si合金はAlよりも小さな熱
膨張係数を有し、耐熱耐摩耗性に優れていること
は広く知られている。過共晶Al−Si合金鋳造材
ではSiが初晶あるいは共晶としてマトリツクス中
に分散することにより、高温強度や耐摩耗性、耐
焼付性に優れた効果を発揮する。しかしながら初
晶Siはしばしば粗大結晶として晶出するため、延
性や衝撃値を低下させ、被削性を悪くする。ま
た、シリンダーライナー材などに使用する場合に
相手材を傷付けるので適当ではない。 これらの問題点を解決するため、過共晶Al−
Si合金を急冷凝固させて初晶Siを微細化した合金
粉末をつくり、押出成形により部材に加工して耐
熱性、耐摩耗性に優れた材料を得ることが提案さ
れている(特開昭52−109415)。しかしながら耐
熱性、特に高温強度に関してはなお充分ではな
い。 本発明はAl−Si合金に5.0〜15.0%のNiを添加
することにより、高温における強度と耐摩耗性を
著しく改善せんとするものである。 次に本発明に使用する合金粉末中の各成分の限
定理由を説明する。 Siは10%以下では分散量が少く、耐熱耐摩耗性
におよぼす効果が不充分である。Si10%近傍の亜
共晶域では初晶Siは晶出せず、微細な共晶組織を
有するものとなる。Siの添加量が増すと共にSi初
晶が晶出するようになり、耐熱耐摩耗性も向上し
てくる。 しかしながらSiが30%を越えると分散急冷凝固
法によつて粉末としても粗大な初晶Siが消失しな
くなる。粗大な初晶Si組織を有するアルミニウム
合金粉末は押出成形加工して使用するに際して
は、粉体の圧縮性を著しく悪化させ、圧粉体を造
りにくくするほか、熱間押出においても変形抵抗
が大きくなり、大きな押出力を必要とするほか、
押出ダイスを摩耗させて寿命を著しく短縮させる
難点がある。このような製造上の問題の他に、材
質特性においても鋳造材の場合と同様な難点があ
り、シリンダーライナー材としては不適当なもの
となるので、粗大な初晶Siの晶出は避けなければ
ならない。また、アルミニウム合金製シリンダー
ブロツク材に鋳ぐまれてシリンダーライナーとし
て使用する場合、Siの添加量と共に熱膨張係数は
小さくなり、Siが30%を越えるとシリンダーブロ
ツク材との密着状況が悪くなつたり、ピストンと
のクリアランスを大きくする必要性が生じてく
る。 従つてSiの添加量は10.0〜30.0%、好ましくは
15.0〜25.0%とするのが良い。 Niは本発明合金においては重要な成分である。
Ni添加の効果は高温強度と耐摩耗性の改善にあ
る。過共晶合金中にNiを添加するとNi−Al系金
属間化合物が析出し、本発明の製造法の骨子であ
る分散急冷凝固法による合金粉末においては棒状
の組織として存在して、後の熱間押出工程によつ
て分断され微細にマトリツクス中に分散する。こ
の化合物は高温においても安定でかつ成長し難
く、長時間高温保持しても強度の低下は起こさな
い。従つて鋳ぐるみ用シリンダーライナーのよう
に高温にさらされた後も硬度の低下がなく、耐摩
耗性を保持することが可能となる。 Ni添加量は5%以下では顕著な効果が認めら
れず、15%以上になるとマトリツクス中のSiの溶
解限度が低くなり、過剰のSiが初晶となつて多量
に晶出する。また、合金の溶解温度が高くなり溶
湯の酸化が進むので特別の酸化防止策を必要とし
経済的でない。また析出する金属間化合物が粗大
となり、後の熱間押出加工によつても分断されに
くくなるばかりでなく、押出性をも阻害する結果
となる。Ni添加量は5.0〜15.0%の範囲において
従来にない効果を発揮することが認められた。こ
のようにNiを多量に添加して析出するNiを含む
金属間化合物を利用して合金の強度特に高温にお
ける強度を改善し、この金属間化合物を分断微細
化して耐摩耗性を向上させるという新規な効果を
もたらすものである。 この合金粉末は必要に応じて0.5〜5.0%のCuお
よび0.2〜3.0%のMgを添加することができる。
CuやMgはアルミニウム合金に時効硬化性を付与
して材質を強化する成分として知られている。本
発明においても溶体化処理温度での固溶限度内の
前記範囲内でCuおよびMgを添加すると材質強化
に有効である。 また、この合金粉末においてはさらにFe、
Mn、Ti、Cr、V、Zr、Mo、Co等を添加して高
温強度を改善することも可能である。 Si結晶粒の大きさを15μm以下としたものは、
主として初晶Siの大きさが15μm以上になると、
後続の合金粉末の成形加工性が悪くなりまた材料
特性としても悪化するからである。もちろんSiが
共晶として晶出する場合は微細結晶となるので問
題はおこらない。 この合金粉末は上記合金組成を有する溶湯をア
トマイズ法、遠心力による微粒化法等の通常用い
られている金属溶湯からの微粉末製造手段を使用
して急冷分散凝固させることによつて得ることが
できる。このようにして得られた合金粉末は大き
さが15μm以下のSi結晶粒と成長を抑えられたNi
を含む金属間化合物の棒状晶を有し、従来の高Si
系Al合金粉末には見られない新規な合金粉末で
ある。また、このような組織を有する合金を鋳造
法で得ることは不可能である。参考までに22.8Si
−3.1Cu−1.3Mg−8.0Ni−0.5Fe−Al残の組成を
有するアルミニウム合金粉末の顕微鏡組織写真を
第3図に示す。また比較のため同一組成の鋳造材
の組成写真を第4図に、Niを含まない21.1Si−
3.1Cu−1.0Mg−Al残の組成を有するAl合金粉末
の組織写真を第5図に示す。 第3図において塊状を呈しているのが初晶Siで
ある。棒状を呈しているのがAl−Ni系金属間化
合物相である。 第4図では粗大な多角形をした初晶Siが見ら
れ、白色棒状のAl−Ni系金属間化合物相が認め
られる。第5図では粒状のSi初晶と共晶組織を呈
している。 前述の合金粉末は熱間押出加工に適したもので
あり、特に耐熱耐摩耗性を有する高力アルミニウ
ム合金成形体用として適したものである。 次に本発明の第1発明の要旨とするところは、
重量比でSi10.0〜30.0%とNi8.0〜15.0%を含み、
残部が不可避的不純物を含むAlからなる組成を
有し、Si結晶粒の大きさが15μm以下であり、か
つNiを含む金属間化合物の大きさが20μm以下に
微細化分散していることを特徴とする耐熱耐摩耗
性高力アルミニウム合金粉末成形体である。 本発明でSi含有量を10.0〜30.0%としたのは成
形体の耐熱性、耐摩耗性、耐焼付性を改善するた
めであり、Ni含有量を5.0〜15.0%としたのは高
温強度、耐熱性、耐摩耗性を改善するためであ
る。 さらにSi結晶粒の大きさを15μm以下とするこ
とにより、従来の成形品よりも延性が良くなり被
削性も改善されるので機械加工が容易となり、加
工中のビビリやムシレが発生しにくくなる。また
Siの微細結晶により耐摩耗性にすぐれ材料の摩耗
係数を低下させて、シリンダーライナー等に適し
たものにするためである。 またAl3Ni等のNiを含む金属間化合物の大きさ
を実質的には5μm以下で、大きなものでも20μm
以下に微細かつ均一に分散させることにより、高
温強度と耐摩耗性が著しく改善されたものとな
る。第6図に本発明による成形体の押出方向に平
行な断面の顕微鏡組成写真を示す。第6図では色
の濃い部分が初晶Si、色の薄い部分がAl−Ni系
金属間化合物と共晶である。図に見られるごと
く、本発明による合金成形体では初晶Si、共晶、
金属間化合物相が微細に入りくんで均一に分布し
ているのがわかる。このような組織を有する成形
体は従来の成形体には見られなかつた新規なもの
である。参考までに第5図と同じ組成を有する高
Siアルミニウム合金成形体断面の組織写真を第7
図に示す。 本発明によるアルミニウム合金粉末成形体は従
来品に比較して高温強度が著しく改善されてお
り、耐摩耗性、耐焼付性にも優れたものである。
さらに、本発明品は摩擦係数が小さいので、特に
内燃機関のシリンダーライナーのような、高温で
使用されかつ耐摩耗性、耐焼付性が要求される部
材として最適なものである。 本発明の第2は、重量比でSi10.0〜30.0%と
Ni5.0〜15.0%とCu0.5〜5.0%およびMg0.2〜3.0
%とを含み、残部が不可避的不純物を含むAlか
らなり、Si結晶粒の大きさが15μm以下であつて、
かつNiを含む金属間化合物の大きさが20μm以下
に微細化分散してなることを特徴とする耐熱体摩
耗性高力アルミニユウム合金粉末成形体である。 本発明によるアルミニウム合金粉末成形体は次
に述べる方法によつて得られるものである。 本発明の第3は、上記アルミニウム合金粉末成
形体の製造方法に関するものであり、その要旨と
するところは、前記第一の発明または第2の発明
におけると同じ組成を有する合金溶湯を分散急冷
凝固させ、得られた合金粉末を熱間押出成形する
ことにある。 合金溶湯を分散急冷凝固させるのは、Si、
NiCu、Mg等の合金元素を過飽和に固溶させると
ともに、初晶Siや金属間化合物相を微細化するた
めである。分散急冷凝固させる方法としては、ア
トマイズ法、遠心微粉化法等既知の金属粉末製造
方法が利用できる。これらの方法により粉末粒径
を0.5mm以下に微細化し急冷凝固させれば、満足
する組織の合金粉末が得られる。 次に、該合金粉末を利用して熱間押出により成
形体を製造する。熱間押出は合金粉末を強固な成
形体に仕上げるばかりでなく合金粉末中に晶出し
ている初晶Si、共晶相、金属間化合物相の結晶粒
を微細化し、材料の機械的特性を改善するための
必須条件である。 熱間押出に先だつて圧粉体を準備すると作業上
都合が良い。圧粉体の製造は合金粉末を温度200
〜350℃程度の温度域でおこなう。300℃を越える
と酸化が著しくなるのでN2ガスやArガスのよう
な非酸化性雰囲気中でおこなうのが望ましい。成
形圧力は0.5〜3ton/cm2程度でおこない、圧粉体
密度は真密度比70%以上とするのが圧粉体のハン
ドリング上望ましい。 熱間押出は350℃以上の温度、好ましくは400〜
470℃の温度領域でおこなう。これは圧粉体の加
工を容易にすると同時に粒子間の結合を促進させ
て強固な成形体とするためである。さらには過飽
和固溶分の元素を微細析出させるとともに、初晶
Siや金属間化合物の棒状組織を分断して微細化
し、成形体の強度と摩擦特性を改善するためであ
る。熱間押出は圧粉体を大気中または非酸化性雰
囲気中で予熱し、ほぼ同温度のコンテナー中に挿
入しておこなう。押出比は10以上が好ましい。押
出比が10未満だと押出材中に空隙が残存し、また
粉体相互間の拡散接合や棒状金属間化合物の分断
効果が不充分なために、強度や靭性の高い材料が
得られないためである。 本発明の方法によればSi初晶、共晶、金属間化
合物相のいずれをもきわめて微細に均一分散させ
ることが可能となり、特に材料の耐摩耗性と摩擦
特性に優れた部材を容易に得ることが可能とな
る。また、本発明により得られた合金粉末成型体
に安定化熱処理をほどこし、材料特性をさらに改
善することも何らさしつかえない。 次に実施例をあげて本発明を説明する。 実施例 表−1に示す組成の高Siアルミニウム合金溶湯
をガスでアトマイズし、−48meshの粉末を得た。
次で250℃の温度に予熱したこれらの粉末を、同
じ温度に加熱保持した金型中に充填し、1.5ton/
cm2の圧力で圧縮成形して直径100mm、長さ200mmの
圧粉体を得た。次に圧粉体を450℃に加熱し同じ
温度に加熱保持された内径104mmのコンテナ中に
挿入し直径30mmのダイスで間接押出法により押出
(押出比12)を行ない供試材No.1〜10迄の成形体
を得た。 次で、No.9以外は480℃×2Hr保持後水冷し175
℃×10Hrの時効処理を行い、標点間距離50mm、
平行部直径6mmの引張試験片に加工して、常温か
ら250℃までの間で引張試験を行なつた。尚、引
張試験は各試験温度で100Hr保持後に行なつた。
又硬さを各温度での引張試験後の試験片のチヤツ
キング部の端部について測定した。なお、供試材
No.1〜No.6は比較例であり、No.7〜No.10は本発明
例である。さらに鋳造材との比較のために
A390.0合金の金型鋳造材を比較材として500℃×
10Hr保持後水冷し、175℃×10Hrの時効処理を
行つたものも同様の形状に加工して、同じ引張試
験を行なつた。これらの試験結果を表−1に示
す。
The present invention relates to a molded member made of high-Si aluminum alloy powder that has excellent strength from room temperature to high temperature, and a method for producing the same.In particular, the present invention relates to a molded member made of high-Si aluminum alloy powder that has excellent strength from room temperature to high temperature. It is ideal for parts that require high seizability. Recently, there has been a need to reduce the weight of engines due to the weight reduction of automobiles and the adoption of front-engine/front-drive (FF) systems, and for this reason, aluminum alloys are being used instead of cast iron for cylinder blocks. In that case, a cast iron cylinder liner is used. When the cylinder liner is made of Al alloy, in addition to being lightweight, it has a much better thermal conductivity than cast iron, and has a higher coefficient of thermal expansion than cast iron, which is close to the Al alloy of the cylinder block, so the liner remains strong even when the temperature rises. Due to the good adhesion of the block, it becomes an engine with good heat dissipation.
It is said that since the inner wall temperature of the liner can be lowered, the life of the lubricating oil can be extended, and low viscosity lubricating oil can be used, thereby improving fuel efficiency. In addition, since the material is comparable to that of the aluminum alloy of the piston material, the clearance between the piston and the piston can be set small, which is expected to reduce the consumption of lubricating oil and improve fuel efficiency. In addition, high-Si Al alloy has a low coefficient of wear, so when used as a cylinder liner, it is expected to improve fuel efficiency by reducing friction loss between the cylinder liner and the piston ring. Although there are many advantages to using Al alloys for cylinder liners, conventionally known aluminum alloys are insufficient as cylinder liner materials for such castings. For example, AA standard A390.0 alloy (Si = 16-18%,
Cu=4~5%, Mg=0.50~0.65%, Fe=0.5%,
Casting materials such as Ti = 0.2%, Zn = 0.1%, residual Al) have a wide solid-liquid coexistence temperature range, so in order to obtain sound castings, a large feeder is required, resulting in poor yields and high costs. In addition to being expensive, primary Si is still coarse even when subjected to refining treatment or mold casting, resulting in poor machinability. Another fatal drawback is that the material is softened by heat when it is cast into the cylinder block, which significantly reduces wear resistance, tends to cause chattering and cracking on the machined surface, and makes honing difficult. shall be. In recent years, a technique has been proposed in which powder metallurgy is used to powder an alloy having a composition close to A390.0 and hot extrude the powder to form a hollow body. (Japanese Patent Application Laid-Open No. 52-109415). This is a method to obtain a hollow body by hot extruding a high-Si aluminum alloy molten metal and granules or powder that are rapidly cooled by atomization or centrifugal atomization, and a hollow body obtained by a casting method. This is a manufacturing method that has a much better weight yield than the traditional method. Furthermore, according to this method, the primary crystal Si has a size of 20 μm or less, so it has excellent ductility and machinability, and also has the low coefficient of friction characteristic of high-silicon Al alloys. Also, this manufacturing method allows 15 to 20% Si, 1 to 5%
An alloy of Cu, 0.5 to 1.5% Mg, 0.5 to 1.5% Ni, and the balance Al, or a hollow body extruded by mixing SiC, Sn, and graphite with this alloy has been proposed. The inventors conducted this tracing experiment and found that a cylinder liner (outer diameter
73mm inner diameter 65mm height 105mm), ADC−
As a result of a test in which a 12 alloy cylinder block (weighing 3.4 kg) was cast using the die casting method at a molten metal temperature of 675℃, the hardness was H RB 80 due to T6 treatment before casting, but after casting it was It was found that HRB softened to about 40. Therefore, this hollow body also becomes soft when being cast into an aluminum alloy cylinder block, and cannot be used as a cylinder liner for casting. Castings are made using the die casting method or low pressure casting method, and it is desirable to make the liner as thin as possible from a cost perspective. In order to make it easier to
It is necessary to have high rigidity (high hardness). The present invention eliminates all of these drawbacks, and does not soften even under the heat load during casting, and also does not soften under the temperature range that is applied during use.
The purpose is to economically provide an aluminum alloy material with excellent wear resistance and seizure resistance at low cost. The aluminum alloy powder used in the present invention consists of 10.0 to 30.0% Si and 5.0 to 15.0% Ni by weight,
Additionally Cu0.5~5.0 and Mg0.2~3.0 as required
% and the remainder consists of Al,
The size of Si crystal grains has been refined to 15 μm or less, and Ni
By containing 5.0 to 15% of Ni, intermetallic compounds containing Ni, which are effective in improving high-temperature strength, are precipitated. Further, the aluminum alloy powder compact of the present invention is
Consisting of Si10.0~30.0% and Ni5.0~15.0% in weight ratio, and Cu0.5~5.0% and Cu as necessary.
It must have a composition containing 0.2 to 3.0% Mg with the remainder being Al, the size of Si crystal grains is 15 μm or less, and the size of intermetallic compounds containing Ni is finely dispersed to 20 μm or less. It is characterized by Furthermore, the method for producing an aluminum alloy compact of the present invention uses the aluminum alloy powder as a raw material, and the gist thereof includes hot extruding the powder obtained by dispersing and rapidly solidifying the molten aluminum alloy. The purpose of this invention is to obtain an alloy powder compact having a microstructure in which Si crystal grains and an intermetallic compound phase containing Ni are refined. This invention will be explained in more detail below. First, the alloy powder used in the present invention is
It consists of 10.0 to 30.0% Si, 5.0 to 15.0% Ni, and if necessary, 0.5 to 5.0% Cu and 0.2 to 3.0% Mg, and the balance is Al containing unavoidable impurities. A heat-resistant, wear-resistant, high-strength aluminum alloy powder with a diameter of 15 μm or less. It is widely known that hypereutectic Al--Si alloys generally have a smaller coefficient of thermal expansion than Al and are superior in heat and wear resistance. Hypereutectic Al-Si alloy casting materials exhibit excellent high-temperature strength, wear resistance, and seizure resistance because Si is dispersed in the matrix as primary or eutectic crystals. However, since primary Si often crystallizes as coarse crystals, it reduces ductility and impact value, resulting in poor machinability. Furthermore, when used for cylinder liner materials, etc., it is not suitable because it damages the mating material. In order to solve these problems, hypereutectic Al−
It has been proposed to rapidly cool and solidify a Si alloy to create an alloy powder with fine primary Si crystals, and process it into parts by extrusion molding to obtain a material with excellent heat resistance and wear resistance. −109415). However, heat resistance, especially high temperature strength, is still not sufficient. The present invention aims to significantly improve the strength and wear resistance at high temperatures by adding 5.0 to 15.0% Ni to the Al-Si alloy. Next, the reason for limiting each component in the alloy powder used in the present invention will be explained. When Si is less than 10%, the amount of dispersion is small and the effect on heat resistance and wear resistance is insufficient. In the hypoeutectic region near 10% Si, primary Si cannot crystallize and has a fine eutectic structure. As the amount of Si added increases, Si primary crystals begin to crystallize, and the heat and wear resistance also improves. However, if the Si content exceeds 30%, the coarse primary crystal Si will not disappear even as a powder by the dispersion and rapid solidification method. When aluminum alloy powder with a coarse primary Si structure is extruded and used, it significantly deteriorates the compressibility of the powder, making it difficult to form a green compact, and it also has high deformation resistance during hot extrusion. In addition to requiring a large extrusion force,
There is a drawback that the extrusion die is worn out and its life is significantly shortened. In addition to these manufacturing problems, there are also the same difficulties with material properties as with cast materials, making it unsuitable as a cylinder liner material, so crystallization of coarse primary Si must be avoided. Must be. Furthermore, when used as a cylinder liner by being cast into an aluminum alloy cylinder block material, the coefficient of thermal expansion decreases with the amount of Si added, and if the Si content exceeds 30%, the adhesion with the cylinder block material may deteriorate. , it becomes necessary to increase the clearance with the piston. Therefore, the amount of Si added is 10.0 to 30.0%, preferably
It is best to set it at 15.0 to 25.0%. Ni is an important component in the alloy of the present invention.
The effect of Ni addition is to improve high temperature strength and wear resistance. When Ni is added to a hypereutectic alloy, a Ni-Al intermetallic compound precipitates, and in the alloy powder produced by the dispersion rapid solidification method, which is the core of the production method of the present invention, it exists as a rod-shaped structure and is It is divided and finely dispersed in the matrix by the inter-extrusion process. This compound is stable and difficult to grow even at high temperatures, and does not lose strength even when kept at high temperatures for a long time. Therefore, even after being exposed to high temperatures like cylinder liners for castings, there is no decrease in hardness and it is possible to maintain wear resistance. When the amount of Ni added is less than 5%, no significant effect is observed, and when it is more than 15%, the solubility limit of Si in the matrix becomes low, and excess Si becomes primary crystals and crystallizes in large quantities. Furthermore, the melting temperature of the alloy becomes high and the oxidation of the molten metal progresses, requiring special measures to prevent oxidation, which is not economical. Moreover, the precipitated intermetallic compound becomes coarse and not only becomes difficult to be separated by subsequent hot extrusion processing, but also results in impeding extrudability. It was found that an unprecedented effect was exhibited when the amount of Ni added was in the range of 5.0 to 15.0%. In this way, we have developed a novel method that uses the Ni-containing intermetallic compounds that precipitate by adding a large amount of Ni to improve the strength of the alloy, especially the strength at high temperatures, and improves wear resistance by fragmenting and refining these intermetallic compounds. It brings about a great effect. This alloy powder can be added with 0.5-5.0% Cu and 0.2-3.0% Mg as required.
Cu and Mg are known as components that impart age hardenability to aluminum alloys and strengthen the material. Also in the present invention, adding Cu and Mg within the above-mentioned range within the solid solubility limit at the solution treatment temperature is effective in strengthening the material. In addition, this alloy powder also contains Fe,
It is also possible to improve high temperature strength by adding Mn, Ti, Cr, V, Zr, Mo, Co, etc. The Si crystal grain size is 15μm or less.
Mainly when the size of primary Si is 15μm or more,
This is because the moldability of the subsequent alloy powder deteriorates and the material properties also deteriorate. Of course, when Si crystallizes as a eutectic, it becomes fine crystals, so no problem occurs. This alloy powder can be obtained by rapidly cooling and dispersing solidifying a molten metal having the above-mentioned alloy composition using commonly used means for producing fine powder from molten metal, such as atomization or atomization using centrifugal force. can. The alloy powder obtained in this way contains Si crystal grains with a size of 15 μm or less and Ni whose growth is suppressed.
It has rod-shaped crystals of intermetallic compounds containing
This is a new alloy powder that is not found in Al alloy powders. Further, it is impossible to obtain an alloy having such a structure by a casting method. For reference, 22.8Si
FIG. 3 shows a microscopic structure photograph of an aluminum alloy powder having a composition of -3.1Cu-1.3Mg-8.0Ni-0.5Fe-Al balance. For comparison, Figure 4 shows a composition photograph of a cast material with the same composition.
Figure 5 shows a photograph of the structure of an Al alloy powder having a composition of 3.1Cu-1.0Mg-Al balance. In Fig. 3, the lump-like shape is primary Si. The Al-Ni intermetallic compound phase is rod-shaped. In FIG. 4, coarse polygonal primary Si crystals are observed, and a white rod-shaped Al-Ni intermetallic compound phase is observed. Figure 5 shows a granular Si primary crystal and a eutectic structure. The above-mentioned alloy powder is suitable for hot extrusion processing, and is particularly suitable for forming high-strength aluminum alloy compacts having heat and wear resistance. Next, the gist of the first invention of the present invention is as follows:
Contains 10.0 to 30.0% Si and 8.0 to 15.0% Ni by weight,
It has a composition in which the balance consists of Al containing unavoidable impurities, the size of Si crystal grains is 15 μm or less, and the size of intermetallic compounds containing Ni is finely dispersed and is 20 μm or less. This is a heat-resistant, wear-resistant, high-strength aluminum alloy powder compact. In the present invention, the Si content is set at 10.0 to 30.0% in order to improve the heat resistance, wear resistance, and seizure resistance of the molded body, and the Ni content is set at 5.0 to 15.0% to improve high temperature strength and This is to improve heat resistance and abrasion resistance. Furthermore, by reducing the size of Si crystal grains to 15 μm or less, the ductility and machinability are improved compared to conventional molded products, making machining easier and less likely to cause chattering or cracking during machining. . Also
This is because the microcrystals of Si have excellent wear resistance and reduce the wear coefficient of the material, making it suitable for cylinder liners and the like. In addition, the size of intermetallic compounds containing Ni such as Al 3 Ni should be kept to 5 μm or less, with the largest size being 20 μm.
By finely and uniformly dispersing it in the following, high temperature strength and wear resistance are significantly improved. FIG. 6 shows a microscopic composition photograph of a cross section parallel to the extrusion direction of a molded article according to the present invention. In FIG. 6, the dark colored areas are primary Si crystals, and the light colored areas are eutectic with Al-Ni intermetallic compounds. As seen in the figure, in the alloy compact according to the present invention, primary Si, eutectic,
It can be seen that the intermetallic compound phase is finely distributed and uniformly distributed. A molded product having such a structure is a novel product that has not been found in conventional molded products. For reference, a high
The structure photograph of the cross section of the Si aluminum alloy compact is shown in Figure 7.
As shown in the figure. The aluminum alloy powder compact according to the present invention has significantly improved high-temperature strength compared to conventional products, and also has excellent wear resistance and seizure resistance.
Further, since the product of the present invention has a small coefficient of friction, it is particularly suitable for parts used at high temperatures and required to have wear resistance and seizure resistance, such as cylinder liners for internal combustion engines. The second aspect of the present invention is that the weight ratio of Si is 10.0 to 30.0%.
Ni5.0~15.0%, Cu0.5~5.0% and Mg0.2~3.0
%, the remainder consists of Al containing unavoidable impurities, and the size of Si crystal grains is 15 μm or less,
The present invention is a heat-resistant, abrasion-resistant, high-strength aluminum alloy powder compact, characterized in that the intermetallic compound containing Ni is finely dispersed to a size of 20 μm or less. The aluminum alloy powder compact according to the present invention is obtained by the method described below. The third aspect of the present invention relates to a method for manufacturing the aluminum alloy powder compact, the gist of which is to disperse and rapidly solidify a molten alloy having the same composition as in the first or second invention. and hot extrusion molding of the obtained alloy powder. Si,
This is to dissolve alloy elements such as NiCu and Mg into a supersaturated solid solution, and to refine primary Si and intermetallic compound phases. As a method for dispersing and rapidly solidifying, known metal powder manufacturing methods such as an atomization method and a centrifugal pulverization method can be used. By using these methods to refine the powder particle size to 0.5 mm or less and rapidly solidify it, an alloy powder with a satisfactory structure can be obtained. Next, a molded body is manufactured by hot extrusion using the alloy powder. Hot extrusion not only finishes the alloy powder into a strong compact, but also refines the crystal grains of primary Si, eutectic phase, and intermetallic phase crystallized in the alloy powder, improving the mechanical properties of the material. This is an essential condition for It is convenient for the work to prepare the green compact prior to hot extrusion. For the production of green compacts, alloy powder is heated to a temperature of 200℃.
Perform at a temperature range of ~350℃. If the temperature exceeds 300°C, oxidation will become significant, so it is preferable to carry out the process in a non-oxidizing atmosphere such as N 2 gas or Ar gas. The compacting pressure is preferably about 0.5 to 3 ton/cm 2 , and the green compact density is preferably 70% or more of the true density ratio in terms of handling of the green compact. Hot extrusion at a temperature of 350℃ or higher, preferably 400℃~
Perform in a temperature range of 470℃. This is to facilitate processing of the green compact and at the same time promote bonding between particles to form a strong compact. Furthermore, the supersaturated solid solution elements are finely precipitated, and the primary crystals are
This is to divide and refine the rod-like structure of Si and intermetallic compounds to improve the strength and friction characteristics of the molded body. Hot extrusion is carried out by preheating the green compact in air or a non-oxidizing atmosphere and inserting it into a container at approximately the same temperature. The extrusion ratio is preferably 10 or more. If the extrusion ratio is less than 10, voids remain in the extruded material, and the diffusion bonding between powders and the separation effect of rod-shaped intermetallic compounds are insufficient, making it impossible to obtain a material with high strength and toughness. It is. According to the method of the present invention, it is possible to disperse Si primary crystals, eutectic crystals, and intermetallic compound phases extremely finely and uniformly, making it easy to obtain parts with particularly excellent material wear resistance and friction properties. becomes possible. Further, it is also possible to further improve the material properties by subjecting the alloy powder molded body obtained according to the present invention to stabilizing heat treatment. Next, the present invention will be explained with reference to Examples. Example A molten high-Si aluminum alloy having the composition shown in Table 1 was atomized with gas to obtain -48mesh powder.
Next, these powders, which were preheated to a temperature of 250℃, were filled into a mold heated and maintained at the same temperature, and 1.5ton/
Compression molding was performed at a pressure of cm 2 to obtain a green compact with a diameter of 100 mm and a length of 200 mm. Next, the compact was heated to 450°C, inserted into a container with an inner diameter of 104 mm kept at the same temperature, and extruded using an indirect extrusion method (extrusion ratio 12) using a die with a diameter of 30 mm. Up to 10 molded bodies were obtained. Next, except for No. 9, after holding at 480℃×2Hr, cool with water at 175℃.
Aging treatment was performed at ℃×10Hr, gauge distance 50mm,
It was processed into a tensile test piece with a parallel part diameter of 6 mm, and a tensile test was conducted between room temperature and 250°C. The tensile test was conducted after holding each test temperature for 100 hours.
The hardness was also measured at the end of the chucking part of the test piece after the tensile test at each temperature. In addition, the sample material
No. 1 to No. 6 are comparative examples, and No. 7 to No. 10 are examples of the present invention. Furthermore, for comparison with cast materials
A390.0 alloy mold casting material was used as a comparison material at 500°C
After holding for 10 hours, the samples were cooled in water and subjected to aging treatment at 175°C for 10 hours, and then processed into the same shape and subjected to the same tensile test. The results of these tests are shown in Table-1.

【表】 表−1から明らかなように比較材のA390.0合
金やNo.1〜6迄のものに比べて、本発明によるNo.
7〜10の成形体は、高温強度及び高温に保持後の
硬度が高い。 次に前記熱間押出成形体を切断し、熱間鋳造に
より直径70mm、厚さ10mmの素材を作り、機械加工
により試験片とした後、耐焼付性試験、耐摩耗性
試験、摩擦係数の測定を行なつた。 Γ耐焼付性試験 試験装置は第1図及び第2図に概略を図解的に
示すものであつて、ステータ1に取外し可能に取
付けられた直径70mmの円板2の中央には、裏側か
ら注油孔3を通じて潤滑油が注油される。ステー
タ1には油圧装置(図示せず)によつて右方へ向
けて所定圧力で押圧力Pが作用するようにしてあ
る。円板2に相対向してロータ4があり、駆動装
置(図示せず)によつて所定速度で回転するよう
にしてある。ロータ4の円板2に対する端面に取
付けられた試料保持具4aには、5mm×5mm×10
mmの角柱状試験片(相手材)5が同心円上に等間
隔に3個取外し可能にかつ正方形端面や円板2に
対して摺動自在に取付けてある。この様な装置に
おいてステータ1に所定の押圧力Pをかけ所定の
面圧で円板2と試験片(相手材)5とが接触する
ようにしておいて、注油孔3から摺動面に所定給
油速度で給油しながらロータ4を回転させる。 一定時間毎にステータ1に作用する圧力を階段
的に増加して行き、ロータ4の回転によつて相手
の試験片5と円板2との摩擦によつて、ステータ
1に生ずるトルク(摩擦力によつて生ずるトル
ク)Tをスピンドル6を介してロードセル7に作
用せしめ、その変化を動歪計8で読み、計録計9
に記録させる。トルクTが急激に上昇するときに
焼付が生じたものとして、その時の接触面圧をも
つて焼付面圧とし、この大小をもつて耐焼付性の
良否を判断する。 試験に供した円板状試験片2は、300℃×
100Hrの熱処理後研摩仕上げをしたものを使用し
相手の試験片5は、球状黒鉛鋳鉄で摺動面に硬質
Crメツキを施したものと、平均粒径0.8μmのSiC
を面積率で15〜20%基地中に分散させた鉄メツキ
の2種類とし研摩仕上げを行つた。 比較材としては、シリンダーライナー用として
使用されている片状黒鉛鋳鉄についても行つた。 試験条件は、速度8m/sec、潤滑油はエンジ
ンオイル(SAE20、ベースオイル)で温度90℃
油量300mg/minとし、接触圧力は、20Kg/cm2
で20分間の馴らし運転後30Kg/cm2で3分間、その
後3分経過毎に10Kg/cm2ずつ上昇させていく。結
果を表−2に示す。 結果から明らかなように、現在多くのガソリン
エンジンでの組合せに見られる片状黒鉛鋳鉄(シ
リンダーライナー材)とCrメツキ(ピストンリ
ング表面)の組合せよりも、本発明によるNo.7〜
No.10のものはすぐれた耐焼付性を示している。
又、比較材(鋳造)や、No.1、No.2に見られるよ
うにSiC分散鉄メツキに比べ、硬質Crメツキとの
組合せの場合は、焼付発生面が大巾に低くなつて
いるが、本発明によるNo.7〜No.10については相手
表面処理の違いによる差が小さくなる結果となつ
ている点が注目される。 更に比較材(鋳造)やNo.1、2に比べNo.7〜10
の成形体の焼付発生面圧が高いが、これはAl基
地中に分散する硬質相の量が多く微小な凹凸とな
つて油膜の保持作用として働く他に、基地が分散
強化されているので摩擦表面が塑性流動によつて
相手材に凝着しようとするのを防ぐためと考えら
れる。
[Table] As is clear from Table 1, compared to the comparative materials A390.0 alloy and Nos. 1 to 6, No. 1 according to the present invention.
The molded bodies of Nos. 7 to 10 have high high temperature strength and hardness after being held at high temperatures. Next, the hot extrusion molded body was cut, a material with a diameter of 70 mm and a thickness of 10 mm was made by hot casting, and after being machined into test pieces, a seizure resistance test, a wear resistance test, and a friction coefficient measurement were performed. I did this. Γ Seizure Resistance Test The test equipment is schematically shown in Figs. 1 and 2, and the center of a 70 mm diameter disc 2 removably attached to the stator 1 is filled with oil from the back side. Lubricating oil is supplied through the hole 3. A pressing force P is applied to the stator 1 to the right by a hydraulic device (not shown) at a predetermined pressure. A rotor 4 is disposed opposite to the disk 2, and is rotated at a predetermined speed by a drive device (not shown). The sample holder 4a attached to the end face of the rotor 4 with respect to the disk 2 has a 5 mm x 5 mm x 10
Three mm-sized prismatic test pieces (counterpart material) 5 are removably attached at equal intervals on a concentric circle and slidably relative to the square end face or the disk 2. In such a device, a predetermined pressing force P is applied to the stator 1 so that the disc 2 and the test piece (counterpart material) 5 come into contact with each other with a predetermined surface pressure, and a predetermined pressure is applied to the sliding surface from the oiling hole 3. The rotor 4 is rotated while being refueled at the refueling speed. The pressure acting on the stator 1 is increased stepwise at regular intervals, and torque (frictional force) is generated on the stator 1 due to the friction between the test piece 5 and the disk 2 caused by the rotation of the rotor 4. Torque) T generated by
record it. Assuming that seizure occurs when the torque T rapidly increases, the contact surface pressure at that time is taken as the seizure surface pressure, and the quality of the seizure resistance is determined based on the magnitude of this. The disk-shaped test piece 2 used for the test was heated at 300℃×
The mating specimen 5 was made of spheroidal graphite cast iron and had a hard sliding surface.
Cr plated and SiC with average particle size of 0.8μm
Two types of iron plating were applied, with the area ratio of 15 to 20% dispersed throughout the base, and the polishing was completed. As a comparison material, flake graphite cast iron, which is used for cylinder liners, was also tested. The test conditions were a speed of 8 m/sec, lubricating oil was engine oil (SAE20, base oil), and a temperature of 90°C.
Oil amount is 300mg/min, contact pressure is 20Kg/cm 2
After 20 minutes of break-in operation, the load was set at 30Kg/cm 2 for 3 minutes, and then increased by 10Kg/cm 2 every 3 minutes. The results are shown in Table-2. As is clear from the results, Nos. 7 to 7 according to the present invention are superior to the combination of flake graphite cast iron (cylinder liner material) and Cr plating (piston ring surface) currently found in many gasoline engines.
No. 10 shows excellent seizure resistance.
In addition, compared to the comparison material (casting) and SiC dispersed iron plating as seen in No. 1 and No. 2, when combined with hard Cr plating, the surface where seizure occurs is significantly lower. It is noteworthy that for No. 7 to No. 10 according to the present invention, the difference due to the difference in the mating surface treatment is small. Furthermore, compared to comparative materials (casting) and No. 1 and 2, No. 7 to 10
The surface pressure at which seizure occurs in the molded body is high, but this is due to the large amount of hard phase dispersed in the Al base, which forms minute irregularities that act as a retainer for the oil film, and also because the base is dispersed and strengthened, causing friction This is thought to be to prevent the surface from adhering to the mating material due to plastic flow.

【表】 Γ摩耗試験及び摩擦係数の測定 耐焼付試験に使用したと同じ試験機により研磨
仕上げを行なつた円板状の試験片2に球状黒鉛鋳
鉄の摺動面に硬質Crメツキを施したものと、平
均粒径0.8μのSiCを面積率で15〜20%分散させた
鉄メツキを施したものを各々研磨仕上げをしたも
のを相手材試験片5として、次の条件でテストし
た。結果を表−3に示す。 (条件) 速度は3m/sec、5m/sec、8m/secの3
水準とし、潤滑油としてエンジンオイル
(SAE20、ベースオイル)を使用し、油温90℃、
油量500ml/min、面圧100Kg/cm2で摺動距離500
Kmとした。 (摩耗量の測定) Γ円板状の試験片の摩耗量は表面粗サ計にて90゜
ずつずれた位置で4ケ所摺動方向と直角となる
ように触針を走らせ、摩耗痕の状況をチヤート
上に記録する。しかる後、摩耗痕の凹部の面積
を求め、材料間の相対比較を行う。表−3では
片状黒鉛鋳鉄の円板の速度5m/sec時の摩耗
痕の断面積を1としたときの相対比で表わし
た。 Γ相手材試験片の摩耗量は試料保持具4aに取付
けられた4本の角柱状試験片5の高さ寸法をテ
スト前後にマイクロメーターで測定し、その平
均の差を求める方法によつた。
[Table] Γ wear test and measurement of friction coefficient Hard Cr plating was applied to the sliding surface of spheroidal graphite cast iron on disk-shaped test piece 2, which had been polished using the same testing machine used for the anti-seizing test. Test specimen 5 was used as a mating material test piece 5, and was tested under the following conditions. The results are shown in Table-3. (Conditions) The speed is 3m/sec, 5m/sec, 8m/sec.
level, use engine oil (SAE20, base oil) as the lubricating oil, and set the oil temperature to 90℃.
Sliding distance 500 at oil flow rate 500ml/min, surface pressure 100Kg/ cm2
Km. (Measurement of wear amount) The wear amount of the Γ disk-shaped test piece was measured using a surface roughness meter by running a stylus at 4 positions perpendicular to the sliding direction at 90 degrees apart, and checking the condition of wear marks. Record on the chart. Thereafter, the area of the concave portion of the wear mark is determined and a relative comparison is made between the materials. Table 3 shows the relative ratio when the cross-sectional area of a wear scar at a speed of 5 m/sec on a disc made of flaky graphite cast iron is taken as 1. The wear amount of the Γ counterpart material test piece was determined by measuring the height dimensions of four prismatic test pieces 5 attached to the sample holder 4a with a micrometer before and after the test, and calculating the difference in the average.

【表】【table】

【表】 摩耗係数の測定は200Km走行後に摩擦トルク計
録計9より読み取り算出した。 結果を表−3に示すが片状黒鉛鋳鉄(シリンダ
ーライナー材)と、Crメツキの組合せの場合よ
りも、著しく摩擦係数の低いことが明らかであ
る。更に供試材No.1のように鋳ぐるみ時の熱負荷
に相当する300℃×100Hrの熱処理を行なつたも
のは、円板の摩耗が著しく多いが、本発明による
No.7〜No.10においては摩耗量は、片状黒鉛鋳鉄と
比較しても同等以下である。 又、相手の表面処理が硬質Crメツキであつて
も、又SiC分散鉄メツキであつてもその差はな
い。 以上のように本発明合金は、Al合金製シリン
ダーブロツクに鋳ぐるまれ、且つ、使用時に比較
的高い温度域で使用されるシリンダーライナーの
ような用途に適するものである。 尚、本発明合金はFe、Mn、Ti、Cr、V、
Mo、Zr、Co等を含んでも急冷凝固による粉末を
出発原料としているため耐熱性に寄与するものと
考えられる。 又、ZnをCu、Mgの代りに時効硬化性を与える
目的で置換することも可能である。
[Table] The wear coefficient was calculated by reading it from the friction torque meter 9 after traveling 200 km. The results are shown in Table 3, and it is clear that the friction coefficient is significantly lower than that of the combination of flake graphite cast iron (cylinder liner material) and Cr plating. Furthermore, in the case of sample material No. 1, which was heat treated at 300°C x 100 hours, which corresponds to the heat load during casting, the wear of the disk was extremely high.
In No. 7 to No. 10, the amount of wear is equal to or lower than that of flake graphite cast iron. Furthermore, there is no difference whether the surface treatment of the other side is hard Cr plating or SiC dispersed iron plating. As described above, the alloy of the present invention is suitable for applications such as cylinder liners that are cast into Al alloy cylinder blocks and are used in relatively high temperature ranges. The alloy of the present invention includes Fe, Mn, Ti, Cr, V,
Even if it contains Mo, Zr, Co, etc., it is thought that it contributes to heat resistance because the starting material is a powder obtained by rapid solidification. It is also possible to substitute Zn in place of Cu or Mg for the purpose of imparting age hardenability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は耐焼付性試験装置の概要を示
す図で第2図は第1図の−矢視測面図であ
る。第3図は本発明に使用するAl−22.8Si−
3.1Cu−1.3Mg−8.0Ni−0.5Feの組成を有する合
金粉末の顕微鏡組織写真(740倍)。第4図は第3
図と同一組成の鋳造材の顕微鏡組織写真(97倍)。
第5図はAl−21.1Si−3.1Cu−1.0Mgの組成を有
する公知の合金粉末の顕微鏡組織写真(740倍)。
第6図は本発明になる第3図と同一の組成を有す
るアルミニウム合金粉末成形体断面の顕微鏡組織
写真(押出方向に平行する断面、740倍)。第7図
は第5図と同一組成の公知の合金粉末成形体断面
の組織写真(押出方向に平行する断面 740倍)
である。
FIGS. 1 and 2 are diagrams showing an outline of the seizure resistance testing apparatus, and FIG. 2 is a plan view taken along the - arrow in FIG. 1. Figure 3 shows Al-22.8Si- used in the present invention.
A micrograph of an alloy powder with a composition of 3.1Cu−1.3Mg−8.0Ni−0.5Fe (740x magnification). Figure 4 is the third
Microscopic structure photograph (97x) of a cast material with the same composition as the figure.
Figure 5 is a micrograph (740x magnification) of a known alloy powder having the composition Al-21.1Si-3.1Cu-1.0Mg.
FIG. 6 is a micrograph of a cross section of an aluminum alloy powder compact according to the present invention having the same composition as FIG. 3 (cross section parallel to the extrusion direction, magnified at 740 times). Figure 7 is a microstructure photograph of a cross section of a known alloy powder compact with the same composition as Figure 5 (cross section parallel to the extrusion direction, magnified at 740x).
It is.

Claims (1)

【特許請求の範囲】 1 重量比でSi10.0〜30.0%とNi5.0〜15.0%を含
み、残部が不可避的不純物を含むAlからなり、
Si結晶粒の大きさが15μm以下であり、かつNiを
含む金属間化合物の大きさが20μm以下に微細化
分散してなることを特徴とする耐熱耐摩耗性高力
アルミニユウム合金粉末成形体。 2 重量比でSi10.0〜30.0%とNi5.0〜15.0%と
Cu0.5〜5.0%およびMg0.2〜3.0%とを含み、残部
が不可避的不純物を含むAlからなり、Si結晶粒
の大きさが15μm以下であつて、かつNiを含む金
属間化合物の大きさが20μm以下に微細化分散し
てなることを特徴とする耐熱耐摩耗性高力アルミ
ニユウム合金粉末成形体。 3 重量比でSi10.0〜30.0%とNi5.0〜15.0%とを
主成分として含み、さらに必要に応じてCu0.5〜
5.0%およびMg0.2〜3.0%とを含み、残部が不可
避的不純物を含むAl合金の溶湯を分散急冷凝固
させて、微細なSi結晶粒とNiを含む棒状の金属
間化合物を有するAl合金粉末となし、次いで得
られたAl合金粉末を熱間押出成形して、Si結晶
粒の大きさが15μm以下で、かつNiを含む金属間
化合物の大きさが20μm以下に微細化分散した組
織とすることを特徴とする耐熱耐摩耗性高力アル
ミニユウム合金粉末成形体の製造方法。
[Scope of Claims] 1 Contains 10.0 to 30.0% Si and 5.0 to 15.0% Ni by weight, and the remainder consists of Al containing unavoidable impurities,
A heat-resistant, wear-resistant, high-strength aluminum alloy powder compact, characterized in that the size of Si crystal grains is 15 μm or less, and the size of intermetallic compounds containing Ni is finely dispersed to be 20 μm or less. 2 Si10.0~30.0% and Ni5.0~15.0% in weight ratio
Contains 0.5 to 5.0% Cu and 0.2 to 3.0% Mg, the remainder is Al containing inevitable impurities, the size of Si crystal grains is 15 μm or less, and the size of the intermetallic compound containing Ni is A heat-resistant, wear-resistant, high-strength aluminum alloy powder compact characterized by finely dispersed particles of 20 μm or less. 3 Contains 10.0 to 30.0% Si and 5.0 to 15.0% Ni by weight as main components, and further contains 0.5 to 0.5% Cu as necessary.
Al alloy powder having fine Si crystal grains and rod-shaped intermetallic compounds containing Ni is obtained by dispersing and rapidly solidifying a molten Al alloy containing 5.0% Mg and 0.2 to 3.0% Mg, with the remainder containing unavoidable impurities. Then, the obtained Al alloy powder is hot-extruded to obtain a finely dispersed structure in which the size of Si crystal grains is 15 μm or less and the size of intermetallic compounds containing Ni is 20 μm or less. A method for producing a heat-resistant, wear-resistant, high-strength aluminum alloy powder compact, characterized by:
JP57119901A 1982-07-12 1982-07-12 Heat- and wear-resistant high-strength aluminum alloy powder and molded body of said alloy powder and their manufacture Granted JPS5913040A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57119901A JPS5913040A (en) 1982-07-12 1982-07-12 Heat- and wear-resistant high-strength aluminum alloy powder and molded body of said alloy powder and their manufacture
CA000432033A CA1230761A (en) 1982-07-12 1983-07-07 Heat-resistant, wear-resistant, and high-strength aluminum alloy powder and body shaped therefrom
EP83106849A EP0100470B1 (en) 1982-07-12 1983-07-12 Heat-resistant, wear-resistant, and high-strength aluminum alloy powder and body shaped therefrom
DE8383106849T DE3381592D1 (en) 1982-07-12 1983-07-12 HEAT-RESISTANT AND WEAR-RESISTANT ALUMINUM ALLOY POWDER WITH GOOD MECHANICAL PROPERTIES AND ITEMS MADE THEREOF.
US07/259,402 US4938810A (en) 1982-07-12 1988-10-18 Heat-resistant, wear-resistant, and high-strength aluminum alloy powder and body shaped therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57119901A JPS5913040A (en) 1982-07-12 1982-07-12 Heat- and wear-resistant high-strength aluminum alloy powder and molded body of said alloy powder and their manufacture

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP28226387A Division JPS63266004A (en) 1987-11-10 1987-11-10 High strength aluminum alloy powder having heat and wear resistances

Publications (2)

Publication Number Publication Date
JPS5913040A JPS5913040A (en) 1984-01-23
JPH0118981B2 true JPH0118981B2 (en) 1989-04-10

Family

ID=14773016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57119901A Granted JPS5913040A (en) 1982-07-12 1982-07-12 Heat- and wear-resistant high-strength aluminum alloy powder and molded body of said alloy powder and their manufacture

Country Status (1)

Country Link
JP (1) JPS5913040A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210237A (en) * 1985-07-09 1987-01-19 Showa Denko Kk Aluminum alloy for hot forging
JPS6296603A (en) * 1985-10-22 1987-05-06 Honda Motor Co Ltd Production of structural member made of heat-resistant high-strength al sintered alloy
JP2631210B2 (en) * 1986-09-02 1997-07-16 松下通信工業株式会社 Accenting method
JP2619469B2 (en) * 1987-04-13 1997-06-11 昭和電工株式会社 Spring retainer
JPH02149632A (en) * 1988-11-30 1990-06-08 Showa Alum Corp Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
JPH05311302A (en) * 1991-10-22 1993-11-22 Toyota Motor Corp Aluminum alloy excellent in strength at high temperature and wear resistance and reduced in friction
DE69311412T2 (en) * 1992-03-04 1998-01-02 Toyota Motor Co Ltd Heat-resistant aluminum alloy powder, heat-resistant aluminum alloy and heat-resistant and wear-resistant composite material based on aluminum alloy
EP0566098B1 (en) * 1992-04-16 1997-01-22 Toyota Jidosha Kabushiki Kaisha Heat resistant aluminum alloy powder, heat resistant aluminum alloy and heat and wear resistant aluminum alloy-based composite material
EP0600474B1 (en) * 1992-12-03 1997-01-29 Toyota Jidosha Kabushiki Kaisha High heat resisting and high abrasion resisting aluminum alloy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52101611A (en) * 1976-02-23 1977-08-25 Tsugio Nakatani Sintered ultrahighhsilicon aluminium product
JPS5597447A (en) * 1979-01-19 1980-07-24 Sumitomo Electric Ind Ltd Aluminum sintered alloy and production of the same
JPS62247044A (en) * 1987-04-03 1987-10-28 Sumitomo Electric Ind Ltd Wear resistant aluminum alloy of high strength

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52101611A (en) * 1976-02-23 1977-08-25 Tsugio Nakatani Sintered ultrahighhsilicon aluminium product
JPS5597447A (en) * 1979-01-19 1980-07-24 Sumitomo Electric Ind Ltd Aluminum sintered alloy and production of the same
JPS62247044A (en) * 1987-04-03 1987-10-28 Sumitomo Electric Ind Ltd Wear resistant aluminum alloy of high strength

Also Published As

Publication number Publication date
JPS5913040A (en) 1984-01-23

Similar Documents

Publication Publication Date Title
US4938810A (en) Heat-resistant, wear-resistant, and high-strength aluminum alloy powder and body shaped therefrom
JPS61291941A (en) Cast al alloy having high si content
JPH0118982B2 (en)
JPS6210237A (en) Aluminum alloy for hot forging
JPS6320298B2 (en)
JPS6121295B2 (en)
JPH0118981B2 (en)
US4537161A (en) Inserts for pistons of diesel engines of aluminum-silicon alloys having an improved thermal resistance and machinability
JPS6320297B2 (en)
JPH0118983B2 (en)
JPS6150132B2 (en)
JPH0256401B2 (en)
JPS5966918A (en) Double layer structure hollow member made of aluminum alloy
JPH0261023A (en) Heat-resistant and wear-resistant aluminum alloy material and its manufacture
JPH0118984B2 (en)
JP2000001731A (en) Hypereutectic aluminum-silicon alloy diecast member and its production
JPS63266005A (en) High strength aluminum alloy powder having heat and wear resistances
JPH0637682B2 (en) Heat resistant and abrasion resistant high strength aluminum alloy powder compact having excellent lubricity and method for producing the same
CN110527874A (en) A kind of high-strength abrasion-proof aluminum alloy materials and manufacture craft
JPS61295301A (en) Heat-resistant high-power aluminum alloy powder and its molding
JPH072961B2 (en) Heat and wear resistance High strength aluminum alloy powder
JPH0543772B2 (en)
JPH01243A (en) Heat-resistant and wear-resistant aluminum alloy
JPS60204843A (en) Manufacture of wear-resistant and lightweight rocker arm
JPS61246339A (en) Molten-metal-forged high-toughness aluminum alloy and its manufacture